Open Access
2014 Modeling and Testing Landslide Hazard Using Decision Tree
Mutasem Sh. Alkhasawneh, Umi Kalthum Ngah, Lea Tien Tay, Nor Ashidi Mat Isa, Mohammad Subhi Al-Batah
J. Appl. Math. 2014: 1-9 (2014). DOI: 10.1155/2014/929768


This paper proposes a decision tree model for specifying the importance of 21 factors causing the landslides in a wide area of Penang Island, Malaysia. These factors are vegetation cover, distance from the fault line, slope angle, cross curvature, slope aspect, distance from road, geology, diagonal length, longitude curvature, rugosity, plan curvature, elevation, rain perception, soil texture, surface area, distance from drainage, roughness, land cover, general curvature, tangent curvature, and profile curvature. Decision tree models are used for prediction, classification, and factors importance and are usually represented by an easy to interpret tree like structure. Four models were created using Chi-square Automatic Interaction Detector (CHAID), Exhaustive CHAID, Classification and Regression Tree (CRT), and Quick-Unbiased-Efficient Statistical Tree (QUEST). Twenty-one factors were extracted using digital elevation models (DEMs) and then used as input variables for the models. A data set of 137570 samples was selected for each variable in the analysis, where 68786 samples represent landslides and 68786 samples represent no landslides. 10-fold cross-validation was employed for testing the models. The highest accuracy was achieved using Exhaustive CHAID (82.0%) compared to CHAID (81.9%), CRT (75.6%), and QUEST (74.0%) model. Across the four models, five factors were identified as most important factors which are slope angle, distance from drainage, surface area, slope aspect, and cross curvature.


Download Citation

Mutasem Sh. Alkhasawneh. Umi Kalthum Ngah. Lea Tien Tay. Nor Ashidi Mat Isa. Mohammad Subhi Al-Batah. "Modeling and Testing Landslide Hazard Using Decision Tree." J. Appl. Math. 2014 1 - 9, 2014.


Published: 2014
First available in Project Euclid: 2 March 2015

Digital Object Identifier: 10.1155/2014/929768

Rights: Copyright © 2014 Hindawi

Vol.2014 • 2014
Back to Top