Open Access
Translator Disclaimer
2014 Building Recognition on Subregion’s Multiscale Gist Feature Extraction and Corresponding Columns Information Based Dimensionality Reduction
Bin Li, Wei Pang, Yuhao Liu, Xiangchun Yu, Anan Du, Yecheng Zhang, Zhezhou Yu
J. Appl. Math. 2014: 1-10 (2014). DOI: 10.1155/2014/898705

Abstract

In this paper, we proposed a new building recognition method named subregion’s multiscale gist feature (SM-gist) extraction and corresponding columns information based dimensionality reduction (CCI-DR). Our proposed building recognition method is presented as a two-stage model: in the first stage, a building image is divided into 4 × 5 subregions, and gist vectors are extracted from these regions individually. Then, we combine these gist vectors into a matrix with relatively high dimensions. In the second stage, we proposed CCI-DR to project the high dimensional manifold matrix to low dimensional subspace. Compared with the previous building recognition method the advantages of our proposed method are that (1) gist features extracted by SM-gist have the ability to adapt to nonuniform illumination and that (2) CCI-DR can address the limitation of traditional dimensionality reduction methods, which convert gist matrices into vectors and thus mix the corresponding gist vectors from different feature maps. Our building recognition method is evaluated on the Sheffield buildings database, and experiments show that our method can achieve satisfactory performance.

Citation

Download Citation

Bin Li. Wei Pang. Yuhao Liu. Xiangchun Yu. Anan Du. Yecheng Zhang. Zhezhou Yu. "Building Recognition on Subregion’s Multiscale Gist Feature Extraction and Corresponding Columns Information Based Dimensionality Reduction." J. Appl. Math. 2014 1 - 10, 2014. https://doi.org/10.1155/2014/898705

Information

Published: 2014
First available in Project Euclid: 2 March 2015

Digital Object Identifier: 10.1155/2014/898705

Rights: Copyright © 2014 Hindawi

JOURNAL ARTICLE
10 PAGES


SHARE
Vol.2014 • 2014
Back to Top