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The dynamical behavior of different Steffensen-typemethods is analyzed.We check the chaotic behaviors alongside the convergence
radii (understood as the wideness of the basin of attraction) needed by Steffensen-type methods, that is, derivative-free iteration
functions, to converge to a root and compare the results using different numerical tests. We will conclude that the convergence
radii (and the stability) of Steffensen-type methods are improved by increasing the convergence order.The computer programming
package Mathematica provides a powerful but easy environment for all aspects of numerics. This paper puts on show one of the
application of this computer algebra system in finding fixed points of iteration functions.

1. Introduction

Suppose that we wish to find a solution 𝜉 of a nonlinear
equation𝑓(𝑧) = 0 numerically, where 𝑧 ∈ C and the function
𝑓 : 𝜓 ⊆ C → C is an analytical complex function. Starting
from some 𝑧

0
, the Steffensen’s method [1] uses the iteration:

𝑧
𝑛+1

= 𝑧
𝑛
−

𝑓(𝑧
𝑛
)
2

𝑓 (𝑧
𝑛
+ 𝑓 (𝑧

𝑛
)) − 𝑓 (𝑧

𝑛
)
, 𝑛 = 0, 1, 2, . . . .

(1)

If the initial value 𝑧
0
is close enough to a simple root

of 𝑓(𝑧), this iteration converges quadratically (see [2, 3] for
more information about Steffensen-type methods). If the
root is not simple, the convergence becomes linear. Since
then, a tremendous amount of effort has been made in the
direction of improving the convergence and/or the simplicity
of the method resulting inmodified Steffensenmethod in the
divided difference form [4] as follows (𝑚 is the multiplicity):

𝑧
𝑛+1

= 𝑧
𝑛
− 𝑚

𝑓 (𝑧
𝑛
)

𝑓 [𝑧
𝑛
, 𝑤
𝑛
]
, 𝑛 = 0, 1, 2, . . . , (2)

wherein 𝑤
𝑛

= 𝑧
𝑛
+ 𝑓(𝑧

𝑛
) and 𝑓[𝑧

𝑛
, 𝑤
𝑛
] is the two-point

divided difference. Notice that the modification for multiple

roots given by (2) is the same as that given by Schröder for
Newton’s method. We remark that the notation of divided
differences will be used throughout this paper.

Note that the Steffensen method could be written in a
more generalized form with one free nonzero parameter [5]
as follows:

𝑧
𝑛+1

= 𝑧
𝑛
−

𝑓 (𝑧
𝑛
)

𝑓 [𝑧
𝑛
, 𝑤
𝑛
]
, 𝑛 = 0, 1, 2, . . . , (3)

wherein 𝑤
𝑛

= 𝑧
𝑛
+ 𝛽𝑓(𝑧

𝑛
) and 𝛽 ∈ C \ {0}. It is known

that this method has second order of convergence, for every
nonzero value of the parameter 𝛽. However, as we will see
in this paper, the parameter 𝛽 plays an important role for
choosing the initial estimation in the stability of the method,
and so forth.

Usually, efficiency indices are used to compare the behav-
ior of iterative methods. Traub in [5] used the operational
efficiency index 𝑝1/𝑜𝑝, where 𝑝 is the convergence rate and 𝑜𝑝
is the number of products/quotients per iteration. Ostrowski
in [6] defined the classical efficiency index 𝑝1/𝑑, wherein
𝑑 is the number of functional evaluations per iteration.
Similarly, one may use the informational index defined as
𝑝/𝑑. In this work, we are going to introduce another criterion
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for comparing the iterative methods used: the basins of
attraction, (see, e.g., [7–13]).

The dynamical analysis of the rational function associated
with an iterative method gives us important information
about its stability and reliability. There exists a huge number
of publications related to the numerical and dynamical
properties of iteration functions (see, e.g., [14–18]).

It is known that the basin of attraction of an iterative
method on a particular function is an interesting tool to
visually get to know how an iteration function behaves as a
function of different initial points [19].

The remaining sections of this paper are organized as
follows. Section 2 provides some basic concepts in order
to deal with dynamics associated with iterative functions.
It is followed by Section 3, wherein a discussion over
the basins of attraction for the uniparametric Steffensen
scheme (3) on higher degree polynomials, using the software
Mathematica 8, is given. Section 4 gives the list of methods
that we are going to compare and their dynamics on quadratic
polynomials is analyzed. Next in Section 5, we present the
basins of attraction for various high-order Steffensen-type
methods. Some conclusions and discussions are illustrated in
Section 6 to end the paper.

2. Basic Concepts

We need some basic definitions and notions before going to
Section 3. Thus, now we remind them briefly.

Let𝑅 : Ĉ → Ĉ be a rationalmap on the Riemann sphere.
Then, a periodic point 𝑧

0
of period𝑚 is such that𝑅𝑚(𝑧

0
) = 𝑧
0
,

where𝑚 is the smallest such integer. If𝑚 = 1, 𝑧
0
is called fixed

point of 𝑅 and also point 𝑧
0
is called attracting if |𝑅(𝑧

0
)| < 1,

repelling if |𝑅(𝑧
0
)| > 1, and neutral if |𝑅(𝑧

0
)| = 1. If the

derivative is zero then the point is called super-attracting
[20]. If 𝑅 is the rational function associated with an iterative
method on a function 𝑓, the fixed points of 𝑅 different from
the roots of 𝑓(𝑧) = 0, are called strange fixed points.

Note that the Julia set of a nonlinear map 𝑅(𝑧), denoted
J(𝑅), is the closure of the set of its repelling periodic points.
The complementary of J(𝑅) in the Riemann sphere is the
Fatou setF(𝑅).

A point 𝑧
0
is in the Julia set if and only if dynamics in a

neighborhood of 𝑧
0
shows strong dependence on the starting

conditions, so that nearby initial conditions yield to wildly
different behavior after a number of full iterations.

Definition 1 (basin of attraction [21]). If a fixed point 𝑝 of 𝑅
is attracting, then all nearby points of 𝑝 are attracted toward
𝑝 under the action of 𝑅, in the sense that their iterates under
𝑅 converge to 𝑝. The collection of all points whose iterates
under 𝑅 converge to 𝑝 is called the basin of attraction of 𝑝,
denoted by 𝐵

𝑝
= {𝑥 ∈ C : lim

𝑘→∞
𝑅𝑘(𝑥) = 𝑝} with 𝑅𝑘(𝑥) =

𝑅(𝑅(⋅ ⋅ ⋅ 𝑅(𝑥) ⋅ ⋅ ⋅ )) as the 𝑘-fold composite map of 𝑥 under 𝑅.

Lemma 2 (see [20]). Every attracting periodic orbit is con-
tained in the Fatou set of𝑅. In fact, the entire basin of attraction
𝐵
𝑝
, which is an open set, for an attracting periodic orbit is

contained in the Fatou set. However, every repelling periodic
orbit is contained in the Julia set.

Kalantari in [22] coined the term “polynomiography” to
be the art and science of visualization in the approximation
of roots of polynomial using iteration functions. Note that a
polynomiograph may or may not result in a fractal image.
Even when a polynomiograph is a fractal image it does not
diminish its uniqueness.

As we endeavor to solve increasingly complex problems,
computer algebra systems (CAS) are becoming more and
more important to our work. We use CAS to help with
calculations too time consuming. Mathematica 8 is one of
the most popular CASs available today [23]. Due to its wide
applicability and power along with easiness [24], we apply
this programming package in finding the chaotic behaviors
of Steffensen-type methods.

3. Basins of Attractions for the Uniparametric
Steffensen Scheme

A wide dynamical study of Steffensen’s method (1) on
quadratic and cubic polynomials has been developed in [12].
In this paper, it was showed that no Scaling Theorem is
possible for this derivative-free scheme and, therefore, the
analysis was made in particular polynomials. In general, it
can be concluded that the stability of derivative-free schemes
is worse than the one of methods with derivatives. In fact, in
the dynamical planes associated with some of these methods,
frequently the basin of attraction of the infinity appears.
In fact, the infinity can be a strange fixed point: if 𝑅(𝑧)
is the rational function associated to the method, then we
prove that the infinity is a fixed point if 𝑄(0) = 0, where
𝑄(𝑧) = 1/𝑅(1/𝑧). If this happens, the infinity (as any other
strange fixed point) can be attractive, repulsive, or neutral.
This character is obtained analyzing the value of 𝑄(0).

Before providing the chaotic behaviors of multipoint
Steffensen-type methods, we conclude some points on the
uniparametric Steffensen scheme (3).

Lemma 3. The associated operator of the uniparametric Stef-
fensen scheme on 𝑧2 − 1 is𝑂

𝑆𝑡
(𝑥) = (1 −𝛽𝑥+𝑥2 +𝛽𝑥3)/(−𝛽+

2𝑥 + 𝛽𝑥2). The only strange fixed point of𝑂
𝑆𝑡
(𝑧) is the infinity,

and its character is neutral.

This result can be understood as the behavior of the
infinity as fixed point can be attractive or repulsive, and it
can be observed also when this method is applied on other
functions, as we will see in Figures 5 to 10.

Toward this end and heretofore, we take a rectangle 𝐷 =
[−3, 3] × [−3, 3] ∈ C and we assign a color to each point 𝑧

0
∈

𝐷 according to the simple root at which the corresponding
iterative method starting from 𝑧

0
converges, and we mark

the point as black if the method does not converge after the
maximum number of iterations. In this way, we distinguish
the attraction basins by their colors for different methods.

The criteria we have used in our Mathematica 8 codes
[25–27] are that the maximum number of iterations is 100.
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(a) 𝛽 = 1 (b) 𝛽 = 0.5 (c) 𝛽 = 0.1

Figure 1: Scheme (3) for the test problem 1.

(a) 𝛽 = −0.1 (b) 𝛽 = 0.01 (c) 𝛽 = 0.001

Figure 2: Scheme (3) for the test problem 1.

That is to say, if the method does not reach the considered
accuracy after 100 of its full iteration steps, we allocate
the black color and also considered it as Not Convergent.
The considered accuracy is the obtained residual of the
function to be less than 10−4. Note that the small white points
will be shown in the exact location of the simple zeros in our
fractal patterns.

In what follows, we define the test problems in this paper.
For the first test, we have taken the following function with
roots {−1., −𝑖, 𝑖, 1.} :

𝑝
1
(𝑧) = 𝑧

4
− 1. (4)

The second test problem is a polynomial as follows when
the simple zeros are {−2.20663, −0.45318 − 0.78493𝑖,
−0.45318 + 0.78493𝑖, 0.906359, 1.10332 − 1.911𝑖, 1.10332 +
1.911𝑖}:

𝑝
2
(𝑧) = 𝑧

6
+ 10𝑧

3
− 8. (5)

The third test problem is chosen as follows:

𝑝
3 (𝑧) = 𝑧

4
−

1

𝑧
. (6)

The roots are {0.309017+0.951057𝑖, 0.309017−0.951057𝐼,
1., −0.809017 + 0.587785𝑖, −0.809017 − 0.587785𝑖}.

The fourth test problem is taken into account as

𝑝
4
(𝑧) = 𝑧

4
− 𝑧 + 𝑖. (7)

The roots are {−0.759845 + 0.592595𝑖, −0.532605 −
1.08829𝑖, 0.181924 + 0.732098𝐼, 1.11052 − 0.236405𝑖}.

The last test problem we have chosen is as follows when
the roots are {−1.09112 + 0.629961𝑖, 0. − 1.25992𝑖, 1.09112 +
0.629961𝑖}:

𝑝
5
(𝑧) = 𝑧

3
− 2𝑖. (8)

We can observe on Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10
that scheme (3) for the choice 𝛽 = 0.001 is very robust in
contrast to the other cases. Method (3) has different radii of
convergence according to the free nonzero parameter 𝛽. This
is also true for all the test functions for Steffensen’s scheme
(𝛽 = 1).

From the graphical comparisons in this section, it is
obvious that in the Steffensen uniparametric scheme (3), the
basins of attractions can be widely improved by choosing a
small value for the nonzero free parameter 𝛽. In fact, from
the Taylor series expansion of the divided difference and the
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(a) 𝛽 = 1 (b) 𝛽 = 0.5 (c) 𝛽 = 0.1

Figure 3: Scheme (3) for the test problem 2.

(a) 𝛽 = −0.1 (b) 𝛽 = 0.01 (c) 𝛽 = 0.001

Figure 4: Scheme (3) for the test problem 2.

(a) 𝛽 = 1 (b) 𝛽 = 0.5 (c) 𝛽 = 0.1

Figure 5: Scheme (3) for the test problem 3.

derivative around the solution 𝜉 of the nonlinear equation, we
have

𝑓 [𝑥
𝑛
, 𝑤
𝑛
] =

𝑓 (𝑥
𝑛
+ 𝛽𝑓 (𝑥

𝑛
)) − 𝑓 (𝑥

𝑛
)

𝛽𝑓 (𝑥
𝑛
)

= 𝑓

(𝜉) [1 + (2 + 𝛽𝑓


(𝜉)) 𝑐
2
𝑒
𝑛

+ (𝛽𝑓

(𝜉) 𝑐
2

2

+ (3 + 3𝛽𝑓

(𝜉) + 𝛽

2
𝑓

(𝜉)
2
) 𝑐
3
) 𝑒
2

𝑘
]

+ 𝑂 (𝑒
3

𝑛
) ,

𝑓

(𝑥
𝑛
) = 𝑓

(𝜉) [1 + 2𝑓


(𝜉) 𝑐
2
𝑒
𝑛
+ 3𝑓

(𝜉) 𝑐
3
𝑒
2

𝑛
] + 𝑂 (𝑒

3

𝑘
) .

(9)
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(a) 𝛽 = −0.1 (b) 𝛽 = 0.01 (c) 𝛽 = 0.001

Figure 6: Scheme (3) for the test problem 3.

(a) 𝛽 = 1 (b) 𝛽 = 0.5 (c) 𝛽 = 0.1

Figure 7: Scheme (3) for the test problem 4.

(a) 𝛽 = −0.1 (b) 𝛽 = 0.01 (c) 𝛽 = 0.001

Figure 8: Scheme (3) for the test problem 4.

Let us note that, when 𝛽 → 0, both Taylor expansions
coincide. Note that it is experimentally observable that
(almost always) when the forward finite difference is used at
the denominator of Steffensen’s scheme, that is, 𝑓[𝑥

𝑛
, 𝑤
𝑛
] =

(𝑓(𝑥
𝑛
+ 𝛽𝑓(𝑥

𝑛
)) − 𝑓(𝑥

𝑛
))/𝛽𝑓(𝑥

𝑛
), then very small negative

values for 𝛽 results in larger basins of attractions and higher
speed, while when the backward finite difference is used

at the denominator, that is, 𝑓[𝑥
𝑛
, 𝑤
𝑛
] = (𝑓(𝑥

𝑛
) − 𝑓(𝑥

𝑛
−

𝛽𝑓(𝑥
𝑛
)))/𝛽𝑓(𝑥

𝑛
), then very small positive values for 𝛽 yield

in larger basins of attractions and higher speed.
This finding is very useful when we extend Steffensen’s

scheme for solving systems of nonlinear equations by defin-
ing the first order divided difference operator properly. In
fact, by choosing very small values for the free nonzero
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(a) 𝛽 = 1 (b) 𝛽 = 0.5 (c) 𝛽 = 0.1

Figure 9: Scheme (3) for the test problem 5.

(a) 𝛽 = −0.1 (b) 𝛽 = 0.01 (c) 𝛽 = 0.001

Figure 10: Scheme (3) for the test problem 5.

parameter the convergence radii will be similar to Newton’s
method for solving systems of nonlinear equations, while
there is no need to compute the Jacobian matrix which is
costly.

Even by applying an iteration on 𝛽 and make the
process with memory, we can obtain the cubical order of
convergence. Another interesting point which should be
included is the computational time required for obtaining the
fractal behaviors of such schemes. In fact, in our numerical
experiments, the computational CPU time has a dramatically
fall when 𝛽 is chosen as a very small value while choosing
𝛽 = 1 takes more time to find the fixed points of the iteration
functions.

Remark 4. The chaotic behavior of Steffensen’s method can
be simply improved by choosing very small entries for the
free nonzero parameter (see Figures 6(c), 8(c), and 10(c)). In
this case, the fractal behavior of the scheme tends to Newton’s
fractal. In fact, we want the methods to have very few black
points on all examples not just one.

4. Behavior of Several Steffensen-Like Methods
on Quadratic Polynomials

Many iterativemethods have been improved by using various
techniques [28, 29]. A drawback of Newton’s method is that
for many particular choices of the function 𝑓, especially
in hard problems, the calculations of the derivatives take
some deal of time. That is why higher order derivative-free
methods are better root solvers and are in focus recently. The
most important merit of Steffensen’s method is that it has
quadratic convergence like Newton’smethod. For this reason,
in this section, we list some of the multipoint derivative-free
methods we consider for comparisons and a brief dynamical
analysis is made for these methods applied on quadratic
polynomials.

Kung and Traub in the pioneer paper [30] provided the
following two- and three-step derivative-free families (𝛽 ∈
C \ {0}) of methods with orders four and eight, respectively,

𝑦
𝑛
= 𝑥
𝑛
+ 𝛽𝑓 (𝑥

𝑛
) ,
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Figure 11: Stability function of attractive strange fixed points of KT4.

𝑧
𝑛
= 𝑦
𝑛
− 𝛽

𝑓 (𝑥
𝑛
) 𝑓 (𝑦

𝑛
)

𝑓 (𝑦
𝑛
) − 𝑓 (𝑥

𝑛
)
,

𝑥
𝑛+1

= 𝑧
𝑛
−

𝑓 (𝑥
𝑛
) 𝑓 (𝑦

𝑛
)

𝑓 (𝑧
𝑛
) − 𝑓 (𝑥

𝑛
)
[

1

𝑓 [𝑦
𝑛
, 𝑥
𝑛
]
−

1

𝑓 [𝑧
𝑛
, 𝑦
𝑛
]
] ,

(10)

𝑦
𝑛
= 𝑥
𝑛
+ 𝛽𝑓 (𝑥

𝑛
) ,

𝑧
𝑛
= 𝑦
𝑛
− 𝛽

𝑓 (𝑥
𝑛
) 𝑓 (𝑦

𝑛
)

𝑓 (𝑦
𝑛
) − 𝑓 (𝑥

𝑛
)
,

𝑤
𝑛
= 𝑧
𝑛
−

𝑓 (𝑥
𝑛
) 𝑓 (𝑦

𝑛
)

𝑓 (𝑧
𝑛
) − 𝑓 (𝑥

𝑛
)
[

1

𝑓 [𝑦
𝑛
, 𝑥
𝑛
]
−

1

𝑓 [𝑧
𝑛
, 𝑦
𝑛
]
] ,

𝑥
𝑛+1

= 𝑤
𝑛
−

𝑓 (𝑥
𝑛
) 𝑓 (𝑦

𝑛
) 𝑓 (𝑧
𝑛
)

𝑓 (𝑤
𝑛
) − 𝑓 (𝑥

𝑛
)

× [
1

𝑓 (𝑤
𝑛
) − 𝑓 (𝑦

𝑛
)
{

1

𝑓 [𝑤
𝑛
, 𝑧
𝑛
]
−

1

𝑓 [𝑧
𝑛
, 𝑦
𝑛
]
}

−
1

𝑓 (𝑧
𝑛
) − 𝑓 (𝑥

𝑛
)
{

1

𝑓 [𝑧
𝑛
, 𝑦
𝑛
]
−

1

𝑓 [𝑦
𝑛
, 𝑥
𝑛
]
}] .

(11)

We would like to study the general convergence of
methods (10) and (11) for quadratic polynomials. To be more
precise (see [31, 32]), a given method is generally convergent
if the scheme converges to a root for almost every starting
point and for almost every polynomial of a given degree. The
main problem is that no Scaling Theorem can be stated for
derivative-free methods (see, e.g., [33]). So, only the behavior
on specific polynomials can be analyzed. In this paper, the
polynomial 𝑝(𝑧) = 𝑧2 − 1 will be used for this purpose.
Therefore, let us denote by 𝑂KT4(𝑧) (𝑂KT8(𝑧)) the operator
associated with the fourth-order (resp., eighth-order) scheme
by Kung and Traub on 𝑝(𝑧).

The fixed points of 𝑂KT4(𝑧) are the roots of the equation
𝑂KT4(𝑧) = 𝑧, that is, 𝑧 = −1, 𝑧 = 1, and the strange fixed
points that are the zeros of the polynomial 1+𝛽2+𝛽4−4𝛽(1+

2𝛽2)𝑧 + (2 + 21𝛽2 − 4𝛽4)𝑧2 − 24𝛽(1 − 𝛽2)𝑧3 + (13 − 45𝛽2 +

6𝛽4)𝑧4 + (28𝛽 − 24𝛽3)𝑧5 + (23𝛽2 − 4𝛽4)𝑧6 + 8𝛽3𝑧7 + 𝛽4𝑧8.
The stability of the strange fixed points can be deduced

from graphical analysis of the respective stability function,
that is, representing graphically the regions of the complex
plane in which the absolute value of the derivative of the
operator evaluated at the strange fixed point is lower than one.

Lemma 5. The number of simple strange fixed points of
operator 𝑂

𝐾𝑇4
(𝑧) is eight, and their stability is described in the

following cases.

(i) Four of them are always repulsive, so they remain in the
Julia set.

(ii) Two of them can be attractive (but not super attractive)
in a small complex neighborhood of the origin.

(iii) Finally, two of the strange fixed points are attractive
in complex region around the origin and are super
attractive for the following values of the parameter: 𝛽 ≈
−0.406175 − 1.63893𝑖, 𝛽 ≈ −0.406175 + 1.63893𝑖, 𝛽 ≈
0.276582 − 0.409103𝑖, and 𝛽 ≈ 0.276582 + 0.409103𝑖.

The stability region of the complex plane where these four fixed
points are attractive is represented in Figure 11.

In order to determine the critical points, we calculate
the first derivative of 𝑂KT4(𝑧). A classical result establishes
that there is at least one critical point associated with each
invariant Fatou component. It is clear that 𝑧 = −1 and 𝑧 =
1 are critical points and give rise to their respective Fatou
components, but there exist in the family, some free critical
points, that is, critical points different from the roots, some of
them depending on the value of the parameter. If any of these
free critical points is near a stable strange fixed point, then the
last one would have its own basin of attraction.

Lemma 6. Analyzing the equation 𝑂
𝐾𝑇4

(𝑧) = 0, we obtain
fourteen free critical points, roots of the polynomial:

2 + 7𝛽
2
− 3𝛽
4
− 𝛽
6
− 𝛽
8
+ (−28𝛽 + 26𝛽

3
+ 10𝛽

5
+ 16𝛽

7
) 𝑧

+ (26 − 96𝛽
2
− 25𝛽

4
− 102𝛽

6
+ 7𝛽
8
) 𝑧
2

+ (140𝛽 − 24𝛽
3
+ 350𝛽

5
− 96𝛽

7
) 𝑧
3
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Figure 12: Real values of free critical points of 𝑂KT4(𝑧).

+ (−58 + 166𝛽
2
− 750𝛽

4
+ 525𝛽

6
− 21𝛽

8
) 𝑧
4

+ (−164𝛽 + 1068𝛽
3
− 1500𝛽

5
+ 240𝛽

7
) 𝑧
5

+ (30 − 904𝛽
2
+ 2430𝛽

4
− 1060𝛽

6
+ 35𝛽

8
) 𝑧
6

+ (308𝛽 − 2168𝛽
3
+ 2300𝛽

5
− 320𝛽

7
) 𝑧
7

+ (827𝛽
2
− 2495𝛽

4
+ 1065𝛽

6
− 35𝛽

8
) 𝑧
8

+ (1098𝛽
3
− 1550𝛽

5
+ 240𝛽

7
) 𝑧
9

+ (843𝛽
4
− 534𝛽

6
+ 21𝛽

8
) 𝑧
10

+ (390𝛽
5
− 96𝛽

7
) 𝑧
11

+ (107𝛽
6
− 7𝛽
8
) 𝑧
12

+ 16𝛽
7
𝑧
13

+ 𝛽
8
𝑧
14
.

(12)

Moreover, we can state the following facts.

(a) There is no value of 𝛽 that makes coincide a free critical
point with a strange fixed point.

(b) For 𝛽 ≈ 0.05 one free critical point coincides with the
root 𝑧 = −1, so in this case the number of free critical
points is reduced to 13.

The real values of the critical points for a real range of values of
the parameter are showed in Figure 12.

Let us state that the strange fixed points of𝑂KT8(𝑧) are the
zeros of a polynomial of degree 39, whose coefficients depend
on 𝛽.

The stability of the strange fixed points is described in the
following lemma.

Lemma 7. The number of simple strange fixed points of
operator 𝑂

𝐾𝑇8
(𝑧) is thirty-nine, and their stability is described

in the following cases.

(i) Three of them are always repulsive, so they remain in
the Julia set.

(ii) The other strange fixed points can be attractive or super
attractive, in different complex regions.

The stability region of some of these fixed points is represented
in Figure 13.

By analyzing these stability functions, it is deduced that
there are wide regions of the complex plane where it is easy
to find two or more attractive strange fixed points (as, e.g.,
𝛽 = −5𝑖 and 𝛽 = 5𝑖). Moreover, there exist also wide regions
of stability near the origin. In fact, no attractive strange fixed
points can be found for |𝛽| < 3/2.

Analyzing the equation 𝑂KT8(𝑧) = 0, we obtain sixty free
critical points that will coincidewith some of the strange fixed
points in case these are super attracting.

An optimal fourth-order derivative-freemethod [34] was
introduced by Liu et al. in the following form:

𝑦
𝑛
= 𝑥
𝑛
−

𝑓(𝑥
𝑛
)
2

𝑓 (𝑥
𝑛
+ 𝑓 (𝑥

𝑛
)) − 𝑓 (𝑥

𝑛
)
,

𝑥
𝑛+1

= 𝑦
𝑛
−

𝑓 [𝑥
𝑛
, 𝑦
𝑛
] − 𝑓 [𝑦

𝑛
, 𝑧
𝑛
] + 𝑓 [𝑥

𝑛
, 𝑧
𝑛
]

𝑓 [𝑥
𝑛
, 𝑦
𝑛
]
2

𝑓 (𝑦
𝑛
) ,

(13)

where 𝑧
𝑛

= 𝑥
𝑛
+ 𝑓(𝑥

𝑛
). It is denoted by L4. The rational

function associated with this method on 𝑝(𝑧) is the operator
𝑂L4(𝑧),

𝑂L4 (𝑧) = (1 − 5𝑧 + 19𝑧
2
− 27𝑧

3
− 𝑧
4
+ 23𝑧

5

+ 5𝑧
6
+ 7𝑧
7
+ 8𝑧
8
+ 2𝑧
9
)

× ((−1 + 2𝑧 + 𝑧
2
) (1 − 2𝑧 + 3𝑧

2
+ 2𝑧
3
)
2

)
−1

.

(14)

Lemma 8. The quantity of simple strange fixed points of
operator 𝑂

𝐿4
(𝑧) is seven, {−3.4251, −1.98276 − 0.105743𝑖,

−1.98276 + 0.105743𝑖, 0.109953 − 0.282276𝑖, 0.109953 +
0.282276𝑖, 0.585354 − 0.246666𝑖, 0.585354 + 0.246666𝑖}, and
their stability is described in the following cases.

(i) All the complex strange fixed points are repulsive, so
they remain in the Julia set.

(ii) Thereal strange fixed point is an attractor, but not super
attractor.

Lemma 9. The equation𝑂L4(𝑧) = 0 yields the poly-nomial 1+
5𝑥 − 31𝑥2 + 23𝑥3 + 64𝑥4 + 30𝑥5+ 4𝑥6 whose roots
are the free critical points, {−3.94434, −2.25291, −1.85186,
−0.114261, 0.331686 − 0.151469𝑖, 0.331686 + 0.151469𝑖}.
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Figure 13: Stability regions of strange fixed points from KT8.
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Let us remark that the existence of a free critical point
near the real attracting fixed point will derive its own basin
of attraction, as can be seen in Figure 14.

Cordero et al. in [35] proposed a seventh-order method,
which is free from derivative:

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)
2

𝑓 (𝑤
𝑛
) − 𝑓 (𝑥

𝑛
)
,

𝑧
𝑛
= 𝑦
𝑛
− 𝑓 (𝑦

𝑛
)

× (
(𝑓 (𝑦
𝑛
) − 𝑓 (𝑤

𝑛
))

(𝑦
𝑛
− 𝑤
𝑛
)

−
𝑓 (𝑦
𝑛
)

(𝑦
𝑛
− 𝑤
𝑛
)
)

−1

,

𝑥
𝑛+1

= 𝑧
𝑛
− 𝑓 (𝑧

𝑛
)

× (
(𝑓 (𝑧
𝑛
) − 𝑓 (𝑦

𝑛
))

(𝑧
𝑛
− 𝑦
𝑛
)

−
𝑓 (𝑧
𝑛
)

(𝑦
𝑛
− 𝑧
𝑛
)

−
(𝑓(𝑦
𝑛
) − 𝑓(𝑤

𝑛
))

(𝑦
𝑛
− 𝑤
𝑛
)

)

−1

(15)

wherein 𝑤
𝑛
= 𝑥
𝑛
+ 𝑓(𝑥

𝑛
). We will denote it by C7.

The rational function associated C7 on 𝑝(𝑧) is 𝑂C7(𝑧),

𝑂C7 (𝑧)

= (1 − 9𝑧 + 13𝑧
2
+ 65𝑧

3
− 112𝑧

4
− 64𝑧

5
+ 119𝑧

6

− 22𝑧
7
− 98𝑧

8
+ 71𝑧

9
+ 152𝑧

10
+ 85𝑧

11
+ 21𝑧

12

+2𝑧
13
)

× ((−1 + 2𝑧 + 𝑧
2
)
3

× (1 − 4𝑧 + 14𝑧
2
+ 8𝑧
3

+ 23𝑧
4
+ 12𝑧

5
+ 6𝑧
6
))
−1

.

(16)

Lemma 10. The simple strange fixed points of operator𝑂
𝐶7
(𝑧)

are

(i) {−2.30882 − 0.732518𝑖, −2.30882 + 0.732518𝑖,
−2.05354 − 0.276071𝑖, −2.05354 + 0.276071𝑖,
−1.87555, −0.411291, 0.200847 − 0.0392285𝑖,
0.200847 + 0.0392285𝑖, 0.638264 − 0.0474315𝑖,
0.638264 + 0.0474315𝑖}, and all of them are finite and
repulsive as the derivable operator evaluated in each of
them is greater than one, in absolute value;

(ii) the infinity is also a strange fixed point and its character
is neutral.

Lemma 11. The free critical points of𝑂
𝐶7
(𝑧) are the roots of the

polynomial 1 − 9𝑧 + 32𝑧2 + 96𝑧3 − 399𝑧4 − 2323𝑧5 + 1676𝑧6 +

9274𝑧7 +2233𝑧8 −13025𝑧9 −12426𝑧10 +1194𝑧11 +8849𝑧12 +
6817𝑧13 + 2694𝑧14 + 612𝑧15 + 76𝑧16 + 4𝑧17.

As all the strange fixed points are repulsive and, therefore,
they lay on the Julia set, the position of the free critical points
in the complex plane has no interest.

Zheng et al. in [36] presented the following eighth-order
derivative-free family without memory:

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 [𝑥
𝑛
, 𝑤
𝑛
]
, 𝑤

𝑛
= 𝑥
𝑛
+ 𝛽𝑓 (𝑥

𝑛
) ,

𝛽 ∈ C \ {0} ,

𝑧
𝑛
= 𝑦
𝑛
−

𝑓 (𝑦
𝑛
)

𝑓 [𝑥
𝑛
, 𝑦
𝑛
] + 𝑓 [𝑦

𝑛
, 𝑤
𝑛
] − 𝑓 [𝑥

𝑛
, 𝑤
𝑛
]
,

𝑥
𝑛+1

= 𝑧
𝑛
− 𝑓 (𝑧

𝑛
)

× (𝑓 [𝑧
𝑛
, 𝑦
𝑛
] + 𝑓 [𝑧

𝑛
, 𝑦
𝑛
, 𝑥
𝑛
] (𝑧
𝑛
− 𝑦
𝑛
)

+𝑓 [𝑧
𝑛
, 𝑦
𝑛
, 𝑥
𝑛
, 𝑤
𝑛
] (𝑧
𝑛
− 𝑦
𝑛
) (𝑧
𝑛
− 𝑥
𝑛
))
−1
,

(17)

which will be denoted by Z8.

Lemma 12. Operator 𝑂
𝑍8
(𝑧) has ten simple strange fixed

points, roots of the equation 1 + 6𝛽2 + 𝛽4 + (−24𝛽 − 16𝛽3)𝑧 +

(21 + 48𝛽2 −𝛽4)𝑧2 + (−56𝛽+ 32𝛽3)𝑧3 + (35− 84𝛽2 − 6𝛽4)𝑧4 +

56𝛽𝑧5 + (7 + 14𝛽4)𝑧6 + (24𝛽 − 32𝛽3)𝑧7 + (30𝛽2 − 11𝛽4)𝑧8 +

16𝛽3𝑧9 + 3𝛽4𝑧10. Nine of these fixed points are repulsive for all
values of parameter 𝛽; however, one of them can be attractive
(even super attractive) in a small complex region around the
origin. In Figure 15, the stability function of these specific fixed
point is shown.

Again, the existence of values of the parameter that
yields attracting strange fixed points forces us to analyze the
possibility of free critical points. As we know, if both elements
coexist, basins of attraction of fixed points different from the
roots appear.

Lemma 13. Analyzing the equation𝑂
𝑍8
(𝑧) = 0, we obtain the

free critical points:

𝑐𝑟
1
(𝛽) =

−1 − 𝛽

𝛽
, 𝑐𝑟

2
(𝛽) =

−1 + 𝛽

𝛽
,

𝑐𝑟
3
(𝛽) =

−2𝛽 − √2𝛽2 + 𝛽4

𝛽2
,

𝑐𝑟
4
(𝛽) =

−2𝛽 + √2𝛽2 + 𝛽4

𝛽2
.

(18)

Moreover,

(i) if 𝛽 = 1/2, then 𝑐𝑟
2
(1/2) = 𝑐𝑟

4
(1/2) = −1 and there

are only two free critical points;
(ii) also when 𝛽 = −1/2, then 𝑐𝑟

1
(1/2) = 𝑐𝑟

3
(1/2) = 1 and

there are only two free critical points;
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Figure 15: Stability function of the only attractive strange fixed point of Z8.

(a) Method (10), 𝛽 = 1 (b) Method (10), 𝛽 = −0.001 (c) Method (11), 𝛽 = 1

Figure 16: Basins of attraction for the test problem 1.

(iii) finally, if 𝛽 = −√2𝑖 or 𝛽 = √2𝑖, then 𝑐𝑟
3
(±√2𝑖) =

𝑐𝑟
4
(±√2𝑖) = ±√2𝑖 and the number of free critical

points is three.

Soleymani et al. in [37] proposed the following optimal
three-step iteration family, including four function evalua-
tions, just like (11) and (17):

𝑦
𝑛
= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓 [𝑥
𝑛
, 𝑤
𝑛
]
, 𝑤

𝑛
= 𝑥
𝑛
+ 𝛽𝑓 (𝑥

𝑛
) ,

𝛽 ∈ C \ {0} ,

𝑧
𝑛
= 𝑦
𝑛
−

𝑓 (𝑦
𝑛
)

𝑓 [𝑥
𝑛
, 𝑦
𝑛
] + 𝑓 [𝑦

𝑛
, 𝑤
𝑛
] − 𝑓 [𝑥

𝑛
, 𝑤
𝑛
]
,

𝑥
𝑛+1

= 𝑧
𝑛
− (1 + 𝑎

3
(𝑧
𝑛
− 𝑥
𝑛
))
2
𝑓 (𝑧
𝑛
)

× (𝑎
1
− 𝑓 (𝑥

𝑛
) 𝑎
3
+ 2𝑎
2
(𝑧
𝑛
− 𝑥
𝑛
)

+𝑎
2
𝑎
3
(𝑧
𝑛
− 𝑥
𝑛
)
2
)
−1

,

(19)

where 𝑎
1

= 𝑓[𝑤
𝑛
, 𝑥
𝑛
] + 𝑓(𝑤

𝑛
)𝑎
3
− (𝑤
𝑛
− 𝑥
𝑛
)𝑎
2
, 𝑎
2

=
𝑓[𝑤
𝑛
, 𝑥
𝑛
, 𝑦
𝑛
] + 𝑎
3
𝑓[𝑤
𝑛
, 𝑦
𝑛
], and

𝑎
3
= (𝑤
𝑛
(𝑓 [𝑧
𝑛
, 𝑥
𝑛
] − 𝑓 [𝑦

𝑛
, 𝑥
𝑛
]) − 𝑓 [𝑧

𝑛
, 𝑥
𝑛
] 𝑦
𝑛

+ 𝑓 [𝑤
𝑛
, 𝑥
𝑛
] (𝑦
𝑛
− 𝑧
𝑛
) + 𝑓 [𝑦

𝑛
, 𝑥
𝑛
] 𝑧
𝑛
)

× ((𝑧
𝑛
− 𝑦
𝑛
) 𝑓 (𝑤

𝑛
) + (𝑤

𝑛
− 𝑧
𝑛
) 𝑓 (𝑦

𝑛
)

+ (𝑦
𝑛
− 𝑤
𝑛
) 𝑓 (𝑧
𝑛
))
−1
.

(20)

Let us denote this method by S8; the rational function
associated with S8 when it is applied on the quadratic
polynomial 𝑝(𝑧), 𝑂S8(𝑧), is the same as the one of Z8.
Then, their dynamics is the same (for this polynomial).
Nevertheless, it is very different for other functions, as we will
see in the following sections.

5. Attraction Basins for Various
Steffensen-Type Methods

The aim herein is to use the basin of attraction as another tool
for comparing the iteration algorithms given in Section 4.

We have used methods (10) with 𝛽 = 1, (10) with 𝛽 =
−0.001, (11) with 𝛽 = 1, (11) with 𝛽 = −0.001, (13), (15), and
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(a) Method (11), 𝛽 = −0.001 (b) Method (13), 𝛽 = −0.001 (c) Method (17), 𝛽 = 1

Figure 17: Basins of attraction of (11), (13), and (15) for the test problem 1.

(a) Method (17), 𝛽 = −0.001 (b) Method (19), 𝛽 = 1 (c) Method (19), 𝛽 = −0.001

Figure 18: Basins of attraction for the test problem 1.

(a) Method (10), 𝛽 = 1 (b) Method (10), 𝛽 = −0.001 (c) Method (11), 𝛽 = 1

Figure 19: Basins of attraction for the test problem 2.

(17) with 𝛽 = 1, (17) with 𝛽 = −0.001, (19) with 𝛽 = 1, and
(19) with 𝛽 = −0.001, for the test problems of Section 4. The
fractal behavior of these comparisons is furnished in Figures
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, and 27. Let us remark that
the dynamics of Test 3 is similar to the other test functions,
so it is not included.

Remark 14. According to the discussion at the end of
Section 4, the Steffensen-type methods, in which there is no
nonzero free parameter in their structures, are not competi-
tive and we expect to have small basins of attraction for them.

It is clear for the compared tests that even the higher
order Steffensen-type methods (13) and (15) without
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(a) Method (11), 𝛽 = −0.001 (b) Method (13), 𝛽 = −0.001 (c) Method (17), 𝛽 = 1

Figure 20: Basins of attraction of (11), (13), and (15) for the test problem 2.

(a) Method (17), 𝛽 = −0.001 (b) Method (19), 𝛽 = 1 (c) Method (19), 𝛽 = −0.001

Figure 21: Basins of attraction for the test problem 2.

(a) Method (10), 𝛽 = 1 (b) Method (10), 𝛽 = −0.001 (c) Method (11), 𝛽 = 1

Figure 22: Basins of attraction for the test problem 4.

the free nonzero parameter have improved basins in contrast
to Steffensen’s scheme (𝛽 = 1). Furthermore, it should be
noted that among all the methods compared in this section,
Soleymani et al. optimal eighth-order method (19) with
𝛽 = −0.001 has the best performance, followed by (17)
with 𝛽 = −0.001. In this work, the computer specifications

are Microsoft Windows XP Intel(R), Pentium(R) 4 CPU,
3.20GHz with 4GB of RAM.

Remark 15. Unlike the Newton-typemethods in which what-
ever the order is higher, the convergence radius is smaller, in
the multipoint high-order efficient Steffensen-type methods
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(a) Method (11), 𝛽 = −0.001 (b) Method (13), 𝛽 = −0.001 (c) Method (17), 𝛽 = 1

Figure 23: Basins of attraction of (11), (13), and (15) for the test problem 4.

(a) Method (17), 𝛽 = −0.001 (b) Method (19), 𝛽 = 1 (c) Method (19), 𝛽 = −0.001

Figure 24: Basins of attraction for the test problem 4.

(a) Method (10), 𝛽 = 1 (b) Method (10), 𝛽 = −0.001 (c) Method (11), 𝛽 = 1

Figure 25: Basins of attraction for the test problem 5.

the increase of convergence order will automatically improve
the convergence radius, though the chaotic behavior of
the schemes for unappropriate values of the free nonzero
parameter is too much. To avoid this chaotic behavior, one
may follow Remark 4.

In order to summarize these results, we have attached a
weight to the quality of the results obtained by each method.
The weight of 1 is for the smallest Julia set and a weight of 4
for scheme with chaotic behavior alongside the convergence
behavior. We then averaged those results to come up with
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Table 1: Results of chaotic comparisons for different derivative-free methods.

Method Test 1 Test 2 Test 4 Test 5 Average
(10) with 𝛽 = 1 3 4 3 3 13/4
(10) with 𝛽 = −0.001 2 3 2 2 9/4
(11) with 𝛽 = 1 3 4 3 3 13/4
(11) with 𝛽 = −0.001 2 3 2 2 9/4
(13) 4 4 4 3 15/4
(15) 4 4 4 3 15/4
(17) with 𝛽 = 1 3 3 3 3 12/4
(17) with 𝛽 = −0.001 2 2 1 2 7/4
(19) with 𝛽 = 1 2 2 3 3 10/4
(19) with 𝛽 = −0.001 1 1 1 1 4/4

(a) Method (11), 𝛽 = −0.001 (b) Method (13), 𝛽 = −0.001 (c) Method (17), 𝛽 = 1

Figure 26: Basins of attraction of (11), (13), and (15) for the test problem 5.

(a) Method (17), 𝛽 = −0.001 (b) Method (19), 𝛽 = 1 (c) Method (19), 𝛽 = −0.001

Figure 27: Basins of attraction for the test problem 5.

the smallest value for the best method overall and the highest
for the worst. These data are presented in Table 1.

Notice again that the figures show how fast the method
converges to a root based on shading to indicate speed of
convergence.

6. Conclusions

In this paper, we have analyzed the dynamics of different
Steffensen-type methods, firstly on quadratic polynomials
and afterwards on other functions. We have concluded



16 Journal of Applied Mathematics

that in Steffensen-type methods whatever the order is
higher, the convergence radius will be bigger. We have used
Mathematica 8 for finding the fixed and critical points of
the rational functions associated with the iterations functions
and for drawing the basins of attraction. Besides, if the free
nonzero parameter for the families analyzed tends to 0, then
its fractal tends to be the same as Newton’s fractal. Choosing
very small magnitudes for the free nonzero parameter gives
us the ability to avoid computation of the Jacobian matrix
when dealing with systems of nonlinear equations and
have an acceptable convergence radius. Although we have
discussed simple zeros of nonlinear functions, such remarks
are valid for Steffensen-type methods when finding multiple
roots as well.
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