Open Access
Translator Disclaimer
2014 Approximate Analytical Solutions for Mathematical Model of Tumour Invasion and Metastasis Using Modified Adomian Decomposition and Homotopy Perturbation Methods
Norhasimah Mahiddin, S. A. Hashim Ali
J. Appl. Math. 2014: 1-13 (2014). DOI: 10.1155/2014/654978

Abstract

The modified decomposition method (MDM) and homotopy perturbation method (HPM) are applied to obtain the approximate solution of the nonlinear model of tumour invasion and metastasis. The study highlights the significant features of the employed methods and their ability to handle nonlinear partial differential equations. The methods do not need linearization and weak nonlinearity assumptions. Although the main difference between MDM and Adomian decomposition method (ADM) is a slight variation in the definition of the initial condition, modification eliminates massive computation work. The approximate analytical solution obtained by MDM logically contains the solution obtained by HPM. It shows that HPM does not involve the Adomian polynomials when dealing with nonlinear problems.

Citation

Download Citation

Norhasimah Mahiddin. S. A. Hashim Ali. "Approximate Analytical Solutions for Mathematical Model of Tumour Invasion and Metastasis Using Modified Adomian Decomposition and Homotopy Perturbation Methods." J. Appl. Math. 2014 1 - 13, 2014. https://doi.org/10.1155/2014/654978

Information

Published: 2014
First available in Project Euclid: 26 March 2014

zbMATH: 07010710
Digital Object Identifier: 10.1155/2014/654978

Rights: Copyright © 2014 Hindawi

JOURNAL ARTICLE
13 PAGES


SHARE
Vol.2014 • 2014
Back to Top