Open Access
Translator Disclaimer
2013 Affine Differential Invariants of Functions on the Plane
Yuanbin Wang, Xingwei Wang, Bin Zhang
J. Appl. Math. 2013(SI27): 1-9 (2013). DOI: 10.1155/2013/868725


A differential invariant is a function defined on the jet space of functions that remains the same under a group action. It is an important concept to solve the equivalence problem. This paper presents an effective method to derive a special type of affine differential invariants. Given some functions defined on the plane and an affine group acting on the plane, there are induced actions of the group on the functions and on the derivative functions of the functions. Affine differential invariants of these functions are useful in many applications. However, there has been little systematic study of this problem at present. No clear and simple results are available for application users to use directly. We propose a direct and simple method to construct affine differential invariants in this situation. Some useful explicit formulas of affine differential invariants of 2D functions are presented.


Download Citation

Yuanbin Wang. Xingwei Wang. Bin Zhang. "Affine Differential Invariants of Functions on the Plane." J. Appl. Math. 2013 (SI27) 1 - 9, 2013.


Published: 2013
First available in Project Euclid: 14 March 2014

zbMATH: 1271.53013
MathSciNet: MR3064947
Digital Object Identifier: 10.1155/2013/868725

Rights: Copyright © 2013 Hindawi


Vol.2013 • No. SI27 • 2013
Back to Top