Open Access
2013 Convergence Analysis of an Iterative Method for Nonlinear Partial Differential Equations
Hung-Yu Ke, Ren-Chuen Chen, Chun-Hsien Li
J. Appl. Math. 2013(SI21): 1-12 (2013). DOI: 10.1155/2013/487273

Abstract

We will combine linear successive overrelaxation method with nonlinear monotone iterative scheme to obtain a new iterative method for solving nonlinear equations. The basic idea of this method joining traditional monotone iterative method (known as the method of lower and upper solutions) which depends essentially on the monotone parameter is that by introducing an acceleration parameter one can construct a sequence to accelerate the convergence. The resulting increase in the speed of convergence is very dramatic. Moreover, the sequence can accomplish monotonic convergence behavior in the iterative process when some suitable acceleration parameters are chosen. Under some suitable assumptions in aspect of the nonlinear function and the matrix norm generated from this method, we can prove the boundedness and convergence of the resulting sequences. Application of the iterative scheme is given to a logistic model problem in ecology, and numerical results for a test problem with known analytical solution are given to demonstrate the accuracy and efficiency of the present method.

Citation

Download Citation

Hung-Yu Ke. Ren-Chuen Chen. Chun-Hsien Li. "Convergence Analysis of an Iterative Method for Nonlinear Partial Differential Equations." J. Appl. Math. 2013 (SI21) 1 - 12, 2013. https://doi.org/10.1155/2013/487273

Information

Published: 2013
First available in Project Euclid: 14 March 2014

zbMATH: 06950703
MathSciNet: MR3100827
Digital Object Identifier: 10.1155/2013/487273

Rights: Copyright © 2013 Hindawi

Vol.2013 • No. SI21 • 2013
Back to Top