Open Access
2011 Stability and Superstability of Generalized ( θ , ϕ )-Derivations in Non-Archimedean Algebras: Fixed Point Theorem via the Additive Cauchy Functional Equation
M. Eshaghi Gordji, M. B. Ghaemi, G. H. Kim, Badrkhan Alizadeh
J. Appl. Math. 2011: 1-11 (2011). DOI: 10.1155/2011/726020

Abstract

Let A be an algebra, and let θ , φ be ring automorphisms of A . An additive mapping H : A A is called a ( θ , φ ) -derivation if H ( x y ) = H ( x ) θ ( y ) + φ ( x ) H ( y ) for all x , y A . Moreover, an additive mapping F : A A is said to be a generalized ( θ , φ ) -derivation if there exists a ( θ , φ ) -derivation H : A A such that F ( x y ) = F ( x ) θ ( y ) + φ ( x ) H ( y ) for all x , y A . In this paper, we investigate the superstability of generalized ( θ , φ ) -derivations in non-Archimedean algebras by using a version of fixed point theorem via Cauchy’s functional equation.

Citation

Download Citation

M. Eshaghi Gordji. M. B. Ghaemi. G. H. Kim. Badrkhan Alizadeh. "Stability and Superstability of Generalized ( θ , ϕ )-Derivations in Non-Archimedean Algebras: Fixed Point Theorem via the Additive Cauchy Functional Equation." J. Appl. Math. 2011 1 - 11, 2011. https://doi.org/10.1155/2011/726020

Information

Published: 2011
First available in Project Euclid: 15 March 2012

MathSciNet: MR2854971
Digital Object Identifier: 10.1155/2011/726020

Rights: Copyright © 2011 Hindawi

Vol.2011 • 2011
Back to Top