When $\sigma $ is a quasi-definite moment functional with the monic orthogonal polynomial system ${\left\{{P}_{\text{\hspace{0.17em}}n}\text{\hspace{0.17em}}\left(x\right)\right\}}_{n=0}^{\infty}$, we consider a point masses perturbation $\tau $ of $\sigma $ given by $\tau :=\sigma +\lambda {\Sigma}_{l=1}^{\text{\hspace{0.17em}}m}{\Sigma}_{k=0}^{\text{\hspace{0.17em}}{m}_{l}}\left({\left(-1\right)}^{k}{u}_{lk}/k!\right){\delta}^{\text{\hspace{0.17em}}\left(k\right)}\left(x\text{\hspace{0.17em}}-\text{\hspace{0.17em}}{c}_{\text{\hspace{0.17em}}l}\right)$, where $\lambda ,{u}_{lk}$, and ${c}_{l}$ are constants with ${c}_{i}\ne {c}_{j}$ for $i\ne j$. That is, $\tau $ is a generalized Uvarov transform of $\sigma $ satisfying $A\left(x\right)\text{\hspace{0.17em}}\tau =A\left(x\right)\text{\hspace{0.17em}}\sigma $, where $A\left(x\right)={\prod}_{l=1}^{m}{\left(x-{c}_{l}\right)}^{{m}_{l}+1}$. We find necessary and sufficient conditions for $\tau $ to be quasi-definite. We also discuss various properties of monic orthogonal polynomial system ${\left\{{R}_{n}\text{\hspace{0.17em}}\left(x\right)\right\}}_{n=0}^{\infty}$ relative to $\tau $ including two examples.