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Abstract

Many of the results on second-order boundary value problems cannot
be generalized to third- and fourth-order studies because they are dif-
ficult or impossible to solve. Therefore, solving higher-order boundary
value problems is still an interesting topic. In this study, for the numeri-
cal solution of higher-order boundary value problems, we demonstrate an
iteration method that includes the Green’s function. We obtained the nec-
essary conditions to demonstrate the validity of the method and proved
the existence and uniqueness theorems. We solved a series of numeri-
cal examples to demonstrate considered method’s reliability and accuracy
and we compared our results with well-known existing methods in liter-
ature to prove its effectiveness. Numerical calculations were made using
MATLAB.

Keywords: Fourth-order boundary value problem, numerical solutions, Green’s
function, convergence rate, iteration method.

1 Introduction

The first description of fixed point iteration of initial value problems was made
by Liouville [12] in 1837. Following this work, [15] described fixed-point iteration
for initial value problems (IVPs), which was modified into a new method by
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Mann [13] in 1953. These are methods that are still used today and referenced
in many studies. These methods were generated by an arbitrary point u0 ∈ X
and defined as follows:

un+1 = Tun = Tnu0,

un+1 = (1− αn)un + αnTun, n ∈ Z+

Here T : X → X is a mapping on a nonempty and convex subset X of a
Banach space, and αn is a parametric sequence in (0, 1).

Various other methods were introduced in order to obtain approximate so-
lutions of initial value problems and boundary value problems, such as the
Jacobi-Gauss collocation method [4], class of hybrid collocation methods [3].
The most popular works are Na’s [14] and Wei’s[16]. Moreover, [5], [6], [7], [9],
[11], [16], [14] and [16] are some other studies.

Consider the following fourth-order BVP,

L[v] = b0(x)v
′′′′
(x) + b1(x)v

′′′
(x) + b2(x)v

′′
(x) + b3(x)v

′
(x) + b4(x)v(x) = g(x)

(1)
with the boundary conditions

Bk1
[v] = α1v(k1) + α2v

′
(k1) + α3v

′′
(k1) + α4v

′′′
(k1) = a1

Bk2
[v] = β1v(k2) + β2v

′
(k2) + β3v

′′
(k2) + β4v

′′′
(k2) = a2 (2)

Bk3
[v] = γ1v(k3) + γ2v

′
(k3) + γ3v

′′
(k3) + γ4v

′′′
(k3) = a3

Bk4
[v] = ω1v(k4) + ω2v

′
(k4) + ω3v

′′
(k4) + ω4v

′′′
(k4) = a4

where bi(x), i = (1, · · · , 4) are continuous functions, x ∈ (a, b), ai, i = (1, · · · 4)
are constants and either k3 = k1 or k3 = k2 and either k4 = k1 or k4 = k2. The
Green’s function G(x, s) corresponding to (1) is

G(x, s) =

{
c1v1 + c2v2 + c3v3 + c4v4, a < x < s

d1v1 + d2v2 + d3v3 + d4v4, s < x < b
, (3)

where x ̸= s, ci, di are constants, and vi are linearly independent for (i =
1, · · · , 4). We obtain the Green’s function of (1) and (2) by using the following
well-known five properties given in [8].

1. G assures the homogeneous boundary conditions:

Bk1 [G(x, s)] = Bk2 [G(x, s)] = Bk3 [G(x, s)] = Bk4 [G(x, s)] = 0. (4)

2. G satisfies continuity at x = s:

c1v1(s)+c2v2(s)+c3v3(s)+c4v4(s) = d1v1(s)+d2v2(s)+d3v3(s)+d4v4(s). (5)

3. G
′
satisfies continuity at x = s:

c1v
′

1(s)+c2v
′

2(s)+c3v
′

3(s)+c4v
′

4(s) = d1v
′

1(s)+d2v
′

2(s)+d3v
′

3(s)+d4v
′

4(s). (6)
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4. G
′′
satisfies continuity at x = s:

c1v
′′

1 (s)+c2v
′′

2 (s)+c3v
′′

3 (s)+c4v
′′

4 (s) = d1v
′′

1 (s)+d2v
′′

2 (s)+d3v
′′

3 (s)+d4v
′′

4 (s). (7)

5. Let b0 > 0. Then G
′′′

has jump discontinuity at x = s:

c1v
′′′

1 (s)+c2v
′′′

2 (s)+c3v
′′′

3 (s)+c4v
′′′

4 (s)+
1

b0(s)
= d1v

′′′

1 (s)+d2v
′′′

2 (s)+d3v
′′′

3 (s)+d4v
′′′

4 (s).

(8)
A particular solution to v

′′′′
= f(t, v, v′, v′′, v′′′, v

′′′′
) is expressed in terms of

G and is given by

vp =

∫ b

a

G(x, s)g(s, vp, v
′

p, v
′′

p , v
′′′

p )ds. (9)

Although boundary value problems are important and most frequently used
in fields such as physics and engineering, recently they are encountered in prob-
lems in statistics, economics, neural networks, computer science and various
other fields. Wave equations, heat equations, optimization problems, heat con-
duction, gravity-based flows, boundary layer theory, elastic stability beam the-
ory are some of the examples.

Boundary value problems (BVPs) contain ordinary differential equations
that satisfy certain conditions and a certain class of differential equations can
be solved analytically. Problems with higher order differential equations and
complex boundary conditions, can only be solved by numerical methods and a
closed solution can be obtained. Many of the results on second-order boundary
value problems cannot be generalized to third- and fourth-order studies because
they are difficult or impossible to solve. Although there are many studies in the
literature on the solution of second-order boundary value problems and are still
being developed, there are few studies on numerical solutions of higher-order
boundary value problems solved by different methods. Therefore, the solution
of higher order problems is still an interesting issue because the applicability
of existing methods to higher order boundary value problems is not always
possible. Moreover, the use of the iteration method including Green’s method in
the numerical solution of higher order boundary value problems is an extremely
rare and new issue. In this study, Khan-Green’s method will be generalized for
the fourth order BVPs. This method, which has recently attracted attention
in the literature [1], [2] and has been a reference for many studies due to the
efficiency of the numerical results and its fast convergence to the real value, will
be generalized for the fourth-order boundary value problems by determining the
necessary conditions in order to be applied. This method includes both Picard’s
and Mann’s methods. In the study, appropriate conditions were determined, the
results were supported by theorems, and numerical examples were used to show
that the convergence discussed was faster than other known methods.

The proposed iteration method is defined in the following form;

qn = (1− αn)pn + αnT (pn)

pn+1 = T (qn), n ∈ Z+ (10)
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where p0 ∈ X.

2 Generalization of iteration method

Consider the following equation

v
′′′′
(x) = g(x, v(x), v

′
(x), v

′′
(x), v

′′′
(x)) (11)

with the boundary conditions:

v(0) = 0, v
′
(0) = 0, v(1) = 0, v

′
(1) = 0. (12)

Let
L(v) +N(v) = g(x, v, v

′
, v

′′
, v

′′′
). (13)

Here L(v) is a linear operator, N(v) is a nonlinear operators and g(x, v, v
′
, v

′′
, v

′′′
)

is a nonlinear function.
Let the integral operator be defined as

T (vp) =

∫ b

a

G(x, s)L(vp)ds, (14)

where vp is the particular solution of Eq. (13) and G(x, s) is the Green’s function
of L(v). Let vp = v. Then the precise form of the integral operator is

T (v) =
∫ b

a
G(x, s)(L(v) +N(v)− g(s, v, v

′
, v

′′
, v

′′′
)−N(v) + g(s, v, v

′
, v

′′
, v

′′′
)ds

= v +
∫ b

a
G(x, s)(L(v) +N(v)− g(s, v, v

′
, v

′′
, v

′′′
))ds. (15)

Using Eq. (15) and Eq. (10), we obtain the general iterative form of Khan-
Green’s method.

qn = pn + αn

∫ b

a
G(x, s)(L(pn) +N(pn)− g(s, pn, p

′

n, p
′′

n, p
′′′′

n ))ds

pn+1 = qn +
∫ b

a
G(x, s)(L(qn) +N(qn)− g(s, qn, q

′

n, q
′′

n, q
′′′′

n ))ds. (16)

Here {αn} is a parametric sequence in (0, 1), and the initial function p0 that
satistfies the boundary conditions is chosen to be the exact solution L(v) = 0.

3 Convergence analysis

Consider the fourth-order BVP given in (11)-(12). The adjoint of Green’s func-
tion G(x, s) of the defined BVP is

G∗(x, s) = −

 ( s
3

3 − s2

2 )(1− x)3 + (−s3

2 + s2

2 )(1− x)2, 0 < s < x,

(−s3

3 + s2

2 − 1
6 )x

3 + ( s
3

2 − s2 + s
2 )x

2, x < s < 1

(17)
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Implementing Khan-Green’s iterative method, the following equation is ob-
tained:

qn = pn − αn

∫ x

0
(( s

3

3 − s2

2 )(1− x)3 + (−s3

2 + s2

2 )(1− x)2)

×(p
′′′

n (s)− g(s, pn(s), p
′

n(s), p
′′

n(s), p
′′′

n (s)))ds

−αn

∫ 1

x
((−s3

3 + s2

2 − 1
6 )x

3 + ( s
3

2 − s2 + s
2 )x

2)

×(p
′′′

n (s)− g(s, pn(s), p
′

n(s), p
′′

n(s), p
′′′

n (s)))ds, (18)

pn+1 = qn −
∫ x

0
(( s

3

3 − s2

2 )(1− x)3 + (−s3

2 + s2

2 )(1− x)2)

×(q
′′′

n (s)− g(s, qn(s), q
′

n(s), q
′′

n(s), q
′′′

n (s)))ds

−
∫ 1

x
((−s3

3 + s2

2 − 1
6 )x

3 + ( s
3

2 − s2 + s
2 )x

2)

×(q
′′′

n (s)− g(s, qn(s), q
′

n(s), q
′′

n(s), q
′′′

n (s)))ds). (19)

The rate of convergence for Eq. (11) - (12) can be found using the following
integral operator.

T (v) = v +

∫ 1

0

G∗(x, s)(v
′′′′
(s)− g(s, v(s), v

′
(s), v

′′
(s), v

′′′
(s))ds. (20)

Theorem 3.1 Assume g(x, v, v′, v′′, v′′′) be a continuous function, g′(x, v, v′, v′′, v′′′)
is bounded and

sup
([0,1]×R5)

|∂g
∂v

| < 40
√
183.

Then integral operator T (v) given in Eq. (20) is a contraction on the Banach
space.

5

27 Aug 2024 05:58:21 PDT
240709-AydinAkgun Version 2 - Submitted to J. Integr. Eq. Appl.



Proof Let,

∥T (v)− T (u)∥ = ∥
∫ 1

0

G∗(x, s)g(s, u, u
′
, u

′′
, u

′′′
)ds−

∫ 1

0

G∗(x, s)g(s, v, v
′
, v

′′
, v

′′′
)ds∥

≤
(∫ 1

0

|G∗(x, s)|2ds
)( 1

2 ) (∫ 1

0

|g(s, u, u
′
, u

′′
, u

′′′
)− g(s, v, v

′
, v

′′
, v

′′′
)|2ds

)( 1
2 )

=

√
t4(2t+ 1)2(t− 1)8 + t8(2t− 3)2(t− 1)4

24

×
(∫ 1

0

|g(s, u, u
′
, u

′′
, u

′′′
)− g(s, v, v

′
, v

′′
, v

′′′
)|2ds

) 1
2

≤ 1

40
√
183

(∫ 1

0

|g(s, u, u
′
, u

′′
, u

′′′
)− g(s, v, v

′
, v

′′
, v

′′′
)|2ds

) 1
2

,

(21)

From Eq.(21), by using the Mean Value Theorem, we obtain

∥T (v)−T (u)∥ ≤ 1

40
√
183

× sup
([0,1]×R5)

|∂g
∂v

|×sup
[0,1]

|u(t)−v(t)| < sup
[0,1]

|u(t)−v(t)| = ∥u−v∥.

(22)
is obtained. Thus, T is a Banach’s contraction mapping.

Theorem 3.2 Let the integral operator T (y) given in (20) be a Banach con-
traction. Then the sequence pn defined in (16) is convergent and this solution
converges faster than the solutions in Picard Green’s method (PGEM) and Mann
Green’s method (MGEM).

Proof Let x∗ be the solution of the problem (11)-(12). Then T (x∗) = x∗.
Let p0 → x∗ as n → ∞. Then,

∥pn+1 − x∗∥ = ∥T (qn)− x∗∥ ≤ δ∥qn − x∗∥
≤ δ∥(1− αn)pn + αnT (pn)− x∗∥
≤ δ ((1− αn)∥pn − x∗∥+ δαn∥pn − x∗∥)
= δ(1− (1− δ)αn)∥pn − x∗∥. (23)

is obtained. Taking into account that (1 − (1 − δ)αn) < 1 for 0 < δ < 1 and
αn ∈ (0, 1), the following inequality holds:

∥pn+1 − x∗∥ ≤ δ∥pn − x∗∥ ≤ δn+1∥p0 − x∗∥. (24)

Therefore, {pn} converges strongly to x∗. Proposition 1 in [10] can accomplish
the remaining part of the proof.
Remark: The proof follows analogously with every set of boundary conditions.
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4 Numerical Example

Example 4.1 Consider the nonlinear boundary value problem

v
′′′′
(x) =

−v
′′′
(x)

24
+ v(x)v

′
(x) +

v
′
(x)

8
+

1

2
, (25)

with boundary conditions

v(0) = v
′
(0) = v

′′
(1) = v

′′′
(1) = 0. (26)

The Green’s function for the given problem is

G(x, s) =

{
−x3

6 + sx2

2 , 0 < x < s
−s3

6 + xs2

2 , s < x < 1.
(27)

Applying Khan-Green’s iteration method, we get

qn = pn − αn

{[∫ x

0

(
−s3

6
+

xs2

2
)(p

′′′′

n (s) +
p

′′′

n (s)

24
− pn(s)p

′

n(s)−
p

′

n(s)

8
− 1

2
)ds

]

+

[∫ 1

x

(
−x3

6
+

sx2

2
)(p

′′′′

n (s) +
p

′′′

n (s)

24
− pn(s)p

′

n(s)−
p

′

n(s)

8
− 1

2
)ds

]}

pn+1 = qn −

{[∫ x

0

(
−s3

6
+

xs2

2
)(q

′′′′

n (s) +
q
′′′

n (s)

24
− qn(s)q

′

n(s)−
q
′

n(s)

8
− 1

2
)ds

]

+

[∫ 1

x

(
−x3

6
+

sx2

2
)(q

′′′′

n (s) +
q
′′′

n (s)

24
− qn(s)q

′

n(s)−
q
′

n(s)

8
− 1

2
)ds

]}
. (28)

Here, αn = 0.99 and p0 = 0.
We calculated numerical results with four different iterations for Khan, PGEM,

and MGEM Methods (for α = 0.90 and α = 0.75 respectively) by using MAT-
LAB. We calculated the absolute error

Error(n) = |vn+1 − vn|. (29)

Numerical results showing the absolute error values for the solution of Exam-
ple 1 for different iterations are listed in Table 1. As seen in Table 1, no matter
how many iterations are made to achieve high accuracy, the error value in the
method we consider is much lower than other methods. This clearly shows that
the method discussed is much more effective than other methods. Moreover, re-
garding Figure 1, it is obvious that Khan-Green’s method has much better results
than other methods when the error values are compared.

Example 4.2 Consider the linear boundary value problem

y
′′′′
(x) = xy(x) + x2y

′
(x) + 2x+ 1, (30)

7
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Table 1: Absolute errors obtained with different iteration methods for the prob-
lem in Example 1

Khan Picard Mann(α = 0, 90) Mann(α = 0, 75)

t Err (4) Err (4) Err (4) Err (4)

0 0 0 0 0
0.2 1.1349E − 11 1.5246E − 07 8.7290E − 06 2.2034E − 04
0.4 3.8614E − 11 5.1883E − 07 3.0099E − 05 7.6466E − 04
0.6 7.4020E − 11 9.9475E − 07 5.8328E − 05 1.4901E − 03
0.8 1.1276E − 10 1.5151E − 06 8.9515E − 05 2.2965E − 03
1.0 1.5232E − 10 2.0467E − 06 1.2149E − 04 3.1253E − 03

Figure 1: Comparisons of absolute errors obtained for the problem in Example
1

with boundary conditions

y(0) = y′(0) = y′(1) = y′′(1) = 0. (31)

The Green’s function of (30) - (31) is

G(x, s) =

{
(s2−1)x3

6 − (−s2+s)x2

2 , 0 < x < s
−s2(1−x)3

6 + −s3+s2

6 , s < x < 1.
(32)
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Then we have

qn = pn − αn

∫ x

0

(
−s2(1− x)3

6
+

−s3 + s2

6
)(p

′′′′

n − spn − s2(p
′

n)
2 − 2s− 1)ds

(33)

− αn

∫ 1

x

(
(s2 − 1)x3

6
− (−s2 + s)x2

2
)(p

′′′′

n − spn − s2(p
′

n)
2 − 2s− 1)ds

pn+1 = qn −
∫ x

0

(
−s2(1− x)3

6
+

−s3 + s2

6
)(q

′′′′

n − sqn − s2(q
′

n)
2 − 2s− 1)ds

−
∫ 1

x

(
(s2 − 1)x3

6
− (−s2 + s)x2

2
)(q

′′′′

n − sqn − s2(q
′

n)
2 − 2s− 1)ds,

where αn = 0.99.Here the initial value p0 = 0.

Table 2: Absolute errors obtained with different iteration methods for the prob-
lem in Example 2

Khan Picard Mann(α = 0, 99) Mann(α = 0, 80)

t Err (5) Err (5) Err (5) Err(5)

0 0 0 0 0
0.2 6.6325E − 11 2.2596E − 07 1.3694E − 06 1.7425E − 04
0.4 2.0855E − 10 7.1052E − 07 4.2213E − 06 5.2108E − 04
0.6 3.4732E − 10 1.1834E − 06 6.9238E − 06 8.3418E − 04
0.8 4.2700E − 10 1.4549E − 06 8.4389E − 06 1.0024E − 03
1.0 4.4256E − 10 1.5079E − 06 8.7297E − 06 1.0337E − 03

Table (2) compares the errors obtained by Khan-Green’s iteration method
with the approximation algorithms of PGEM and MGEM. In Khan Green’s
method we take α = 0.99 and for MGEM the values α = 0.99 and α = 0.80
are taken respectively. It is clear from Table (2) that the results obtained by
the generalized Khan-Green’s fixed point iteration method converge to the val-
ues obtained by the real numerical solution faster than other known iteration
methods.

5 Conclusion

In this paper, we generalize the Khan-Green method, a new approach based on
embedding the Green’s function in a fixed-point iterative procedure, for fourth-
order BVPs. We successfully applied the method for the numerical solution of a
large family of fourth-order BVPs, achieving a faster approximation than well-
known iteration methods in the literature. We used MATLAB for numerical
calculations. Considering other studies in the literature and the numerical cal-
culations made for different values of αn throughout our study, we reached the
best result for αn = 0.99. Moreover, we prove that the proposed methodology is

9

27 Aug 2024 05:58:21 PDT
240709-AydinAkgun Version 2 - Submitted to J. Integr. Eq. Appl.



Figure 2: Comparisons of absolute errors obtained for the problem in Example
2

a better approach with minimal error. This new strategy improves the solutions
of fourth-order boundary value problems, which are rare in the literature. The
proposed method also increases the convergence rate of other existing methods
based on Picard-Green and Mann-Green’s iteration methods.
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