[JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS](http://msp.org/) [Vol. , No. , YEAR](https://doi.org/jie.YEAR.-)

<https://doi.org/jie.YEAR..PAGE>

THE ANSWER TO AN OPEN QUESTION IN R *^m*-*b*-METRIC SPACES AND APPLICATION TO INTEGRAL EQUATIONS

VO THI LE HANG AND NGUYEN VAN DUNG

ABSTRACT. In this paper, we give an affirmative answer to an open question in R *^m*-*b*-metric spaces by using the subordinate property of the matrix norm to the ℓ [∞]-norm on K*m*. As applications, we get Perov's fixed point theorem and Matkowski's fixed point theorem in R *^m*-*b*-metric spaces. We also show that the fixed point theorem in \mathbb{R}^m -*b*-metric spaces can be applied to prove the existence and uniqueness of the solution to an integral equation but fixed point theorems in metric spaces may not be.

1. Introduction and preliminaries

17 Many authors have established generalised metric spaces and studied fixed point theorems on such spaces, see [\[2\]](#page-12-0), [\[10\]](#page-12-1), [\[19\]](#page-12-2), [\[24\]](#page-12-3). In 1964, Perov [\[30\]](#page-13-0) defined a \mathbb{R}^m *-metric space* by replacing \mathbb{R}_+ by \mathbb{R}^m_+ in the definition of a metric space. In 1971, Coifman and Guzmán [[14\]](#page-12-4) defined a *quasi-metric space* by replacing the triangle inequality by

$$
d(x, y) \le s[d(x, z) + d(z, y)]
$$

where $s \ge 1$. This notion was then reintroduced by the name *b-metric space* in [\[6\]](#page-12-5), [\[15\]](#page-12-6), [\[16\]](#page-12-7). For the developments in fixed point theory on *b*-metric spaces, the reader may refer to [\[9\]](#page-12-8), [\[13\]](#page-12-9), and [\[36\]](#page-13-1). There are several types of integral equations have been solved by using fixed point theorems in *b*-metric spaces, see [\[3,](#page-12-10) Theorem 4.1], [\[20,](#page-12-11) Example 2.3], [\[22,](#page-12-12) Theorem 6], [\[25,](#page-12-13) Theorem 5.1], [\[29,](#page-13-2) Theorem 5.1], [\[34,](#page-13-3) Theorem 4.1], [\[33,](#page-13-4) Theorem 3.1], [\[35,](#page-13-5) Theorem 3.1] and many others. However, as on [\[36,](#page-13-1) page 47], these integral equations may be solved by certain fixed point result in metric spaces instead of that in *b*-metric spaces. Then, the problem of finding an application of fixed point theorems in *b*-metric spaces but not in metric spaces is still open.

In 2009, Boriceanu [\[11\]](#page-12-14) extended *b*-metric spaces to \mathbb{R}^m -*b*-metric spaces and presented some fixed point results for generalised single-valued and multi-valued contractions in such spaces. In 2017, Miculescu and Mihail [\[28\]](#page-13-6) indicated a way to generalise a series of fixed point results in the framework of *b*-metric. In 2023, Bota *et al.* [\[12\]](#page-12-15) proved the existence and stability results for cyclic graphical contractions in complete *b*-metric spaces are given. An application to a coupled fixed point problem is also derived. Bota *et al.* also asked to prove a similar result to [\[28,](#page-13-6) Lemma 2.2] for the case of R *^m*-*b*-metric spaces, see Question [1.16](#page-4-0) below. 31 32 33 34 35 36 37

First, we recall the following definitions and properties which will be used latter. 38

Key words and phrases. R *^m*-*b*-metric, fixed point, integral equation. 42

Vo Thi Le Hang was funded by the Master, PhD Scholarship Programme of Vingroup Innovation Foundation (VINIF), code VINIF.2023.TS.032. 39 40

²⁰²⁰ *Mathematics Subject Classification.* Primary 47H10, 54E35; Secondary 54E40. 41

Definition 1.1. (1) Let $\mathfrak{M}_{m,n}(\mathbb{K})$ be the set of all matrices of size $m \times n$ with entries belonging to \mathbb{K} ($\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$) and $A = (a_{ij}) \in \mathfrak{M}_{m,n}(\mathbb{K})$. Then $|A| = (|a_{ij}|)$, where $|a_{ij}|$ is the modulus of a_{ij} . 1 2 3

- (2) Let $\mathfrak{M}_{m,n}(\mathbb{R}_+)$ be the set of all matrices of size $m \times n$ with entries belonging to \mathbb{R}_+ and $A, B \in \mathfrak{M}_{m,n}(\mathbb{R}_+).$ Then
	- (a) The matrix $\Theta \preceq A$ if all $0 \leq a_{ij}$, where $A = (a_{ij}) \in \mathfrak{M}_{m,n}(\mathbb{R}_+)$, and $\Theta \in \mathfrak{M}_{m,n}(\mathbb{R}_+)$ is the zero matrix.
	- (b) $A \preceq B$ if $\Theta \preceq B A$.

 $\frac{28}{26}$ $\frac{1}{27}$

(3) The norm $\|.\|$ is called *monotone with respect to the partial ordering* \preceq in $\mathfrak{M}_{m,1}(\mathbb{R}_+)$ if for all $x, y \in \mathfrak{M}_{m,1}(\mathbb{R}_+), x \leq y$, then $||x|| \leq ||y||$.

In $\mathfrak{M}_{m,n}(\mathbb{K})$, we consider the following norms for all $A = (a_{ij}) \in \mathfrak{M}_{m,n}(\mathbb{K})$.

(1) The Frobenius (or Schur or Euclidean) norm
$$
||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}}
$$
.

(2) The
$$
\ell^p
$$
-norm $||A||_p = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^p\right)^{1/p}$ for $p \ge 1$.
\n(3) The ℓ^{∞} -norm $||A||_{\infty} = \max_{i=1,...,m, j=1,...,n} |a_{ij}|$.

The above norms are monotone concerning the partial ordering \preceq in Definition [1.1](#page-0-0) in the case $\mathbb{K} = \mathbb{R}_+$. In several papers, the vector spaces $\mathfrak{M}_{m,1}(\mathbb{K})$ and \mathbb{K}^m are identical. 18 $\frac{1}{19}$ $\frac{1}{20}$

Definition 1.2 ([\[5\]](#page-12-16), Definition 3.1.2). Let $||| \cdot |||$: $\mathfrak{M}_{m,m}(\mathbb{K}) \to \mathbb{R}_+$ be a map such that for all $A, B \in$ $\mathfrak{M}_{m,m}(\mathbb{K}), \lambda \in \mathbb{K}.$ 21 22

- (1) $|||A||| = 0$ if and only if $A = 0$. 23
- (2) $|||\lambda A||| = |\lambda|$.||| $A|||$. 24 25
	- (3) $|||A+B||| \le |||A||| + |||B|||.$
		- (4) $|||AB||| \leq |||A|||.|||B|||.$

Then $|||.|||$ is called a *matrix norm on* $\mathfrak{M}_{m,m}(\mathbb{K})$. 28

Definition 1.3 ([\[5\]](#page-12-16), Definition 3.1.3). Let $\|.\|$ be a norm on $\mathfrak{M}_{m,1}(\mathbb{K})$ and for all $A \in \mathfrak{M}_{m,m}(\mathbb{K})$, 29 30

$$
\frac{1}{32} (1.1) \t\t ||A||| = \sup_{x \in \mathfrak{M}_{m,1}(\mathbb{K}), x \neq 0} \frac{||Ax||}{||x||}
$$

Then $|||.|||$ is a matrix norm on $\mathfrak{M}_{m,m}(\mathbb{K})$ and is called *subordinate to the norm* $||.||.$ 33 34

Remark 1.4. (1) On $\mathfrak{M}_{m,m}(\mathbb{K})$, ℓ^p -norm and ℓ^{∞} -norm are matrix norms and there exists a norm on $\mathfrak{M}_{m,m}(\mathbb{K})$ which is not a matrix norm, for example $||A|| = \max_{i,j} |a_{ij}|$ [\[5,](#page-12-16) Example 3.1.2]. 1≤*i*, *j*≤*m* 35 Remark 1.4.

.

(2) For the matrix norm $\|\|\cdot\|\|$ on $\mathfrak{M}_{m,m}(\mathbb{K})$ which is subordinate to the norm $\|\cdot\|$ on \mathbb{K}^m , then $||Ax|| \le |||A|||$. $||x||$ for all $A \in \mathfrak{M}_{m,m}(\mathbb{K})$ and $x \in \mathfrak{M}_{m,1}(\mathbb{K})$.

(3) Let $\{A_n\}$ be a sequence of the matrices in $\mathfrak{M}_{m,m}(\mathbb{R}_+)$, where $a_{ij}^{(n)}$ is the entry in row *i* and column *j* of the matrix A_n . Then the sequence of the matrices $\{A_n\}$ is called *convergent to a matrix* $A = (a_{ij})$, written that $\lim_{n \to \infty} A_n = A$, if $\lim_{n \to \infty} a_{ij}^{(n)} = a_{ij}$ for all $i, j = 1, \ldots, m$.

THE ANSWER TO AN OPEN QUESTION IN R THE ANSWER TO AN OPEN QUESTION IN \mathbb{R}^m -*b*-METRIC SPACES AND APPLICATION TO INTEGRAL EQUATIONS

Moreover, let the matrix norm $|||.|||$ be subordinate to the norm $||.||$ in $\mathfrak{M}_{m,1}(\mathbb{R}_+)$. Then $\lim_{n \to \infty} A_n = A$ if and only if $\lim_{n \to \infty} ||A_n - A||$ = 0 [\[37,](#page-13-7) page 12].

The following theorems present the relation between a matrix norm and a norm.

Theorem 1.5 ([\[5\]](#page-12-16), Proposition 3.1.1). *Assume that the matrix norm* |||.||| *on* M*m*,*m*(K) *is subordinate to the norm* ||.|| *on* M*m*,1(K)*. Then we have*

(1) For all $A \in \mathfrak{M}_{m,m}(\mathbb{K})$ *and* $x \in \mathfrak{M}_{m,1}(\mathbb{K})$ *,*

(1.2)
$$
|||A||| = \sup_{||x||=1} ||Ax|| = \sup_{||x|| \le 1} ||Ax||.
$$

(2) There exists $x_A \in \mathfrak{M}_{m,1}(\mathbb{K}), x_A \neq \Theta$ *satisfying*

$$
|||A||| = \frac{||Ax_A||}{||x_A||}.
$$

In particular, sup *can be replaced by* max *in* [\(1.1\)](#page-1-0) *and* [\(1.2\)](#page-2-0)*.*

(3) For all $A, B \in \mathfrak{M}_{m,m}(\mathbb{K})$ *, we have*

$$
|||AB||| \le |||A|||.|||B|||.
$$

Theorem 1.6 ([\[5\]](#page-12-16), Proposition 3.1.2). Assume that for all $A = (a_{ij}) \in \mathfrak{M}_{m,m}(\mathbb{K})$. Then

(1) The matrix norm |||.|||¹ *defined by*

$$
|||A|||_1 = \max_{1 \le j \le m} \sum_{i=1}^m |a_{ij}|
$$

is subordinate to the ℓ^1 -norm on $\mathfrak{M}_{m,1}(\mathbb{K})$.

(2) The matrix norm |||.|||[∞] *defined by*

$$
|||A|||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{m} |a_{ij}|
$$

is subordinate to the ℓ^{∞} -norm on $\mathfrak{M}_{m,1}(\mathbb{K})$.

Definition 1.7 ([\[18\]](#page-12-17), page 149). Let $A \in \mathfrak{M}_{m,m}(\mathbb{R}_+)$. Then 30

(1) $\lambda \in \mathbb{C}$ satisfies det($A - \lambda I$) = 0 is called an *eigenvalue* of *A*, where *I* is the identity matrix in $\mathfrak{M}_{m,m}(\mathbb{R}_+).$

(2) $\sigma(A) = \{\lambda : \lambda \text{ is the eigenvalue of } A\}$ is called the *spectrum* of A.

(3) $r(A) = \max\{|\lambda| : \lambda \in \sigma(A)\}$ is called the *spectral radius* of A.

The following lemma gives properties related to matrices that are convergent to zero.

1.8 Lemma 1.8 ([\[32\]](#page-13-8), Lemma 2). Assume that $A \in \mathfrak{M}_{m,m}(\mathbb{R}_+)$. Then the following statements are equiva*lent.* 38

(1) A is convergent to zero, that is, $\lim_{n \to \infty} A^n = \Theta$, where $A^n = \underbrace{A.A...A}_{\sim}$ | {z } *n times .* (2) $r(A) < 1$. *(3)* $I - A$ *is non-singular and* $(I - A)^{-1}$ *has non-negative elements.* 39 40 41 42

The following lemma gives bounds on the size of the entries of the matrix A^k for all $k \in \mathbb{N}$. 1

Lemma 1.9 ([\[21\]](#page-12-18), Corollary 5.6.13). Assume that $A \in \mathfrak{M}_{m,m}(\mathbb{C})$ and $\varepsilon > 0$. Then there exists a *constant* $c = c(A, \varepsilon)$ *such that for all* $k \in \mathbb{N}$ *and all* $i, j = 1, \ldots, m$ 2 3 4

$$
|(A^k)_{ij}| \le c(r(A) + \varepsilon)^k
$$

where $|(A^k)_{ij}|$ is the module of the entry in row i and column j of the matrix A^k . 6 7

Definition 1.10. Let *X* be a non-empty set, $s \ge 1$ and a map $d : X \times X \to \mathbb{R}$ satisfy for all $x, y, z \in X$,

(1)
$$
d(x, y) = 0
$$
 if and only if $x = y$.

(2) $d(x, y) = d(y, x)$.

(3) $d(x, y) \leq s(d(x, z) + d(z, y)).$

Then we have 12

5

13 14 15

29 $\frac{1}{30}$ $rac{30}{31}$

(1) *d* is called a *b*-metric and (X, d, s) is called a *b*-metric space [\[16\]](#page-12-7).

(2) If the condition [\(1\)](#page-3-0) is replaced by $d(x, x) = 0$, then *d* is called a *pseudo-b-metric* [\[1\]](#page-12-19).

Perov in [\[30\]](#page-13-0) established a fixed point theorem in \mathbb{R}^m -metric spaces by replacing the contraction constant in $[0,1)$ in the Banach contraction principle by a matrix with the spectral radius in $[0,1)$. 16 17 $\frac{1}{18}$

Theorem 1.11 ([\[30\]](#page-13-0), Perov's fixed point theorem in R *^m*-metric spaces). *Assume that* $\frac{1}{19}$

(1) (X,d) *is a complete* \mathbb{R}^m *-metric space and* $f: X \to X$ *is a map. (2) There exists a matrix* $A \in \mathfrak{M}_{m,m}(\mathbb{R}_+)$ *such that (a)* $r(A) < 1$. *(b) For all* $x, y \in X$, $d(fx, fy) \preceq Ad(x, y).$

*Z***₅** Then f has a unique fixed point x^* ∈ *X* and for all x ∈ X, x^* = $\lim_{n\to\infty} f^n x$. 26

27 Definition 1.12 ([\[11\]](#page-12-14), Definition 2.1). Let *X* be a non-empty set, $s \ge 1$ and a map $d : X \times X \rightarrow$ $\mathfrak{M}_{m,1}(\mathbb{R}_+)$ satisfy for all $x, y, z \in X$, 28

(1)
$$
d(x, y) = \Theta
$$
 if and only if $x = y$.

(2)
$$
d(x,y) = d(y,x)
$$
.

(3)
$$
d(x,y) \preceq s(d(x,z) + d(z,y)).
$$

Then *d* is called a \mathbb{R}^m *-b-metric* and (X, d, s) is called a \mathbb{R}^m *-b-metric space.* 32 33

 $\overline{34}$ Remark 1.13. (1) A R *^m*-*b*-metric space is also called a *generalised b-metric space* [\[7,](#page-12-20) Definition 2.2]. 35 $\frac{1}{36}$

- (2) If we replace the coefficient $s \ge 1$ by the matrix $S \in \mathfrak{M}_{m,m}(\mathbb{R}_+), I \preceq S$ in the definition of the R *^m*-*b*-metric space, then it is called a *generalised b-metric space* [\[31,](#page-13-9) Definition 2.1] or a *Czerwik generalised metric space* [\[4,](#page-12-21) Definition 2.1] with the additional condition "*S* is a diagonal matrix". Moreover, in [\[13,](#page-12-9) page 140], the authors introduced the notion of a *generalised b-metric*, where the generalised *b*-metric may take the value $+\infty$.
- (3) For $m = 1$, \mathbb{R} -*b*-metric space (X, d, s) is a *b*-metric space in the sense of Czerwik [\[16\]](#page-12-7).
- (4) For $s = 1$, \mathbb{R}^m -*b*-metric space $(X, d, 1)$ is a \mathbb{R}^m -metric space in the sense of Perov [\[30\]](#page-13-0).

- (5) The convergence, Cauchy sequence and completeness in R *^m*-*b*-metric spaces are defined similarly as in *b*-metric spaces.
- (6) $\{d_1, \ldots, d_m\}$ is a *separating family of pseudo b-metrics* if for all $i = 1, \ldots, m$, d_i is pseudo *b*-metric and for all $x \neq y \in X$, then $d_i(x, y) > 0$ for some $i = 1, \ldots, m$.

Lemma 1.14 ([\[12\]](#page-12-15), Lemma 2.5). Let (X,d,s) be a \mathbb{R}^m -b-metric space and $\{x_n\}$ be a sequence in X. *Then we have*

$$
d(x_0,x_m) \leq s^n \sum_{i=0}^{m-1} d(x_i,x_{i+1})
$$

for all $n \in \mathbb{N}$ *and* $m = 1, \ldots, 2^n$ *.*

Bazine *et al.* [\[8\]](#page-12-22) established the conditions so that a sequence $\{x_n\}$ in \mathbb{R}^m -*b*-metric spaces is Cauchy. However, these conditions required the matrix *sA* to be convergent to zero.

Lemma 1.15 ([\[8\]](#page-12-22), Lemma 2). *Assume that*

(1) (X,d,s) *is a* \mathbb{R}^m *-b-metric space and* $\{x_n\}$ *is a sequence in* X. *(2) There exists* $A \in \mathfrak{M}_{m,m}(\mathbb{R}_+)$ *such that (a) sA is convergent to zero. (b) For every* $n \in \mathbb{N}$ *,* $d(x_n, x_{n+1}) \leq A d(x_{n-1}, x_n).$

Then the sequence $\{x_n\}$ *is Cauchy in* (X, d, s) *.*

An open problem was raised in [\[12\]](#page-12-15) by Bota *et al.* as follows.

Question 1.16 ([\[12\]](#page-12-15), Conjecture on page 92). *Is the condition "the matrix sA is convergent to zero" replaced by the condition "the matrix A is convergent to zero" in Lemma [1.15?](#page-4-1)*

In this paper, we give an affirmative answer to an open question in \mathbb{R}^m -*b*-metric spaces by using the subordinate property of the matrix norm to the ℓ^{∞} -norm on \mathbb{K}^m . As applications, we get Perov's fixed point theorem and Matkowski's fixed point theorem in R *^m*-*b*-metric spaces. We also show that the fixed point theorem in R *^m*-*b*-metric spaces is applicable to prove the existence and uniqueness of the solution to an integral equation but fixed point theorems in metric spaces may be not.

2. Main results

 $\frac{34}{2}$ Firstly, we prove the following theorem to give an affirmative answer to Question [1.16.](#page-4-0) The following theorem only needs the condition "the matrix *A* is convergent to zero", that means " $r(A) < 1$ ", while Lemma [1.15](#page-4-1) needs the condition " $r(A) < \frac{1}{s}$ $\frac{1}{s}$ ". The novel technique here is to use the subordinate property of the matrix norm to the ℓ^{∞} -norm on \mathbb{K}^m mentioned in Theorem [1.6.](#page-2-1) 37 38

Theorem 2.1. *Assume that* $\overline{39}$

- *(1)* (X,d,s) *is a* \mathbb{R}^m *-b-metric space and* $\{x_n\}$ *is a sequence in* X. 40
	- *(2) There exists* $A \in \mathfrak{M}_{m,m}(\mathbb{R}_+)$ *such that*
		- *(a) A is convergent to zero.*

41 42

1 (b) For every *n* ∈ ℕ,
\n
$$
\frac{1}{\frac{2}{3}} (2.1)
$$
\n
$$
d(x_n, x_{n+1}) \leq Ad(x_{n-1}, x_n).
$$
\n6. *Proof.* Since $r(A) < 1$, we can choose $\varepsilon = \frac{1-r(A)}{r(A)}$ > 0. Putting $\gamma = r(A) + \varepsilon$, then $\gamma < 1$. From $\frac{1}{\frac{2}{3}}$ when a 1.9, we have any entry of the matrix A^n is less than or equal $c\gamma^n$ for all $n \in \mathbb{N}$. Therefore, $\frac{1}{\frac{2}{3}}$ where $B \in \mathfrak{M}_{m,m}(\mathbb{R}_+), B = \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & \dots & 1 \end{pmatrix}$ $A^n \leq c\gamma^n .B$
\n
$$
\frac{12}{\frac{12}{15}}
$$
\n
$$
\frac{12}{\frac{12}{15}}
$$
\nFor all $l, k \in \mathbb{N}$, we denote $p = [\log_2 k]$ which is the integer part of $\log_2 k$. We get $\frac{21}{\frac{21}{25}}$ (2.4) $d(x_{l+1}, x_{l+k}) \leq \sum_{n=1}^{p} s^n d(x_{l+2^{n-1}}, x_{l+2^n}) + s^{p+1} d(x_{l+2^p}, x_{l+k})$
\n
$$
\frac{12}{\frac{22}{\frac{22}{\frac{22}{\frac{22}{\frac{22}{\frac{21
$$

1 Sep 2024 21:52:07 PDT 240604-Dung Version 2 - Submitted to J. Integr. Eq. Appl.

By Theorem [1.6,](#page-2-1) we have the matrix norm $|||.|||_{\infty}$ on $\mathfrak{M}_{m,m}(\mathbb{R}_+)$ is subordinate to the norm $||.||_{\infty}$ on $\mathfrak{M}_{m,1}(\mathbb{R}_+)$. It follows from [\(2.6\)](#page-5-5) and Remark [1.4](#page-0-0) that ||*d*(*xl*+1, *xl*+*k*)||[∞] ≤ ||*c p*+1 ∑ *n*=1 $s^{2n}\sum_{1}^{2^{n-1}-1}$ ∑ *i*=0 $\gamma^{l+2^{n-1}+i} B d(x_0, x_1)||_{\infty}$ ≤ *c p*+1 ∑ *n*=1 s^{2n} ^{2ⁿ⁻¹−1} ∑ *i*=0 $\gamma^{l+2^{n-1}+i}||Bd(x_0, x_1)||_{\infty}$ *p*+1 1 2 3 4 5 6 7 8 9

$$
\frac{\frac{9}{10}}{\frac{11}{11}} \leq c \sum_{n=1}^{p+1} s^{2n} \sum_{i=0}^{2^{n-1}-1} \gamma^{i+2^{n-1}+i} |||B|||_{\infty} ||d(x_0, x_1)||_{\infty} \n= c.m.\gamma^{i} ||d(x_0, x_1)||_{\infty} \sum_{n=1}^{p+1} s^{2n} \gamma^{2^{n-1}} \sum_{i=0}^{2^{n-1}-1} \gamma^{i} \n\leq c.m.\gamma^{i} \frac{||d(x_0, x_1)||_{\infty}}{1-\gamma} \sum_{n=1}^{p+1} s^{2n} \gamma^{2^{n-1}} \n= c.m.\gamma^{i} \frac{||d(x_0, x_1)||_{\infty}}{1-\gamma} \sum_{n=1}^{p+1} \gamma^{2^{n-1}+2n \log_{\gamma} s}.
$$

We find that $\lim_{n\to\infty} (2^{n-1} + 2n \log_\gamma s - n) = \infty$. Then there exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$, $2^{n-1} + 2n \log_\gamma s - n \ge 1$. Then $\gamma^{2^{n-1} + 2n \log_\gamma s} \le \gamma^{n+1}$. Therefore the series ∞ ∑ *n*=1 $\gamma^{2^{n-1}+2n\log_\gamma s}$ is convergent. Combining with [\(2.7\)](#page-6-0), we have 19 20 21 22 23

n=1

$$
\frac{24}{25}(2.8) \t\t |d(x_{l+1},x_{l+k})||_{\infty} \leq c.m.\gamma^l \frac{||d(x_0,x_1)||_{\infty}}{1-\gamma}S
$$

for all *l*, $k \in \mathbb{N}$ and $S = \sum_{n=1}^{\infty}$ ∑ *n*=1 $\gamma^{2^{n-1}+2^n \log_\gamma s}$. Letting the limit as $l \to \infty$ in [\(2.8\)](#page-6-1), we have 27 28 29

$$
\lim_{l\to\infty}d(x_{l+1},x_{l+k})=\Theta.
$$

This proves that $\{x_n\}$ is Cauchy in (X, d, s) . 31

30

32 33

From Theorem [2.1,](#page-4-3) we deduce Perov's fixed point theorem in \mathbb{R}^m -*b*-metric spaces as follows.

³⁴ **Corollary 2.2** (Perov's fixed point theorem in
$$
\mathbb{R}^m
$$
-*b*-metric spaces). Assume that

(1) (X, d, s) *is a complete* \mathbb{R}^m -*b*-metric space and $f : X \to X$ *is a map. (2) There exists a matrix* $A \in \mathfrak{M}_{m,m}(\mathbb{R}_+)$ *such that (a)* $r(A) < 1$. *(b) For all* $x, y \in X$, (2.9) $d(fx, fy) \leq Ad(x, y).$ 36 37 38 39 40 41

Then f has a unique fixed point $x^* \in X$ *and for all* $x \in X, x^* = \lim_{n \to \infty} f^n x$. 42

THE ANSWER TO AN OPEN QUESTION IN \mathbb{R}^m -*b*-METRIC SPACES AND APPLICATION TO INTEGRAL EQUATIONS

Proof. Let $x_0 \in X$ and $x_n = f^n x_0 = f x_{n-1}$ for all $n \in \mathbb{N}$. We get $d(x_n, x_{n+1}) = d(fx_{n-1}, fx_n) \prec Ad(x_{n-1}, x_n).$ From [\(2.10\)](#page-7-0), by Lemma [1.8](#page-2-2) and Theorem [2.1,](#page-4-3) we infer $\{x_n\}$ is Cauchy. Since (X, d, s) is complete, there exists $x^* \in X$ such that (2.11) $\lim_{n\to\infty}x_n=x^*$. By [\(2.9\)](#page-6-2), we also have $d(fx^*, x^*) \leq s(d(fx^*, fx_n) + d(fx_n, x^*))$ $= s(d(fx^*, fx_n) + d(x_{n+1}, x^*))$ (2.12) $\leq s(Ad(x^*, x_n) + d(x_{n+1}, x^*)).$ By putting $q = \max_{1 \le i \le m}$ *m* $\sum_{j=1}^{\infty} a_{ij}$ with $A = (a_{ij})$ and using Remark [1.4,](#page-0-0) we have (2.13) $||Ad(x^*,x_n)||_{\infty} \le |||A|||_{\infty} ||d(x^*,x_n)||_{\infty} \le q||d(x^*,x_n)||_{\infty}$. It follows from (2.12) and (2.13) that $||d(fx^*, x^*)||_{\infty} \leq ||s(Ad(x^*, x_n) + d(x_{n+1}, x^*))||_{\infty}$ ≤ ∥*s*.*Ad*(*x* ∗ , *xn*)∥[∞] +∥*s*.*d*(*xn*+1, *x* ∗)∥[∞] (2.14) $\leq sq||d(x^*,x_n)||_{\infty}+s||d(x_{n+1},x^*))||_{\infty}.$ Taking the limit as $n \to \infty$ in [\(2.14\)](#page-7-3) and using [\(2.11\)](#page-7-4), we have $||d(fx^*, x^*)||_{\infty} = 0$. That means $d(fx^*, x^*) = \Theta$. Therefore $fx^* = x^*$, that is, x^* is a fixed point of *f*. Now, we show that *x*^{*} is a unique fixed point of *f*. Indeed, let *z*^{*} be also a fixed point of *f*. We have $x^* = fx^* = f^2x^* = \dots = f^n x^*$ and $z^* = fz^* = f^2z^* = \dots = f^n z^*$ for all $n \in \mathbb{N}$. Hence, we obtain $d(x^*, z^*) = d(f^n x^*, f^n z^*)$ \leq *Ad*($f^{n-1}x^*$, $f^{n-1}z^*$) ... (2.15) $\leq A^n d(x^*, z^*).$ Since $r(A) < 1$, by Remark [1.4.](#page-0-0)[\(3\)](#page-1-1), we have (2.16) $\lim_{n \to \infty} |||A^n|||_{\infty} = 0.$ Taking the norm $\lVert \cdot \rVert_{\infty}$ in [\(2.15\)](#page-7-5) and then taking the limit as $n \to \infty$ and using [\(2.16\)](#page-7-6), we have 0 ≤ $||d(x^*, z^*)||_\infty$ ≤ $\lim_{n\to\infty}|||A^n|||_\infty$ || $d(x^*, z^*)||_\infty$ = 0.|| $d(x^*, z^*)||_\infty$ = 0. Then $||d(x^*, z^*)||_{\infty} = 0$, that is, $x^* = z^*$. Therefore, x^* is a unique fixed point of *f*. Moreover, since x_0 is arbitrary, by [\(2.11\)](#page-7-4), we have $x^* = \lim_{n \to \infty} f^n x$ for all $x \in X$. □ Next, by using the definitions directly, we give the following lemma to characterise a R *^m*-*b*-metric by a separating family of pseudo *b*-metrics. 42 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 $\frac{1}{22}$ 23 24 25 26 27 28 29 $\frac{1}{30}$ $\frac{30}{31}$ (2.15) $\overline{32}$ 33 34 35 36 $\frac{1}{37}$ 38 39 $\overline{40}$ 41

Lemma 2.3. *Assume that* 1

2 3

7

12 13

21 22

25 26 27

34 35 $\frac{1}{36}$ *(1) X* is a non-empty set and d_i : $X \times X \to \mathbb{R}$ for all $i = 1, ..., m$ are given functions.

(2) A function $d: X \times X \rightarrow \mathfrak{M}_{m,1}(\mathbb{R}_+)$ *is defined by* $d = (d_1, \ldots, d_m)$.

Then d is a \mathbb{R}^m -b-metric on X if and only if $\{d_1, \ldots, d_m\}$ is a separating family of pseudo b-metrics *on X.* 4 5 6

In particular, d_1 *,...,* d_m *are called* pseudo *b*-metrics associated with *d.*

The next lemma shows the equivalence of convergence, Cauchy sequence, and completeness between the \mathbb{R}^m -*b*-metric *d* and pseudo *b*-metrics d_1, \ldots, d_m associated with *d*. 8 9

Lemma 2.4. *Assume that* 10 $\frac{1}{11}$

(1) (X,d,s) *is a* \mathbb{R}^m *-b-metric space.*

(2) d_1 ,..., d_m *are pseudo b-metrics associated with d.*

Then the following statements hold. 14

(1) $\lim_{n\to\infty} d(x_n, x) = \Theta$ *if and only if* $\lim_{n\to\infty} d_i(x_n, x) = 0$ *for all i* = 1,...,*m.*

(2) $\lim_{n,k\to\infty} d(x_n,x_k) = \Theta$ *if and only if* $\lim_{n,k\to\infty} d_i(x_n,x_k) = 0$ *for all i* = 1,...,*m*.

(3) (X, d, s) *is complete if and only if* (X, d_i, s) *is complete for all i* = 1,...,*m.*

Remark 2.5. Assume that 20

(1) (X, d, s) is a \mathbb{R}^m -*b*-metric space.

(2)
$$
d^{(l)}(x,y) = ||d(x,y)||_l
$$
 for all $x, y \in X$ and $l = 1, 2, \infty$.

Then we have 23 24

(1) $d^{(1)}$, $d^{(2)}$, $d^{(\infty)}$ are *b*-metrics associated with *d*.

(2) If one of the spaces (X, d, s) , $(X, d^{(l)}, s)$ is complete for $l = 1, 2, \infty$, then all of them are complete.

Matkowski's theorem for self-maps of the Cartesian product of metric spaces was proved in [\[27\]](#page-13-10). After that, Jachymski and Klima [\[23\]](#page-12-23) showed the relation between this theorem and Perov's fixed point theorem in R *^m*-metric spaces. Next, we use Corollary [2.2](#page-6-3) to prove Matkowski's fixed point theorem for self-maps on the Cartesian product of *b*-metric spaces. 28 29 30 31 $\frac{1}{32}$

Corollary 2.6 (Matkowski's fixed point theorem). Assume that $m \in \mathbb{N}$ and for all $i = 1, ..., m$,

(1)
$$
(X_i, d_i, s_i)
$$
 are complete b-metric spaces and $X = X_1 \times ... \times X_m$.

(2) $f_i: X \to X_i$ are given maps and $f = (f_1, \ldots, f_m)$.

(3) There exists a matrix $A = (a_{ij}) \in \mathfrak{M}_{m,m}(\mathbb{R}_+)$ *with* $r(A) < 1$ *.*

(3) There exists a matrix
$$
A = (a_{ij}) \in \mathcal{D}(\mathfrak{m},m(\mathbb{R}_+))
$$

\n
$$
\frac{37}{38}
$$
 (4) For all $x = (x_1,...,x_m), y = (y_1,...,y_m) \in X,$

$$
\frac{\overline{39}}{40}(2.17) \qquad \qquad d_i(f_i(x_1,\ldots,x_m),f_i(y_1,\ldots,y_m)) \leq \sum_{j=1}^m a_{ij}d_j(x_j,y_j).
$$

Then f has a unique fixed point $x^* = (x_1^*, \ldots, x_m^*) \in X$ *and for all* $x \in X$, $\lim_{n \to \infty} f^n x = x^*$. 42

THE ANSWER TO AN OPEN QUESTION IN \mathbb{R}^m -*b*-METRIC SPACES AND APPLICATION TO INTEGRAL EQUATIONS

Proof. For all
$$
x = (x_1, ..., x_m)
$$
, $y = (y_1, ..., y_m) \in X$, and $i = 1, ..., m$, we denote
\n
$$
\frac{2}{3}(2.18)
$$
\n
$$
D_i(x, y) = d_i(x_i, y_i)
$$
\n
$$
\frac{5}{4}
$$
\nand\n
$$
D(x, y) = (D_1(x, y), ..., D_m(x, y)).
$$
\n
$$
\frac{6}{8} \text{ Then } {D_1, ..., D_m}
$$
 is a separating family of pseudo *b*-metrics on *X*. By Lemma 2.3, (X, D, s) is a
\n
$$
\frac{1}{8} \text{ R}^m \cdot b
$$
-metric space, where $s = \max_{i=1, ..., m} s_i$. By putting $\rho(x, y) = \sum_{i=1}^m d_i(x_i, y_i)$ for all $x, y \in X$ and using
\n
$$
\frac{9}{8} \text{ Remark 2.5, we infer that } (X, \rho, s) \text{ is a } b
$$
-metric space. Since (X_i, d_i, s_i) is complete for all $i = 1, ..., m$, we infer
\n
$$
\frac{11}{10} \text{ that } (X, D, s) \text{ is complete. Combining } (2.17) \text{ with } (2.18), \text{ we obtain}
$$
\n
$$
D_i(fx, fy) = d_i(f_i(x_1, x_2, ..., x_m), f_i(y_1, y_2, ..., y_m))
$$
\n
$$
\leq \sum_{j=1}^m a_{ij} d_j(x_j, y_j)
$$
\n
$$
\leq \sum_{j=1}^m a_{ij} D_j(x, y).
$$
\nBy (2.19), we have
\n
$$
D(fx, fy) \leq AD(x, y)
$$

$$
D(fx, fy) \preceq AD(x, y).
$$

So, the assumptions of Corollary [2.2](#page-6-3) are satisfied. Then *f* has a unique fixed point $x^* = (x_1^*, \dots, x_m^*) \in X$ and for all $x \in X$, $\lim_{n \to \infty} f^n x = x^*$. □ 21 22 23

There are several types of integral equations have been solved by using fixed point theorems in *b*-metric spaces, see [\[3,](#page-12-10) Theorem 4.1], [\[20,](#page-12-11) Example 2.3], [\[22,](#page-12-12) Theorem 6], [\[25,](#page-12-13) Theorem 5.1], [\[29,](#page-13-2) Theorem 5.1], [\[34,](#page-13-3) Theorem 4.1], [\[33,](#page-13-4) Theorem 3.1], [\[35,](#page-13-5) Theorem 3.1] and many others. However, as on [\[36,](#page-13-1) page 47], these integral equations may be solved just using a certain fixed point result in metric spaces, and without using any fixed point results in *b*-metric spaces. 24 25 26 27 28

Now, we apply Corollary [2.2](#page-6-3) to prove the existence and the uniqueness of an integral equation which may not be solved by using fixed point theorems in metric spaces as mentioned on [\[36,](#page-13-1) page 47]. Indeed, in the following proof we have 29 $\frac{1}{30}$ 31

$$
|(Tx)(t)-(Ty)(t)|^{\frac{1}{p}} \leq L \sum_{i=1}^{j} \int_{t_{i-1}}^{t_i} |x(s)-y(s)|^{\frac{1}{p}} ds.
$$

It is equivalent to 35 36

32 33 34

37 38

40 $\frac{40}{41}$ $\frac{1}{42}$

$$
|(Tx)(t)-(Ty)(t)| \leq \left(L\sum_{i=1}^{j}\int_{t_{i-1}}^{t_i} |x(s)-y(s)|^{\frac{1}{p}}ds\right)^{p}.
$$

However, we can not take the power *p* under the integral sign to get 39

$$
|(Tx)(t)-(Ty)(t)| \leq L^{\frac{1}{p}} \sum_{i=1}^{j} \int_{t_{i-1}}^{t_i} |x(s)-y(s)| ds.
$$

THE ANSWER TO AN OPEN QUESTION IN \mathbb{R}^m -*b*-METRIC SPACES AND APPLICATION TO INTEGRAL EQUATIONS

Then the integral equation [\(2.21\)](#page-10-0) may not be solved by using fixed point theorems in the metric space $C[0,1]$ as mentioned on [\[36,](#page-13-1) page 47]. 1 2

Theorem 2.7. Assume that $f : [0,1] \times \mathbb{R} \to \mathbb{R}$ is a function such that for all $x \in C[0,1]$ *, for some* $L > 0$ *and* $0 < p \leq 1$ *,* 4 5

$$
\frac{7}{8} (2.20) \t\t |f(t, u) - f(t, v)| \le L|u - v|^{\frac{1}{p}}
$$

for any $t \in [0,1]$ and $u, v \in \mathbb{R}$, and $f(s,x(s))$ is integrable with respect to s on $[0,1]$ for any $x \in C[0,1]$. *Then the equation* 10 11

$$
\frac{13}{14}(2.21) \qquad \qquad x^{\frac{1}{p}}(t) = \int_0^t f(s, x(s))ds, \ \ t \in [0, 1]
$$

has a unique solution $x^* \in C[0,1]$ *.* 16 17

Proof. We put 19

3

6

9

12

18

26

32

35

 $(Tx)(t) = ($ \int_0^t $\boldsymbol{0}$ $f(s,x(s))ds$ ^{*p*}

for all $t \in [0,1]$ and $x \in C[0,1]$. Then there exist $m \in \mathbb{N}$ and $t_j \in [0,1]$, $j = 0,1,...,m$ such that $0 = t_0 < t_1 < \ldots < t_m = 1$ and 24 25

.

$$
\frac{27}{28} (2.22) \qquad \qquad \max_{1 \le j \le m} (t_j - t_{j-1}) \le \frac{p}{L}
$$

For all $j = 1, \ldots, m$ and $x, y \in C[0, 1]$, we define 30 $\frac{1}{31}$

$$
\frac{33}{34} (2.23) \t d_j(x,y) = \max_{t_{j-1} \le t \le t_j} |x(t) - y(t)|^{\frac{1}{p}}.
$$

Then d_j is a pseudo *b*-metric in $C[0,1]$. Therefore, $\{d_1,\ldots,d_m\}$ is a separating family of pseudo *b*-metrics in *C*[0,1]. Put $d = (d_1, \ldots, d_m)$. By Lemma [2.3,](#page-8-0) *d* is a \mathbb{R}^m -*b*-metric in *C*[0, λ] coefficient *s* = $2^{\frac{1}{p}-1}$. By Remark [2.5,](#page-8-1) we find that *d*^(∞) defined by *d*^(∞)(*x*, *y*) = $||d(x, y)||_{∞}$ for all *x*, *y* ∈ *C*[0,1] is a *b*-metric in $C[0, 1]$ with coefficient $s = 2^{\frac{1}{p}-1}$. By Remark [2.5](#page-8-1) and since $(C[0, 1], d^{\infty}, 2^{\frac{1}{p}-1})$ is complete, we have $(C[0,1], d, 2^{\frac{1}{p}-1})$ is complete. 36 37 38 39 $\overline{40}$ $\overline{41}$

Now, for each $j = 1, ..., m, x, y \in C[0, 1], t \in [t_{j-1}, t_j],$ by [\(2.20\)](#page-10-1), [\(2.22\)](#page-10-2), we get 42

 $\frac{1}{33}$ 34

 $\frac{1}{36}$ $rac{1}{37}$

39 $\frac{1}{40}$ 41

1

$$
\begin{array}{rcl}\n|(Tx)(t) - (Ty)(t)|^{\frac{1}{p}} & = & \left| \left(\int_0^t f(s, x(s)) ds \right)^p - \left(\int_0^t f(s, y(s)) ds \right)^p \right|^{\frac{1}{p}} \\
& \leq & \int_0^t |f(s, x(s)) - f(s, y(s))| ds \\
& \leq & \int_0^{t_j} |f(s, x(s)) - f(s, y(s))| ds \\
& = & \sum_{i=1}^j \int_{t_{i-1}}^{t_i} |f(s, x(s)) - f(s, y(s))| ds \\
& \leq & L \sum_{i=1}^j \int_{t_{i-1}}^{t_i} |x(s) - y(s)|^{\frac{1}{p}} ds \\
& \leq & L \sum_{i=1}^j d_i(x, y)(t_i - t_{i-1}) \\
& \leq & p \sum_{i=1}^j d_i(x, y).\n\end{array}
$$

By [\(2.23\)](#page-10-3), we infer that

$$
d_j(Tx,Ty) \le p \sum_{i=1}^j d_i(x,y).
$$

For $i, j = 1, \ldots, m$, we put

$$
a_{ji} = \begin{cases} p & \text{if } i \leq j \\ 0 & \text{if } i > j \end{cases}
$$

²⁸ and define $A = (a_{ji})$. Then $d(Tx, Ty) \preceq Ad(x, y)$ and A is a triangular matrix with *p* on the diagonal. ²⁹ Since *p* is the only eigenvalue of *A*, we get $r(A) = p < 1$.

By the above arguments and using Corollary [2.2,](#page-6-3) *T* has a unique fixed point $x_* \in C[0,1]$. That is, for all $t \in [0,1]$, we have 31 32

$$
\left(\int_0^t f(s,x_*(s))ds\right)^p = x_*(t).
$$

It is equivalent to 35

$$
x_*^{\frac{1}{p}}(t) = \int_0^t f(s, x_*(s)) ds.
$$

³⁸ It implies that the equation [\(2.21\)](#page-10-0) has a unique solution $x_* \in C[0,1]$. □

Acknowledgements

42 The author are greatly indebted to anonymous reviewers for their helpful comments to revise the paper.

References [1] Mujahid Abbas, Fatemeh Lael, and Naeem Saleem, *Fuzzy b-metric spaces: Fixed point results for* ψ*-contraction correspondences and their application*, Axioms 9 (2020), no. 36, 1–12. [2] Praveen Agarwal, Mohamed Jleli, and Bessem Samet, *Fixed point theory in metric spaces: Recent advances and applications*, Springer, 2018. [3] Asadollah Aghajani and Reza Arab, *Fixed points of* (ψ,φ,θ)*-contractive mappings in partially ordered b-metric spaces and application to quadratic integral equations*, Fixed Point Theory Appl. 2013:245 (2013), 1–20. [4] Muhammad Usman Ali and Jong Kyu Kim, *An extension of vector-valued metric spaces and Perov's fixed point theorem (Nonlinear Analysis and Convex Analysis)*, Kyoto University Research Information Repository 2114 (2019), 12–20. [5] Grégoire Allaire, Sidi Mahmoud Kaber, Karim Trabelsi, and Grégoire Allaire, *Numerical linear algebra*, vol. 55, Springer, 2008. [6] I. A. Bakhtin, *The contraction principle in quasimetric spaces*, Func. An., Unianowsk, Gos. Ped. Ins. 30 (1989), 26–37, in Russian. [7] Safia Bazine, *Fixed point of four maps in generalized b-metric spaces*, International Journal of Nonlinear Analysis and Applications 13 (2022), no. 1, 2723–2730. [8] Safia Bazine, Abdelkrim Aliouche, and Fateh Ellaggoune, *Common fixed point theorems on spaces with vector-valued b-metrics*, Miskolc Math. Notes 18 (2017), no. 1, 103–115. [9] Vasile Berinde and Madalina Pacurar, *The early developments in fixed point theory on b-metric spaces: a brief survey and some important related aspects*, Carpathian J. Math. 38 (2022), no. 2, 523 – 538. [10] Vasile Berinde and Adrian Petrusel and Ioan A. Rus, *Remarks on the terminology of the mappings in fixed point iterative methods in metric spaces*, Fixed Point Theory 24 (2023), no. 4, 525 – 540. [11] Monica Boriceanu, *Fixed point theory on spaces with vector-valued b-metrics*, Demonstr. Math. 42 (2009), no. 4, 825–836. [12] Monica-Felicia Bota, Liliana Guran, and Gabriela Petrusel, *Fixed points and coupled fixed points in b-metric spaces via graphical contractions*, Carpathian J. Math. 39 (2023), no. 1, 85–94. [13] Stefan Cobzas and Stefan Czerwik, *The completion of generalized b-metric spaces and fixed points*, Fixed Point Theory 21 (2020), no. 1, 133–150. [14] Ronald R. Coifman and Miguel de Guzmán, *Singular integrals and multipliers on homogeneous spaces*, Rev. Un. Mat. Argentina 25 (1970), 137–143. [15] Stefan Czerwik, *Contraction mappings in b-metric spaces*, Acta Math. Univ. Ostrav. 1 (1993), no. 1, 5–11. [16] , *Nonlinear set-valued contraction mappings in b-metric spaces*, Atti Sem. Mat. Fis. Univ. Modena 46 (1998), 263–276. [17] Nguyen Van Dung and Vo Thi Le Hang, *On relaxations of contraction constants and Caristi's theorem in b-metric spaces*, J. Fixed Point Theory Appl. 18 (2016), 267–284. [18] Harry Dym, *Linear algebra in action*, Graduate Studies in Mathematics, vol. 78, Amer. Math. Soc., 2013. [19] Dhananjay Gopal, Praveen Agarwal, and Poom Kumam, *Metric structures and fixed point theory*, CRC Press, 2021. [20] Nguyen Trung Hieu and Nguyen Van Dung, *Some fixed point results for generalized rational type contraction mappings in partially ordered b-metric spaces*, Facta Univ. Ser. Math. Inform. 30 (2015), no. 1, 49–66. [21] Roger Alan Horn and Charles Royal Johnson, *Matrix Analysis*, Cambridge University Press, 2012. [22] Nawab Hussain, Vahid Parvaneh, Jamal Rezaei Roshan, and Zoran Kadelburg, *Fixed points of cyclic weakly* (ψ,φ,*L*,*A*,*B*)*-contractive mappings in ordered b-metric spaces with applications*, Fixed Point Theory Appl. 2013:256 (2013), 1–18. [23] Jacek Jachymski and Jakub Klima, *Around Perov's fixed point theorem for mappings on generalized metric spaces*, Fixed Point Theory 17 (2016), no. 2. [24] William A Kirk and Naseer Shahzad, *Fixed point theory in distance spaces*, Springer, Cham, 2014. [25] Poom Kumam and Wutiphol Sintunavarat, *The existence of fixed point theorems for partial q-set-valued quasicontractions in b-metric spaces and related results*, Fixed Point Theory Appl. 2014:226 (2014), 1–20. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 $\frac{1}{18}$ $\frac{1}{19}$ $\overline{20}$ $\overline{21}$ $\overline{22}$ $\overline{23}$ 24 $\frac{1}{25}$ 26 27 28 29 30 31 $\frac{1}{32}$ 33 34 35 36 37 38 39 40 41 42

THE ANSWER TO AN OPEN QUESTION IN \mathbb{R}^m -*b*-METRIC SPACES AND APPLICATION TO INTEGRAL EQUATIONS

- [26] Vo Thi Le Hang and Nguyen Van Dung, *Answers to questions on multivalued fractals in b-metric spaces*, Indag. Math. 1
- (N.S.) 28 (2017), no. 4, 749–759. 2
- [27] Janusz Matkowski, *Integrable solutions of functional equations*, Dissertationes Math. 127 (1975), 1–68. 3
- [28] Radu Miculescu and Alexandru Mihail, *New fixed point theorems for set-valued contractions in b-metric spaces*, J. Fixed Point Theory Appl. 19 (2017), no. 3, 2153–2163. 4
- [29] Hemant Kumar Nashine and Zoran Kadelburg, *Cyclic generalized* ϕ*-contractions in b-metric spaces and an application to integral equations*, Filomat 28 (2014), no. 10, 2047– 2057. 5 6
- [30] A. I. Perov, *On the Cauchy problem for a system of ordinary differential equations*, Pviblizhen. Met. Reshen. Differ. Uvavn. 2 (1964), no. 1964, 115–134. 7 8
- [31] Ioan-Radu Petre and Monica Bota, *Fixed point theorems on generalized b-metric spaces*, Publ. Math. Debrecen 83 (2013), no. 1-2, 139–159. $\frac{1}{9}$
- [32] Radu Precup, *The role of matrices that are convergent to zero in the study of semilinear operator systems*, Math. Comput. Model. 49 (2009), no. 2009, 703–708. 10 11
- [33] Jamal Rezaei Roshan, Vahid Parvaneh, and Ishak Altun, *Some coincidence point results in ordered b-metric spaces and* 12 *applications in a system of integral equations*, Appl. Math. Comput. 226 (2014), 725–737. 13
- [34] Jamal Rezaei Roshan, Vahid Parvaneh, and Zoran Kadelburg, *Common fixed point theorems for weakly isotone increasing mappings in ordered b-metric spaces*, J. Nonlinear Sci. Appl. 7 (2014), 229–245. $\frac{1}{14}$ 15
- [35] Wutiphol Sintunavarat, *Nonlinear integral equations with new admissibility types in b-metric spaces*, J. Fixed Point Theory Appl. 18 (2016), no. 2, 397–416. 16
- [36] Nguyen Van Dung and Wutiphol Sintunavarat, *Fixed point theory in b-metric spaces*, Metric Structures and Fixed Point Theory. Chapman and Hall/CRC (2021), 33–66. 17 18
- [37] Richard Steven Varga, *Matrix Iterative Analysis*, vol. 27 of Springer Series in Computational Mathematics, Springer, Berlin, Germany, 2000. 19 $\frac{1}{20}$
- FACULTY OF MATHEMATICS INFORMATICS TEACHER EDUCATION, SCHOOL OF EDUCATION, DONG THAP UNIVERSITY, CAO LANH CITY, DONG THAP PROVINCE, VIETNAM $\overline{21}$ $\frac{1}{22}$ $\frac{1}{23}$

Email address: vtlhang@dthu.edu.vn

FACULTY OF MATHEMATICS – INFORMATICS TEACHER EDUCATION, SCHOOL OF EDUCATION, DONG THAP UNIVERSITY, CAO LANH CITY, DONG THAP PROVINCE, VIETNAM 24 25 26

Email address: nvdung@dthu.edu.vn