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Abstract

We consider the Stokes system for a viscous medium consisting of a thin inclusion
having no uniform thickness merged in consistent background medium. Based on layer
potential methods we rigorously derive an asymptotic expansion for two-dimensional
velocity field associated with thin inclusion. We extend these techniques to determine a
relationship between Stokes solutions measurements and the shape of the thin impurity.
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1 Introduction and statement of main results

Let Q C R? be a bounded domain with C?"7 boundary for some 1 > 0. Let D be an open
subset of 2 such that
dist(9Q, D) > d > 0,

representing an inclusion made of a different Newtonian fluid material. We assume that 0D
is of classe C%". In this case, dD can be parametrized by a vector-valued function t — X (t),
that is, 9D = {x = X(t),t € [a,b] with a < b}, where X is a C?" function satisfying
|X'(t)| =1 for all t € [a,b], and X (a) = X (b).

Let D;s be an §—perturbation of D, i.e., there is h € C1(9D) such that dDs is given by

0Ds := {it : & =x+ 0h(x)n(x),x € (9D},

where n(z) is the outward normal to D. We assume that h(z) > C > 0 for all z € dD.
Suppose that the thin layer Ds\D lies inside Q. We denote by o9, 01 and oy the stress
tensor fields in of Q\Ds, D, and Ds\D, respectively. We assume that Q\Ds, D, and Ds\D
and D are occupied by isotropic and homogeneous Newtonian fluids, pg, g1 and uo are the
viscosity constants of the flow in Q\Ds, D, and Ds\D and D respectively,
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then the tensors oy, 01 and o2 can be given by

(0s)ijik = ths(Oridi; + 0;015), fori,j,k,l=1,2 and for s =0,1,2.

where po , p1 and po are the viscosity constants of the flow in Q\Eg, D, and D(;\E
respectively. Given two (2 x 2) matrices A and B we denote by A:B the contraction, i.e.,
A:B = Zij a;;b;; The strain rate tensor D is given by :

1
D(u) = (5 Vu + (Va)")
We define
06 '= O0Xg2\D; T 92Xp,\D T T1XD> 0 1= 00Xg2\p T 01XD,

where xp is the indicator function of D. o
Let (us,ps) the solution field in the presence of the thin Ds\D to

—div(eD(us) — psId) =0 in €,
Vau; =0 in €, (1.1)
u; =F on 0f)

where us denotes the velocity perturbed field while the scalar function p; is the perturbed
pressure, F is a given vector valued function. Moreover, (us,ps) € (H?(2))? x H'(Q2) and
Id means the identity.

The corresponding conormal derivative 81‘/’: associated to s is defined by
o = s —pn (1.2)

The problem (1.1) is equivalent to the following problem

—div(ooD(us) — psId) =0  in Q\Dy,

—div(agD(ug) — p(;]d) =0 in Ds\D,

—div(alD(ug) — pg]d) =0 in D,

u(s|_ :u5|+ on 0D, 115|_ :u5|+ on 0Dy, (1.3)

%7:%+ n 0D, %7:%+ on 0Dy,

Vaus =0 in €,

us(z) = F(x) on 0N

The notation us|+ on 9D denote the limits from outside and inside of D, respectively. The
first main result of this paper is the derivation of the leading-order term in the asymptotic
expansion of (us — u) as 6 — 0, where 2 is a bounded region outside the inclusion D,
and away from both 0D and 9092.The methods and results developed in this paper can be
generalized to higher dimension thin interface problems and can be extended to other PDEs
systems, Maxwell.
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Theorem 1.1 Let (ug, ps) be the solution to (1.3). For x € Q, the following pointwise

asymptotic expansion holds:

us(x) = u(z) + dui(x) + o(d),
ps(x) = p(x) + op1(z) + 0(0),

(1.4)

where the remainder o(8) depends only on p; for j=0,1,2, the C*-norm of X, the C*-norm

of h, and dist(2,0D), (u,p) is the unique solution to
—div(cD(u) —pId) =0 inQ,
Vau=0 n €,
u(z) = F(x) on 02

and (uy,p1) is the unique solution of the following transmission problem:

—div(ooD(ur) — p1Id) =0  in Q\Ds,

*d’L.”U(O'gD(ul) — plfd) =0 in Ds\D,

fdiv(olD(ul) — plld) =0 inD,

u1|7—u1|+:0 on 0D,
%‘11 - %‘; = %(h[(Mm - Mo,l)D(vi)]T) on 9D,
Vau =0 in €,
uy(z) = F(z) on 0

with T is the tangential vector to 0D,
M g = 2u1 + 20w — p)I® (T T)

Here I means the identity four-tensor,I the identity in R?
Let (v, q) be the solution of the following problem:

—div(ooD(v) —qld) =0 in Q\D,
—div(oyD(v) —qId) =0 in D,

vi_ =v|; on 0D,
% = % . on 0D,
Vv=0 in €,
v(z) = G(x) on 0N

(1.5)

(1.6)

(1.7)

As a consequence of the theorem 1.1 we obtain the following relationship between velocity

measurements and the deformation h.

Our expansion is valid when ps = pi, we can check that the asymptotic expansion in
(1.4) coincides with the asymptotic expansion of the velocity field resulting from small

perturbations of the shape of an impurity already derived in [15]
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Theorem 1.2 Let (ug,ps), (u,p), and (v,q) be the solutions to (1.1), (1.5), and (1.7),
respectively. Let S be a Lipschitz closed curve enclosing D away from 0D. The following
asymptotic expansion holds:

ov dus Ou
A(ug—u)~8—%d0—é(%—%)~Gda
=0 h(([Mo,l — M1 ]D(u’) T - D(vi)‘r> do + 0(0), (1.8)
oD

where the remainder o(8) depends only on p; for j=0,1,2, the C*-norm of X, the C*-norm
of h, and dist(S,0D). The dot denotes the scalar product in RZ.

The asymptotic expansion in (1.8) can be used to design algorithms to identify certain
properties of thin impurity like location and thickness based on Stokes solutions measure-
ments, it have the big advantage to derive higher order terms in the asymptotic formulae
and allow a generalization to 3-dimensional thin interface problems by using [6, 14].

The asymptotic results of this work represent a powerful tool to solve the inverse problem
of identifying small thin inclusions (see [1], [4]).

Remark :To illustrate, we can consider D the disk centered with radius p, then the formula
(1.8) implies that the Fourier coefficients h, related to h can be determined using a finite
number of measurments provided that the order of magnitude of h,, is much larger then §(
for more details see [9] and [14]).

This paper is organized as follows. In Section 2, we review some basic facts on the layer
potentials of the Stokes system and derive a representation formula for the solution of the
problem (1.1). In Section 3, we derive asymptotic expansions of layer potentials. In Section
4, based on layer potentials techniques, we rigorously derive the asymptotic expansion for
perturbations in the velocity field and find the relationship between stokes solution mea-
surement and the deformation h (Theorem 1.1 and Theorem 1.2).

2 Representation of solutions

Let (T, F) the fundamental solution for stokes system (T, F') in R? (see for instance [22]) is

given by
Ty(a) = =5 (Ber (VAla)) + Tea(VAla]).
™ (2.1)
EKx):**Eﬂéﬁ
with

{ e1(k) = Ko(k) + k1 Kq(k) — k72
ea(k) = —Ko(k) — 26 K1 (k) + 2572

where K,(n € Np) denotes the modified Bessel function of order n and and d;; is the
Kronecker symbol.
The single and double layer potentials of the density function ¢ on (L?(0D))? associated to
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the viscosity constant us are defined by

S.oWIBl@) = [ TLle—s)é)dat). = <R (22)
D,.o(N)[¢)(z) = /8 (Tl = yhn)])” + VTl y|>n<y>)> $(y)do(y)

= - Ks(z — y)p(y)do(y), z€R*\aD. (2.3)

The followings are the well-known properties of both single and double layer potentials due
to [2]. Let D be a Lipschitz bounded domain in R?. Then we have

SspN)[P]+ =Ssp(N)[p]- =Ssp(N)[p] ae x€dD (2.4)
%W‘i(x) - (i %1 + K;D) [¢](z) ae. z€dD, (2.5)
Dol () = (F 31+ Kup ) [9l(a) ae. x €D, (2.6)

where IC; p is defined by

Ko p[o)(x) = p.v. - Ky(z —y)p(y)do(y) ae. x € dD,

and ICY p is the adjoint operator of Ky p, that is,

*plel(@) = po. /@ Kl(z=9)6()da(y) ae. v oD

Here p.v. denotes the Cauchy principal value.
Note that we drop the p.v. in this stage; this is because 9D is C?".
Denote by

X(0D) := (L*(0D))*, X,(0D) := L*(dD) x L3(dD), Y(dD):= WZ(dD) x L*(0D).

where W2(AD) is the first L2-Sobolev of space of order 1 on dD and L3(0D) = {f €
L?(dD) such that [, fdo = 0}
We have the following solvability result for more details see [ [4], [5] ,[10], [16]].

Theorem 2.1 For any given (¢,%,) € WZ(OD) x L*(dD), there exists a unique pair
(¢,7) € L2(OD) x L*(OD) such that

Sl,D[d’H_ - SO,D[1/’H+ =@, on 0D,
1 . 1 . (2.7)
(- 51 + K3 p)d] — (51 + K5 p)l] =%, ondD,

Furthermore, there exists a constant C > 0 depending only on g, u1, and the Lipschitz
character of D such that

18lz200) + Il20m) < C (Il om) + Il 201 )- (28)

Moreover, if 1, € L3(0D), then v € L3(0D).
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The following theorem is important to us to establish our representation ( see [17]) formula.

Theorem 2.2 For each (F1,F2,F3,F4) € Y(0D) x Y(9Dy), there exists a unique solution
O := (¢, P9, P2, ) € X(OD) x X(0Ds) to the system of integral equations

51,D[¢1H_ - S2,D[¢2”+ — 82,D; (U] =F, on 0D,
55155[051]’ B 3528,5[%}‘ 3 33253; (W] _ T, on 0D,
1 - B 2 + N 2 (29)
S2.p[Ps] + S2.0,[¥2]| . — So,p; [¢0H+ =F3 on 0D,
052.0(85] | 052.p, [‘i’z]‘ _ 9S0.ps [3’0]‘ _F,  ondD;.
aVQ 8V2 - 8u0 +

Moreover, if (Fa,Fy) € L3(0D) x L3(0D), then (¢2,<750) € L(0D) x LE(0D).

We now prove a representation theorem for the solution of the transmission problem
(1.3) which will be the main ingredient in deriving the asymptotic expansion in Theorem
1.1.

Theorem 2.3 The solution us to the problem (1.3) is represented by

H(z) + So,p, [(’50}(55)» HS Rz\b&
us(2) = S Sy pldo)(x) + Sa.p, [Wa](z), € Ds\D, (2.10)
817D[¢1](x)a HARS D7
Up, [50](‘%)7 x e RQ\ﬁ57
ps(@) = § Vpldo)(x) + Ip,[¥s)(x), =€ Ds\D, (2.11)
ﬁD[d)l](x)ﬂ reD,
where (¢, Py, Ua, ) € Xo(OD) x Xo(dDy) is the unique solution to the system of integral
equations
Siple]|_ - 52,D[¢2]|+ — 8., [¥a] =0 on 0D,
3518,D[¢1}‘ 3 532;)[052]’ 3 53255 (%) _ 0 on 0D,
e (2.12)
S2.p[Po] + S2.0,[¥2]|_ — So.ps[P0] |Jr =H on 0D,
082.0(¢y] | 082.0,[Wa]| _ 0So,[¢y]| _ OH
8V2 + 81/2 ’7 8V0 ’+ B 61/0 on 8D6

Proof. Let (¢, ¢y, Wy, dy) € Xo(D) x Xo(8Ds) be the unique solution of (2.12), then
it clearly us defined by (2.10) satisfies the transmission conditions (the conditions on the
fourth and fifth lines in (1.3)). This end the proof of the theorem.

Now let @5 be the diffeomorphism from 0D onto 0D, given by & = ®s5(x) = x + dh(z)n(z),
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where x = X (t) € dD. Define the operators 75 and Ws from L?(9D) x L*(dDs) into Y(dD)

by

35LDPﬂ‘ 0800, %]
8V1 — 31/0

T30 %) = (Su.oldl] — Soni [0 s ow| ). 213)

W (¢, ) := (52,D[¢] 0 ®5 — Sa,p[¢]], + Sz, Y] 0 ®5| — Sa.p, (4],

982,p[9] _ 085,p[¢)] 982, p, (Y] ~ 08s,p, (1]
81/2 ° (1)6 81/2 ‘—i— + 81/2 ° ‘1)6‘— 8V2 ’ (214)
and the matrix-valued function Hs on 9D by
0H
Hs(z) = (H(as + dh(z)n(z)), Do (z+ 5h(x)n(x))) . (2.15)
0

The following lemma holds.

Lemma 2.4 Let (¢)1,¢2,1,~b2,;]30) € Xy(0D) x Xp(0Ds) be the unique solution of (2.12);
then (¢, @y) and (py,5) satisfy the following system of integral equations:

Ts(b1, ﬁzo) =Hs — W5(¢2, 122) on 0D. (2-16)

In the next section, we will derive the asymptotic expansions of the layer potentials ,
which are appeared in the system of integral equations (2.16) with (¢, o) € L?(0D) x
L2(0Ds) and (¢, ¥5) € CL1(OD) x C11(DDs). These asymptotic expansions will help us
to derive the asymptotic expansion of the displacement field us.

3 Asymptotic expansions of layer potentials

Let & = z+0h(z)n(x) € 0Ds for x € OD. The following asymptotic expansions of n(Z) and
the length element do(Z) hold (see [14]):

n(z) = n(z) — ' (t)7(x) + O(6?), (3.1)
and
doe(z) = (1 — 0k(2)h(z) + O(6*))do(z). (3.2)

Here, the remainder term O(62) is bounded by C§? for some constant C' which depends only
on C2-norm of D and C'-norm of h.

Let ¢(x) and ¢(x) be a vector function and scalar function, respectively, which belong to
C%([a, b)) for z = X(-) € D. By d/dt, we denote the tangential derivative in the direction
of 7(z) = X'(t). We have

_9¢ d )

d / o /
Z(@() = Vo) X'() = S2(@), S (6(x) = Volx) - X'(t) = 52(x).

dt
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The restriction of stokes system in D to a neighborhood of 9D can be expressed as
follows ( see [15]):
) 1
div(o;D($(z))) =51 (VV$(z)n(z)n(z) + V(Ve)" (z)n(z)n(x))

— k(@) (o, D(@)n() + o (0D@@)7(), weaD.  (33)
We have from the following lemma form [15]

Lemma 3.1 Let 97) € L*(0Ds), we denote by ¢ = 5 o ®s. For s = 0,2, the following
asymptotic expansions hold:

oS,
8.0,(8]0 0|, = S.18] 08, plwns] +3 (122522 LDt png)|
+041(6%) on 0D, (3.4)
353715:@5] o] = 85§i[¢] |, + 5(hdw(gsp(ss,D[¢}) + k(oo D(S..p[¢]))n — %W) .

+05(6%) on OD,

M(@Dﬁp[hdﬂ 0
+

S (o DS ole))

(3.5)
where ||01(62)||W3(3D), 102(0°)||L2(apy < C6* for some constant C' depends only on pu,, the
C?-norm of X, and the C*-norm of h.

Now we are going to derive So p[@](Z) for ¢ € C1(0D), & = x + Sh(z)n(x) € dDs, and
x € dD. Since D is C*", 85 p[¢p] is C>"(R?\D) then we have
V52,0[61(3) — VS2,0[6)@)], — h(a)V2Sa, pldl(@In@)] | < CE b grr o) (36)

Thus

08 p[d]
LTS

(VSs.pl@l(@)], +h(z)V2Sa plgl(@)n(x)], +O(5+7))

X (T(:E) + 0k (t)n(z) + 0(52))

aaT (Sz plol(z) + 5h(az)6826’7ﬁ[(m‘+(a:)) Lo, zedD, (3.7)
Similarly to (3.6), we get
$201681@) = S20lgl(@) +n0) 22| () o), veon, @)
then we get from (3.7) and (3.8) that
820168)3) = S2016) + 310?22 () o), weop, (39
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where |O(0"*")[w2(op) is bounded by C' 7| @llc1nop)-
we have the following taylor expansion ( see [15]) , for & € 9D,

082 pl@] .. 083 pld]

81/2 (!.C) 61/2

(z) + 6k (z)h(x)(00D(S2,0[¢])n(x)
+

()

+

d

+ 6h(@) (div(o0D(S2nl¢])| — 35 (h(ac) (UOD(sQ,DW (m)))r(w)) 06", xeaD,

+

" (3.10)

where [|O(6'77)|| 2o p) is bounded by C6'*7(|@||c1.m (o).

We now expand Ss p,[¢](z) and IS p,[¢]/Ove(z) for x € 9D when é € CL1(dDy).
Let f be a C1" vector function on @D and let v be the solution to —div(ceD(v) — goId) = 0
in D satisfying v = f on dD. Then, we get

3‘9287130@](;5) f(x)do(z) = S2.p; [@)(x) - g%(x)da(m)
aD 2 on )
~ i~ ovi, . ~
= . ¢(Z) - Sa2.p {%} (Z)do(Z). (3.11)

Define ¢ := (;5 o ®5. By using (3.2), we get

9S2.5#] o, _ / v 0Sa.p1 OV -
/8D vy fo = 8D¢ SQ’D{3V2}+M On {8u2”++0(5 )

X (1 — Skh + 0(62))(10

= / (sw[qs] +6D5 [he]|_ — 6827D[nh¢]) : gldo + o8
oD Vo

:/ (682,D[¢]‘ +6@Dﬁ2’D[hd)}‘ B 6552,D[“h¢]‘ ) fdo
8D 81/2 — 81/2 — 61/2 —

+ 05,

Therefore, the following asymptotic expansion holds:

083,p,[@] _ 9820[9]| |, ;0Phplhd)) 08, plrhg]

8u2 61/2 — 61/2 — 61/2 —

+O(5"*) on 0D, (3.12)

where the remainder term O(6'*") is in L?(9D).
Let ¢ = ¢ o @5 for ¢ € C11(0D;). Let f be a CH" vector function on D. Similarly to
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(3.11), we have

082.0,(9] ___p/ _ of 98,,p [ OF 140
/6D S - fdo = ach 82,0[87}4-(% = [8TH++0(5 )

X (1 — Skh + 0(52))da

- - / (S20l¢] + D% plhg]|_ — 682, plkhe]) - g—fda +0(5"H)
oD T

-/ <682¢ﬂ¢]+_581%Jﬂh¢]‘ _ 50Salkhg)
oD -

_ . 1+n
oy S o ) fdo +O(5"+").

Thus

0S2.0,(9] _ 082,0(¢] +56¢%Jﬂh¢]‘ _0Saplshe]

+ 0™ on 9D, (3.13)

or or or or
Similarely, we have
S5,0,[®] = S2,p|@] + 6D p[he]|_ — 685 plrhe] + O(5%)  on D, (3.14)
Then it follows from (3.13) and (3.14) that
82,0 () = S2,p[p] + 6D} p[hep]|_ — 682, p[khe] + O(6")  on 9D, (3.15)

where the remainder term O(§'*7) is in WZ(9D).
The following proposition is a direct consequence of (2.13), (2.14), (3.4), (3.5), (3.9),
(3.10), (3.12), and (3.15).

Proposition 3.2 The following expansions hold on 0D:
Ts(b, ) = To(¢,%) — 5Ti(9) + O(6%)  for (é,4) € L*(D) x L*(0Ds),
Wi, %) = OWi($,9) +0(8)  for (¢, %) € CH"(ID) x C"(Dy),

where 1 = 1 o B, the remainder terms O(52) and 0(8) are in W2(dD) x L2(0D), and the
operators Ty : X(OD) — Y(0D), Ti : L*(0D) — Y(0D), and W, : C1"(dD) x C+"(OD) —

10
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Y(0D) are defined by

T ) = (S1.0l6] - o plu), 25208 P50l ) (3,10
T(¥) = ( — So.p[khip] + hasoéim‘ + D p[hp] ,hdw(aOD((so,D[zp]))‘
n + + +
0Sopls k)| | 0D plhe]) 9 -
+ hi(ooD((So plg])m| — “SHEEIE g SO EE aT(h(covso,DwJ)T)L),
(3.17)

Wi, %) = <hasgﬁ[¢]‘+ + hasgiﬁw’] | hdw(azD(sz,D[d)]))]+ + h/<;(a21)(:>‘27D[¢>]))m)+

+ hdiv(02D(S2,p[$]))| + (02 D(S2,pl])n|

_ % (n(02DS2,0[0))7) L% (h(o2D(S2.0l)7) ]) (3.18)

The following proposition holds ( see [17])

Proposition 3.3 Let (¢1,<~b0) € L?(0D) x L?*(0Ds) be the solution of (2.12). Then the
following asymptotic expansion holds:

To(¢1, o) — 6[Ti(¢y) — G(1)] = Hs +0(d)  on ID, (3.19)

where ¢y = ¢y 0 Bs, the remainder term o(8) is in W2(0D) x L2(dD), Hs is defined by
(2.15), Ty and Ty are defined in (3.16) and (3.17), respectively, and the operator G is defined
from L%(0D) into Y(0D) by

G(60) 1= (12T iv(or D(S1 ploD) + (e DS, bl
- 2 (heta DS ol )T ). (3:20)

with
My 1 =2+ (p2 —p)I@ (T®@T)

4 Asymptotic expansion of the displacement field

The following lemma is important for us.

Lemma 4.1 For any given (@, W) € Y(0D), there exists a unique pair (¢,v) € X(0D)
such that

To(d, ¥) — 6[Ti(¢) — G(¥)] = (¢, ). (4.1)

Furthermore, there exists a constant C' depending only on g, p1, and the Lipschitz character

of D such that

lllz2op) + I#lz20p) < C(Illwe o) + 1€ l220m))- (42)

11
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Proof. The operator T : X(0D) — Y(9D) defined by T (¢, 1) = Ti(¢) — G(v)) is bounded
on X(0D). By Theorem 2.1, Ty : X(0D) — Y(9D) is invertible. For ¢ small enough,
it follows from [13], that the operator 7o — §7T is invertible. This completes the proof of
solvability of (4.1). The estimate (4.2) is a consequence of solvability and the closed graph
theorem.

Theorem 4.2 Let (us,ps) be the solution to (1.3). Let Q be a bounded region away from
0D. For x €, the following pointwise asymptotic expansion holds:

us(z) = u(z) + duy(x) + o(9), (4.3)
ps(x) = p(x) + op1(x) + 0(9), (4.4)

where the remainder o(6) depends only on p; for j=0,1,2, the C%-norm of X, the C'-norm
of h, and dist(Q2,0D), (us,ps) is the unique solution to

—div(eD(u) —pId) =0 in €,
Vau=0 in Q, (4.5)
u="F(z) on 99

and (uy,ps) is the unique solution of the following transmission problem:

7d’L"U(O'0D(U1) - plfd) =0 m Q\bg,

—div(oaD(uy) — p1Id) =0  in Ds\D,

—div(alD(ul) — plld) =0 D,

w| —wl, =0 on 0D, (4.6)
ouy ouy| 0 i

Tyl’,_aiyo’+_ E(h[(MQ,I_MO,I)D(U )]7') on aD,

V.u1 =0 m Q,

u; = F(x) on 0f)

with T is the tangential vector to 0D,
M o= 2l +2(p — p)I® (T @ 7T)

By taking ps = p1, we reduce our problem to that proposed in [15]. So it is obvious to
obtain the asymptotic expansion of the displacement field resulting from small perturbations
of the shape of impurety.

4.1 Proof of the theorem 4.2

We have the following Taylor expansion for & = x + dh(z)n(z) € Ds:

H(7) = H(z) + (5h(m)aa—Ij(x) +O(8?), xedD. (4.7)
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using the Taylor expansion, (3.1) and (3.3), we have

g—i ) = g—i(sc) + 6h(z)div(ooD(H)) + hr(ooD(H)))ng(z) — 56% (h((c()@H)T) (2)

+0(6%), x€dD. (4.8)

It follows from (2.15), (4.7), and (4.8) that

Hs = (H, oH +4 ha—H h(z)div(ooD(H)) + hk(coD(H)))ng(z) — 2(il[(C()@H]T)
or

8V0 on ’
+ 0(6%)
= Ho + 6Hy +O(6*)  on dD. (4.9)

We now introduce (¢?, ¢3) and (41, ¢g) by the following recursive relations
To(¢1, ¢0) = Ho, (4.10)
To(¢1. b5) = 1+ Ti(p) — G(89), (4.11)

where 7o, 71, and G are defined in (3.16), (3.17), and (3.20), respectively. One can see the
existence and uniqueness of (¢7, ¢y ) for n = 0,1, by using [10].
Let (¢, ¢y) be the solution of (2.12). It follows from (4.10) and (4.11) that

To(d1 — ¢ — 51, g 0 5 — ¢ — 3p3) — 6 [Ti (b 0 Bs — Y — dpp) — Gy — @3 — 61)]
=Hs —Ho— oHi+0(d) on dD, (4.12)
where [|0(8)|lw2@p)xz2(ap) < COM7 for some > 0 and (¢, $)) and (¢}, ¢yg) are the

solutions to (4.10) and (4.11), respectively.
The following lemma holds immediately from (4.9), (4.12) and the estimate in (4.2).

Lemma 4.3 Let (¢1,g~i>0) be the solution of (2.12). For & small enough, there exists C
depending only on s for s=0,1,2, the C2-norm of X, and the C'-norm of h such that

eop S csttm (4.13)
(D)

|#1— 8 - o61]

)‘1‘“&00@6—@3_5@1}’

L2(8D

for some > 0, where (¢, d5) and (P71, ¢y) are the solutions to (4.10) and (4.11), respec-
tively.

Recall that the domain D is separated apart from €, then

sup

OTo(w—y)|<C, i€,
e, yeOD

for some constant C' depending on dist(D, §2). After the change of variables § = ®4(y), we
get from (3.2), (4.13), and the Taylor expansion of I'y(x — §) in y € 9D for each fixed z € Q
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that

S0, [o)(x) = / To(z — §)do(§)do(j)

0Ds

= [ (Tole =)+ SHm) TR~ y)n(s)) (¢610) + 5030

x (1= 0(y)h(v) ) do(y) + o()

=S0,p[#8)(x) +5(S0.0[68](x) — So,plshd)(x) + Db p[hgE](x) ) +o(8),

Therefore, we obtain from (2.10) that for z € ,

ws(2) = () + So,p[#4)(x) + 5 (So,0[68](x) — So,plhef](2) + i, phf](x) ) + 0(6).

(4.14)
According to [2] (see also [23]), the solution (u,p) to (4.5) is represented as
H S (), O\D,
u(z) = { @)+ Soplgul(z), = €M (4.15)
S1,p[¢1](@), z €D,
where (¢, ¢9) is the unique solution of (4.10).
Ip[po)(x), Q\D,
p(z) = { D[QSEM) rem (4.16)
19D[¢1]($>7 reD,

The following theorem follows immediately from (4.14) and (4.15).

Theorem 4.4 For § small enough. The following pointwise expansion holds for x € Q)
us(x) = (@) +6(So,0[6t] (v) - So.plhef)(@) + Df plhef)(@)) + (), (4.17)

where ¢y and ¢ are defined by (4.10) and (4.11), respectively. The remainder o(8) depends
only on us for s=0,1,2, the C2-norm of X, the Ct-norm of h, and dist(S), D).

We now prove a representation theorem for the solution of the transmission problem
(4.6) which will help us to derive the theorem 4.2.

Theorem 4.5 The solution uy of (4.6) is represented by

(@) = { So.0ld0l(z) — So,plrhe)(x) + Df plheg)(x), =€ Q\D, (4.18)

Siplpn)(), z€D,

where @Y and (¢, ) are defined by (4.10) and (4.11), respectively.
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Proof. One can easily see that
—div(ooD(u1) — p1Id) =0 in Q\D, —div(o2D(u1) — p1Id) =0 in D.
It follows from (4.11), (4.15) (4.18) that

ui —uf =(810lel] — So.plei]) + So.olrhel] - Df plhef]],

=M1+ Qu(@}) ~ Z(8))] | + So.nlhdl)] - D ol

:h(%l N 880{,91;[(1)8] ‘+ _ 851{,91;@?} )

:h(Vuen — Vuin)
=0 on dD.

Using (4.11), we get

Ou | _Ow _(881,D[¢ﬂ - aso,D[asé]‘ )+ 080,p|whes] - 673%,D[h¢8]’
81/1 — (91/0 + o 8V1 — 81/0 + 81/0 + 81/0 +
080.plrhe) oD%, [he)
=[#1+ Qugh) - 2(a)] + Oﬁgg; | Uéfyi o I
:h(dw(aOD(H))’+ + h/s(aoD(H))nL - % (h(UOD(H))T)

~ 2 (h(eoD(S0.0[68))7) | heiv(ouD(S0.0[68)]

+ hi(a0D(So,pl¢f])n| |~ hdiv(o1D(S1,p[6])|

(o DS pl#n] + A (M1 VS, plg) 7|

(h(Mz,lﬁuiﬁ') - i(h(O'OD(U‘e))T)

9

“or or
0 i

=5 (h([Ma,1 — Mo, ]D(u'))7).

This completes the proof of the theorem 4.5.
The main theorem 4.2 immediately follows from the integral representation of u; and
the theorem 4.4.
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Let (v, q) be the solution of the following problem:

—div(ooD(v) —¢qId) =0 in Q\D,
—div(o1D(v) —¢Id) =0 in D,
vi_ =v|4+ on 0D,

4.19
aa—:l = %L on 0D, (4.19)
V=0 in Q,
v(z) = G(z) on 0N

As a consequence of the theorem 4.2, we obtain the following relationship between velocity
measurements and the deformation h.

Theorem 4.6 Let (us,ps), (u,p), and (v,q) be the solutions to (1.3), (4.5), and (4.19),
respectively. Let S be a Lipschitz closed curve enclosing D away from 0D. The following
asymptotic expansion holds:

OF dus Ou
[ o= Foedo = [ (G = T8 Fao
=0 h(([Mo,l — M1 ]D(u’) T - D(vi)‘r> do + 0(9), (4.20)
oD

where the remainder o(8) depends only on ps for s=0,1,2, the C*>-norm of X, the C*-norm
of h, and dist(S,0D). The dot denotes the scalar product in R?.

4.2 Proof of the theorem 4.6

The following corollary can be proved as in exactly the same manner as Theorem 4.2.

Corollary 4.7 Let (us,ps) and (u,p) be the solutions to (1.3) and (4.5), respectively and
u;y is the unique solution of (4.6).

Let Q be a bounded region outside the inclusion D away from 0D. For x € Q, the following
pointwise asymptotic expansion holds:

Oug _ ou %

o x) = a—yo(m) +d—(x) + 0(9), (4.21)

61/()

where the remainder o(d) depends only on u; for j=0,1,2, the C%-norm of X, the C'-norm
of h, and dist(?,0D).

Let S be a Lipschitz closed curve enclosing D away from dD. Let v be the solution to
(4.19). As is done in [18], and by integration by parts one may combine both relations (4.3)
and (4.21) to get that,

OF 3U5 ov 8111
/S(u(;—u)-a—yodcr (8uo 8uo Fdo—é/ ug - e o V)d0+0(5)

(& e 8“?
/ (81/0 ‘uf —v 8u0>d0+0(6)'
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Taking into account relation (4.6), we immediately get

GG i G [ G e

9 A i
+ /8D = (h([Mz,1 — Mo4]Vu )r) vido. (4.22)
It follows that
vt . oul
-uj — v do = 0. 4.23
/aD (81/1 e 3V1) 7 ( )
We have
9 S i i i
/aD 87(h<[M2’1 — Mjp,1]Vu )‘r) -vido = — /aD h([Mg’l — M 1]D(u ))‘r -Vv'rdo.
(4.24)
One can easily check that
([M2,1 — MOJ}D(UZ-))T . VViT = ([MQJ — Moﬁl]D(ui))T . D(Vi)T. (425)

We finally obtain from (4.22)-(4.25) the relationship between stokes solution measurements
and the shape deformation h (4.20), as desired.
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