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Abstract

We consider the Stokes system for a viscous medium consisting of a thin inclusion
having no uniform thickness merged in consistent background medium. Based on layer
potential methods we rigorously derive an asymptotic expansion for two-dimensional
velocity field associated with thin inclusion. We extend these techniques to determine a
relationship between Stokes solutions measurements and the shape of the thin impurity.
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1 Introduction and statement of main results

Let Ω ⊂ R2 be a bounded domain with C2,η boundary for some η > 0. Let D be an open
subset of Ω such that

dist(∂Ω, D) ≥ d > 0,

representing an inclusion made of a different Newtonian fluid material.We assume that ∂D
is of classe C2,η. In this case, ∂D can be parametrized by a vector-valued function t→ X(t),
that is, ∂D := {x = X(t), t ∈ [a, b] with a < b}, where X is a C2,η function satisfying
|X ′

(t)| = 1 for all t ∈ [a, b], and X(a) = X(b).
Let Dδ be an δ−perturbation of D, i.e., there is h ∈ C1(∂D) such that ∂Dδ is given by

∂Dδ :=
{
x̃ : x̃ = x+ δh(x)n(x), x ∈ ∂D

}
,

where n(x) is the outward normal to D. We assume that h(x) ≥ C > 0 for all x ∈ ∂D.
Suppose that the thin layer Dδ\D lies inside Ω. We denote by σ0, σ1 and σ2 the stress
tensor fields in of Ω\Dδ, D, and Dδ\D, respectively. We assume that Ω\Dδ, D, and Dδ\D
and D are occupied by isotropic and homogeneous Newtonian fluids, µ0, µ1 and µ2 are the
viscosity constants of the flow in Ω\Dδ, D, and Dδ\D and D respectively,
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then the tensors σ0, σ1 and σ2 can be given by

(σs)ijlk = µs(δkiδlj + δkjδlj), for i, j, k, l = 1, 2 and for s = 0, 1, 2.

where µ0 , µ1 and µ2 are the viscosity constants of the flow in Ω\Dδ, D, and Dδ\D
respectively. Given two (2 × 2) matrices A and B we denote by A:B the contraction, i.e.,
A:B =

∑
ij aijbij The strain rate tensor D is given by :

D(u) = (
1

2
∇u+ (∇u)T )

We define

σδ := σ0χR2\Dδ + σ2χDδ\D + σ1χD, σ := σ0χR2\D + σ1χD,

where χD is the indicator function of D.
Let (uδ, pδ) the solution field in the presence of the thin Dδ\D to

−div
(
σD(uδ)− pδId

)
= 0 in Ω,

∇.uδ = 0 in Ω,

uδ = F on ∂Ω

(1.1)

where uδ denotes the velocity perturbed field while the scalar function pδ is the perturbed
pressure, F is a given vector valued function. Moreover, (uδ, pδ) ∈ (H2(Ω))2 ×H1(Ω) and
Id means the identity.

The corresponding conormal derivative
∂w

∂νs
associated to µs is defined by

∂w

∂νs
:= µs

∂w

∂n
− pn (1.2)

The problem (1.1) is equivalent to the following problem

−div
(
σ0D(uδ)− pδId

)
= 0 in Ω\Dδ,

−div
(
σ2D(uδ)− pδId

)
= 0 in Dδ\D,

−div
(
σ1D(uδ)− pδId

)
= 0 in D,

uδ
∣∣
− = uδ

∣∣
+

on ∂D, uδ
∣∣
− = uδ

∣∣
+

on ∂Dδ,

∂uδ
∂ν1

∣∣∣
−

=
∂uδ
∂ν2

∣∣∣
+

on ∂D,
∂uδ
∂ν2

∣∣∣
−

=
∂uδ
∂ν0

∣∣∣
+

on ∂Dδ,

∇.uδ = 0 in Ω,

uδ(x) = F(x) on ∂Ω

(1.3)

The notation uδ|± on ∂D denote the limits from outside and inside of D, respectively. The
first main result of this paper is the derivation of the leading-order term in the asymptotic
expansion of (uδ − u) as δ → 0, where Ω is a bounded region outside the inclusion D,
and away from both ∂D and ∂Ω.The methods and results developed in this paper can be
generalized to higher dimension thin interface problems and can be extended to other PDEs
systems, Maxwell.
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Theorem 1.1 Let (uδ, pδ) be the solution to (1.3). For x ∈ Ω, the following pointwise
asymptotic expansion holds:

uδ(x) = u(x) + δu1(x) + o(δ), (1.4)

pδ(x) = p(x) + δp1(x) + o(δ),

where the remainder o(δ) depends only on µj for j=0,1,2, the C2-norm of X, the C1-norm
of h, and dist(Ω, ∂D), (u, p) is the unique solution to

−div
(
σD(u)− pId

)
= 0 in Ω,

∇.u = 0 in Ω,

u(x) = F(x) on ∂Ω

(1.5)

and (u1, p1) is the unique solution of the following transmission problem:

−div
(
σ0D(u1)− p1Id

)
= 0 in Ω\Dδ,

−div
(
σ2D(u1)− p1Id

)
= 0 in Dδ\D,

−div
(
σ1D(u1)− p1Id

)
= 0 in D,

u1

∣∣
− − u1

∣∣
+

= 0 on ∂D,

∂u1

∂ν1

∣∣∣
−
− ∂u1

∂ν0

∣∣∣
+

=
∂

∂τ

(
h
[
(M2,1 −M0,1)D(vi)

]
τ
)

on ∂D,

∇.u1 = 0 in Ω,

u1(x) = F(x) on ∂Ω

(1.6)

with τ is the tangential vector to ∂D,

Ml,k := 2µkI + 2(µl − µk)I⊗ (τ ⊗ τ )

Here I means the identity four-tensor,I the identity in R2

Let (v, q) be the solution of the following problem:

−div
(
σ0D(v)− qId

)
= 0 in Ω\D,

−div
(
σ1D(v)− qId

)
= 0 in D,

v|− = v|+ on ∂D,

∂v

∂ν1

∣∣∣
−

=
∂v

∂ν0

∣∣∣
+

on ∂D,

∇.v = 0 in Ω,

v(x) = G(x) on ∂Ω

(1.7)

As a consequence of the theorem 1.1 we obtain the following relationship between velocity
measurements and the deformation h.
Our expansion is valid when µ2 = µ1, we can check that the asymptotic expansion in
(1.4) coincides with the asymptotic expansion of the velocity field resulting from small
perturbations of the shape of an impurity already derived in [15]
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Theorem 1.2 Let (uδ, pδ), (u, p), and (v, q) be the solutions to (1.1), (1.5), and (1.7),
respectively. Let S be a Lipschitz closed curve enclosing D away from ∂D. The following
asymptotic expansion holds:∫

S

(
uδ − u

)
· ∂v

∂ν0
dσ −

∫
S

(∂uδ
∂ν0
− ∂u

∂ν0

)
·Gdσ

= δ

∫
∂D

h

((
[M0,1 −M2,1]D(ui

)
τ ·D(vi)τ

)
dσ + o(δ), (1.8)

where the remainder o(δ) depends only on µj for j=0,1,2, the C2-norm of X, the C1-norm
of h, and dist(S, ∂D). The dot denotes the scalar product in R2.

The asymptotic expansion in (1.8) can be used to design algorithms to identify certain
properties of thin impurity like location and thickness based on Stokes solutions measure-
ments, it have the big advantage to derive higher order terms in the asymptotic formulae
and allow a generalization to 3-dimensional thin interface problems by using [6, 14].

The asymptotic results of this work represent a powerful tool to solve the inverse problem
of identifying small thin inclusions (see [1], [4]).

Remark :To illustrate, we can consider D the disk centered with radius ρ, then the formula
(1.8) implies that the Fourier coefficients hp related to h can be determined using a finite
number of measurments provided that the order of magnitude of hp is much larger then δ(
for more details see [9] and [14]).
This paper is organized as follows. In Section 2, we review some basic facts on the layer
potentials of the Stokes system and derive a representation formula for the solution of the
problem (1.1). In Section 3, we derive asymptotic expansions of layer potentials. In Section
4, based on layer potentials techniques, we rigorously derive the asymptotic expansion for
perturbations in the velocity field and find the relationship between stokes solution mea-
surement and the deformation h (Theorem 1.1 and Theorem 1.2).

2 Representation of solutions

Let (Γ, F ) the fundamental solution for stokes system (Γ, F ) in R2 (see for instance [22]) is
given by 

Γij(x) = − 1

2π

(
δije1(

√
λ|x|) +

xixj
|x|2

e2(
√
λ|x|)

)
,

Fj(x) = − xi
2π|x|2

(2.1)

with {
e1(κ) = K0(κ) + κ−1K1(κ)− κ−2

e2(κ) = −K0(κ)− 2κ−1K1(κ) + 2κ−2

where Kn(n ∈ N0) denotes the modified Bessel function of order n and and δij is the
Kronecker symbol.
The single and double layer potentials of the density function φ on (L2(∂D))2 associated to
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the viscosity constant µs are defined by

Ss,D(λ)[φ](x) =

∫
∂D

Γs(λ, |x− y|)φ(y)dσ(y), x ∈ R2, (2.2)

Ds,D(λ)[φ](x) =

∫
∂D

([
∇yΓs(λ, |x− y|)n(y)

]T
+∇yΓTs (λ, |x− y|)n(y)

))
φ(y)dσ(y)

:=

∫
∂D

Ks(x− y)φ(y)dσ(y), x ∈ R2 \ ∂D. (2.3)

The followings are the well-known properties of both single and double layer potentials due
to [2]. Let D be a Lipschitz bounded domain in R2. Then we have

Ss,D(λ)[φ]+ = Ss,D(λ)[φ]− = Ss,D(λ)[φ] a.e. x ∈ ∂D (2.4)

∂Ss,D(λ)[φ]

∂νs

∣∣∣
±

(x) =
(
± 1

2
I + K∗s,D

)
[φ](x) a.e. x ∈ ∂D, (2.5)

Ds,D(λ)[φ]
∣∣
±(x) =

(
∓ 1

2
I + Ks,D

)
[φ](x) a.e. x ∈ ∂D, (2.6)

where Ks,D is defined by

Ks,D[φ](x) = p.v.

∫
∂D

Ks(x− y)φ(y)dσ(y) a.e. x ∈ ∂D,

and K∗s,D is the adjoint operator of Ks,D, that is,

K∗s,D[φ](x) = p.v.

∫
∂D

KTs (x− y)φ(y)dσ(y) a.e. x ∈ ∂D.

Here p.v. denotes the Cauchy principal value.
Note that we drop the p.v. in this stage; this is because ∂D is C2,η.
Denote by

X (∂D) := (L2(∂D))2, X0(∂D) := L2(∂D)× L2
0(∂D), Y(∂D) := W 2

1 (∂D)× L2(∂D).

where W 2
1 (∂D) is the first L2-Sobolev of space of order 1 on ∂D and L2

0(∂D) = {f ∈
L2(∂D) such that

∫
∂D

fdσ = 0}
We have the following solvability result for more details see [ [4], [5] ,[10], [16]].

Theorem 2.1 For any given (φ1,ψ1) ∈ W 2
1 (∂D) × L2(∂D), there exists a unique pair

(φ,ψ) ∈ L2(∂D)× L2(∂D) such that
S1,D[φ]

∣∣
− − S0,D[ψ]

∣∣
+

= φ1 on ∂D,(
− 1

2
I + K∗1,D

)
[φ]−

(1

2
I + K∗0,D

)
[ψ] = ψ1 on ∂D,

(2.7)

Furthermore, there exists a constant C > 0 depending only on µ0, µ1, and the Lipschitz
character of D such that

‖φ‖L2(∂D) + ‖ψ‖L2(∂D) ≤ C
(
‖φ1‖W 2

1 (∂D) + ‖ψ1‖L2(∂D)

)
. (2.8)

Moreover, if ψ1 ∈ L2
0(∂D), then ψ ∈ L2

0(∂D).
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The following theorem is important to us to establish our representation ( see [17]) formula.

Theorem 2.2 For each (F1,F2,F3,F4) ∈ Y(∂D)×Y(∂Dδ), there exists a unique solution

Θ := (φ1,φ2, Ψ̃2, φ̃0) ∈ X (∂D)×X (∂Dδ) to the system of integral equations

S1,D[φ1]
∣∣
− − S2,D[φ2]

∣∣
+
− S2,Dδ [Ψ̃2] = F1 on ∂D,

∂S1,D[φ1]

∂ν1

∣∣∣
−
− ∂S2,D[φ2]

∂ν2

∣∣∣
+
− ∂S2,Dδ [Ψ̃2]

∂ν2
= F2 on ∂D,

S2,D[φ2] + S2,Dδ [Ψ̃2]
∣∣
− − S0,Dδ [φ̃0]

∣∣
+

= F3 on ∂Dδ,

∂S2,D[φ2]

∂ν2
+
∂S2,Dδ [Ψ̃2]

∂ν2

∣∣∣
−
− ∂S0,Dδ [φ̃0]

∂ν0

∣∣∣
+

= F4 on ∂Dδ.

(2.9)

Moreover, if (F2,F4) ∈ L2
0(∂D)× L2

0(∂D), then (φ2, φ̃0) ∈ L2
0(∂D)× L2

0(∂D).

We now prove a representation theorem for the solution of the transmission problem
(1.3) which will be the main ingredient in deriving the asymptotic expansion in Theorem
1.1.

Theorem 2.3 The solution uδ to the problem (1.3) is represented by

uδ(x) =


H(x) + S0,Dδ [φ̃0](x), x ∈ R2\Dδ,

S2,D[φ2](x) + S2,Dδ [Ψ̃2](x), x ∈ Dδ\D,

S1,D[φ1](x), x ∈ D,

(2.10)

pδ(x) =


ϑDδ [φ̃0](x), x ∈ R2\Dδ,

ϑD[φ2](x) + ϑDδ [Ψ̃2](x), x ∈ Dδ\D,

ϑD[φ1](x), x ∈ D,

(2.11)

where (φ1,φ2, Ψ̃2, φ̃0) ∈ X0(∂D)×X0(∂Dδ) is the unique solution to the system of integral
equations 

S1,D[φ1]
∣∣
− − S2,D[φ2]

∣∣
+
− S2,Dδ [Ψ̃2] = 0 on ∂D,

∂S1,D[φ1]

∂ν1

∣∣∣
−
− ∂S2,D[φ2]

∂ν2

∣∣∣
+
− ∂S2,Dδ [Ψ̃2]

∂ν2
= 0 on ∂D,

S2,D[φ2] + S2,Dδ [Ψ̃2]
∣∣
− − S0,Dδ [φ̃0]

∣∣
+

= H on ∂Dδ,

∂S2,D[φ2]

∂ν2
+
∂S2,Dδ [Ψ̃2]

∂ν2

∣∣∣
−
− ∂S0,Dδ [φ̃0]

∂ν0

∣∣∣
+

=
∂H

∂ν0
on ∂Dδ.

(2.12)

Proof. Let (φ1,φ2, Ψ̃2, φ̃0) ∈ X0(∂D) × X0(∂Dδ) be the unique solution of (2.12), then
it clearly uδ defined by (2.10) satisfies the transmission conditions (the conditions on the
fourth and fifth lines in (1.3)). This end the proof of the theorem.
Now let Φδ be the diffeomorphism from ∂D onto ∂Dε given by x̃ = Φδ(x) = x+ δh(x)n(x),
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where x = X(t) ∈ ∂D. Define the operators Tδ andWδ from L2(∂D)×L2(∂Dδ) into Y(∂D)
by

Tδ(φ, ψ̃) :=

(
S1,D[φ]

∣∣
− − S0,Dδ [ψ̃] ◦ Φδ

∣∣
+
,
∂S1,D[φ]

∂ν1

∣∣∣
−
− ∂S0,Dδ [ψ̃]

∂ν0
◦ Φδ

∣∣∣
+

)
, (2.13)

Wδ(φ, ψ̃) :=

(
S2,D[φ] ◦ Φδ − S2,D[φ]

∣∣
+

+ S2,Dδ [ψ̃] ◦ Φδ
∣∣
− − S2,Dδ [ψ̃],

∂S2,D[φ]

∂ν2
◦ Φδ −

∂S2,D[φ]

∂ν2

∣∣∣
+

+
∂S2,Dδ [ψ̃]

∂ν2
◦ Φδ

∣∣∣
−
− ∂S2,Dδ [ψ̃]

∂ν2

)
, (2.14)

and the matrix-valued function Hδ on ∂D by

Hδ(x) :=

(
H
(
x+ δh(x)n(x)

)
,
∂H

∂ν0

(
x+ δh(x)n(x)

))
. (2.15)

The following lemma holds.

Lemma 2.4 Let (φ1,φ2, ψ̃2, φ̃0) ∈ X0(∂D) × X0(∂Dδ) be the unique solution of (2.12);

then (φ1, φ̃0) and (φ2, ψ̃2) satisfy the following system of integral equations:

Tδ(φ1, φ̃0) = Hδ −Wδ(φ2, ψ̃2) on ∂D. (2.16)

In the next section, we will derive the asymptotic expansions of the layer potentials ,
which are appeared in the system of integral equations (2.16) with (φ1, φ̃0) ∈ L2(∂D) ×
L2(∂Dδ) and (φ2, Ψ̃2) ∈ C1,η(∂D) × C1,η(∂Dδ). These asymptotic expansions will help us
to derive the asymptotic expansion of the displacement field uδ.

3 Asymptotic expansions of layer potentials

Let x̃ = x+ δh(x)n(x) ∈ ∂Dδ for x ∈ ∂D. The following asymptotic expansions of n(x̃) and
the length element dσε(x̃) hold (see [14]):

n(x̃) = n(x)− δh′(t)τ (x) +O(δ2), (3.1)

and

dσε(x̃) =
(
1− δκ(x)h(x) +O(δ2)

)
dσ(x). (3.2)

Here, the remainder term O(δ2) is bounded by Cδ2 for some constant C which depends only
on C2-norm of ∂D and C1-norm of h.

Let φ(x) and φ(x) be a vector function and scalar function, respectively, which belong to
C2([a, b]) for x = X(·) ∈ ∂D. By d/dt, we denote the tangential derivative in the direction
of τ (x) = X ′(t). We have

d

dt

(
φ(x)

)
= ∇φ(x)X ′(t) =

∂φ

∂τ
(x),

d

dt

(
φ(x)

)
= ∇φ(x) ·X ′(t) =

∂φ

∂τ
(x).

7

2 Oct 2024 17:24:05 PDT
240417-Lagha Version 2 - Submitted to J. Integr. Eq. Appl.



The restriction of stokes system in D to a neighborhood of ∂D can be expressed as
follows ( see [15]):

div(σjD(φ(x))) =
1

2
µj
(
∇∇φ(x)n(x)n(x) +∇(∇φ)T (x)n(x)n(x)

)
− κ(x)(σjD(φ)))n(x) +

d

dt

((
σjD(φ(x))

)
τ (x)

)
, x ∈ ∂D. (3.3)

We have from the following lemma form [15]

Lemma 3.1 Let φ̃ ∈ L2(∂Dδ), we denote by φ := φ̃ ◦ Φδ. For s = 0, 2, the following
asymptotic expansions hold:

Ss,Dδ [φ̃] ◦ Φδ
∣∣
± = Ss,D[φ]− δSs,D[κhφ] + δ

(
h
∂Ss,D[φ]

∂n
+ D]

s,D[hφ]
)∣∣∣
±

+O1(δ2) on ∂D, (3.4)

∂Ss,Dδ [φ̃]

∂νs
◦ Φδ

∣∣∣
±

=
∂Ss,D[φ]

∂νs

∣∣∣
±

+ δ

(
hdiv(σsD(Ss,D[φ]) + κh(σsD(Ss,D[φ]))n− ∂Ss,D[κhφ]

∂νs

)∣∣∣∣
±

+ δ

(
∂D]

s,D[hφ]

∂νs
− ∂

∂τ

(
h
(
σjD(Ss,D[φ])

)
τ
))∣∣∣∣

±
+O2(δ2) on ∂D,

(3.5)

where ‖O1(δ2)‖W 2
1 (∂D), ‖O2(δ2)‖L2(∂D) ≤ Cδ2 for some constant C depends only on µs, the

C2-norm of X, and the C1-norm of h.

Now we are going to derive S2,D[φ](x̃) for φ ∈ C1,η(∂D), x̃ = x+ δh(x)n(x) ∈ ∂Dδ, and
x ∈ ∂D. Since ∂D is C2,η, S2,D[φ] is C2,η(R2\D) then we have∣∣∣∇S2,D[φ](x̃)−∇S2,D[φ](x)

∣∣
+
− δh(x)∇2S2,D[φ](x)n(x)

∣∣
+

∣∣∣ ≤ Cδ1+η
∥∥φ∥∥C1,η(∂D)

. (3.6)

Thus

∂S2,D[φ]

∂τ
(x̃) =

(
∇S2,D[φ](x)

∣∣
+

+ δh(x)∇2S2,D[φ](x)n(x)
∣∣
+

+O(δ1+η)
)

×
(
τ (x) + δh′(t)n(x) +O(δ2)

)
=

∂

∂τ

(
S2,D[φ](x) + δh(x)

∂S2,D[φ]

∂n

∣∣∣
+

(x)
)

+O(δ1+η), x ∈ ∂D, (3.7)

Similarly to (3.6), we get

S2,D[φ](x̃) = S2,D[φ](x) + δh(x)
∂S2,D[φ]

∂n

∣∣∣
+

(x) +O(δ2), x ∈ ∂D, (3.8)

then we get from (3.7) and (3.8) that

S2,D[φ](x̃) = S2,D[φ](x) + δh(x)
∂S2,D[φ]

∂n

∣∣∣
+

(x) +O(δ1+η), x ∈ ∂D, (3.9)
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where ‖O(δ1+η)‖W 2
1 (∂D) is bounded by Cδ1+η‖φ‖C1,η(∂D).

we have the following taylor expansion ( see [15]) , for x̃ ∈ ∂D,

∂S2,D[φ]

∂ν2
(x̃) =

∂S2,D[φ]

∂ν2

∣∣∣∣
+

(x) + δκ(x)h(x)(σ0D(S2,D[φ])n(x)

∣∣∣∣
+

(x)

+ δh(x)(div(σ0D(S2,D[φ]))

∣∣∣∣
+

− δ d
dt

(
h(x)

(
σ0D(S2,D[φ](x))

)
τ(x)

)∣∣∣∣
+

+O(δ1+η), x ∈ ∂D,

(3.10)

where ‖O(δ1+η)‖L2(∂D) is bounded by Cδ1+η‖φ‖C1,η(∂D).

We now expand S2,Dδ [φ̃](x) and ∂S2,Dδ [φ̃]/∂ν2(x) for x ∈ ∂D when φ̃ ∈ C1,η(∂Dδ).
Let f be a C1,η vector function on ∂D and let v be the solution to −div(σ2D(v)− q2Id) = 0
in D satisfying v = f on ∂D. Then, we get∫

∂D

∂S2,Dδ [φ̃]

∂ν2
(x) · f(x)dσ(x) =

∫
∂D

S2,Dδ [φ̃](x) · ∂v

∂ν2
(x)dσ(x)

=

∫
∂Dδ

φ̃(x̃) · S2,D

[ ∂v

∂ν2

]
(x̃)dσ(x̃). (3.11)

Define φ := φ̃ ◦ Φδ. By using (3.2), we get∫
∂D

∂S2,Dδ [φ̃]

∂ν2
· fdσ =

∫
∂D

φ ·
(
S2,D

[ ∂v

∂ν2

]
+ δh

∂S2,D

∂n

[ ∂v

∂ν2

]∣∣∣
+

+O(δ1+η)

)
×
(

1− δκh+O(δ2)
)
dσ

=

∫
∂D

(
S2,D[φ] + δD]

2,D[hφ]
∣∣
− − δS2,D[κhφ]

)
· ∂v

∂ν2
dσ +O(δ1+η)

=

∫
∂D

(
∂S2,D[φ]

∂ν2

∣∣∣
−

+ δ
∂D]

2,D[hφ]

∂ν2

∣∣∣
−
− δ ∂S2,D[κhφ]

∂ν2

∣∣∣
−

)
· fdσ

+O(δ1+η).

Therefore, the following asymptotic expansion holds:

∂S2,Dδ [φ̃]

∂ν2
=
∂S2,D[φ]

∂ν2

∣∣∣
−

+ δ
∂D]

2,D[hφ]

∂ν2

∣∣∣
−
− δ ∂S2,D[κhφ]

∂ν2

∣∣∣
−

+O(δ1+η) on ∂D, (3.12)

where the remainder term O(δ1+η) is in L2(∂D).

Let φ = φ̃ ◦ Φδ for φ̃ ∈ C1,η(∂Dδ). Let f be a C1,η vector function on ∂D. Similarly to

9

2 Oct 2024 17:24:05 PDT
240417-Lagha Version 2 - Submitted to J. Integr. Eq. Appl.



(3.11), we have∫
∂D

∂S2,Dδ [φ̃]

∂τ
· fdσ = −

∫
∂D

φ ·
(
S2,D

[ ∂f

∂τ

]
+ δh

∂S2,D

∂n

[ ∂f

∂τ

]∣∣∣
+

+O(δ1+η)

)
×
(

1− δκh+O(δ2)
)
dσ

= −
∫
∂D

(
S2,D[φ] + δD]

2,D[hφ]
∣∣
− − δS2,D[κhφ]

)
· ∂f

∂τ
dσ +O(δ1+η)

=

∫
∂D

(
∂S2,D[φ]

∂τ
+ δ

∂D]
2,D[hφ]

∂τ

∣∣∣
−
− δ ∂S2,D[κhφ]

∂τ

)
· fdσ +O(δ1+η).

Thus

∂S2,Dδ [φ̃]

∂τ
=
∂S2,D[φ]

∂τ
+ δ

∂D]
2,D[hφ]

∂τ

∣∣∣
−
− δ ∂S2,D[κhφ]

∂τ
+O(δ1+η) on ∂D, (3.13)

Similarely, we have

S2,Dδ [φ̃] = S2,D[φ] + δD]
2,D[hφ]

∣∣
− − δS2,D[κhφ] +O(δ2) on ∂D, (3.14)

Then it follows from (3.13) and (3.14) that

S2,Dδ [φ̃] = S2,D[φ] + δD]
2,D[hφ]

∣∣
− − δS2,D[κhφ] +O(δ1+η) on ∂D, (3.15)

where the remainder term O(δ1+η) is in W 2
1 (∂D).

The following proposition is a direct consequence of (2.13), (2.14), (3.4), (3.5), (3.9),
(3.10), (3.12), and (3.15).

Proposition 3.2 The following expansions hold on ∂D:

Tδ(φ, ψ̃) = T0(φ,ψ)− δT1(ψ) +O(δ2) for (φ, ψ̃) ∈ L2(∂D)× L2(∂Dδ),

Wδ(φ, ψ̃) = δW1(φ,ψ) + o(δ) for (φ, ψ̃) ∈ C1,η(∂D)× C1,η(∂Dδ),

where ψ = ψ̃ ◦ Φδ, the remainder terms O(δ2) and o(δ) are in W 2
1 (∂D)× L2(∂D), and the

operators T0 : X (∂D) → Y(∂D), T1 : L2(∂D) → Y(∂D), and W1 : C1,η(∂D) × C1,η(∂D) →
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Y(∂D) are defined by

T0(φ,ψ) =

(
S1,D[φ]− S0,D[ψ],

∂S1,D[ϕ]

∂ν1

∣∣∣
−
− ∂S0,D[ψ]

∂ν0

∣∣∣
+

)
, (3.16)

T1(ψ) =

(
− S0,D[κhψ] + h

∂S0,D[ψ]

∂n

∣∣∣
+

+ D]
0,D[hψ]

∣∣∣
+
, hdiv(σ0D((S0,D[ψ]))

∣∣∣
+

+ hκ(σ0D((S0,D[ψ]))n
∣∣∣
+
− ∂S0,D[κ hψ]

∂ν0

∣∣∣
+

+
∂D]

0,D[hψ]

∂ν0

∣∣∣
+
− ∂

∂τ

(
h
(
C0∇̂S0,D[ψ]

)
τ
)∣∣∣

+

)
,

(3.17)

W1(φ,ψ) =

(
h
∂S2,D[φ]

∂n

∣∣∣
+

+ h
∂S2,D[ψ]

∂n

∣∣∣
−
, hdiv(σ2D(S2,D[φ]))

∣∣∣
+

+ hκ(σ2D(S2,D[φ]))n
∣∣∣
+

+ hdiv(σ2D(S2,D[ψ]))
∣∣∣
−

+ hκ(σ2D(S2,D[ψ]))n
∣∣∣
−

− ∂

∂τ

(
h
(
σ2DS2,D[φ])

)
τ
)∣∣∣

+

∂

∂τ

(
h
(
σ2D(S2,D[ψ])

)
τ
)∣∣∣
−

)
. (3.18)

The following proposition holds ( see [17])

Proposition 3.3 Let (φ1, φ̃0) ∈ L2(∂D) × L2(∂Dδ) be the solution of (2.12). Then the
following asymptotic expansion holds:

T0(φ1,φ0)− δ
[
T1(φ0)− G(φ1)

]
= Hδ + o(δ) on ∂D, (3.19)

where φ0 = φ̃0 ◦ Φδ, the remainder term o(δ) is in W 2
1 (∂D) × L2(∂D), Hδ is defined by

(2.15), T0 and T1 are defined in (3.16) and (3.17), respectively, and the operator G is defined
from L2(∂D) into Y(∂D) by

G(φ1) :=

(
h
∂S1,D[φ1]

∂n

∣∣∣
−
, hdiv(σ1D(S1,D[φ1])) + hκ(σ1D(S1,D[φ1]))n

∣∣∣
−

− ∂

∂τ

(
h
(
M2,1D(S1,D[φ1])

)
τ
)∣∣∣
−

)
. (3.20)

with

M2,1 = 2µ1I + (µ2 − µ1)I⊗ (τ ⊗ τ )

4 Asymptotic expansion of the displacement field

The following lemma is important for us.

Lemma 4.1 For any given (ϕ,Ψ) ∈ Y(∂D), there exists a unique pair (φ,ψ) ∈ X (∂D)
such that

T0(φ,ψ)− δ
[
T1(φ)− G(ψ)

]
=
(
ϕ,Ψ

)
. (4.1)

Furthermore, there exists a constant C depending only on µ0, µ1, and the Lipschitz character
of D such that

‖φ‖L2(∂D) + ‖ψ‖L2(∂D) ≤ C
(
‖ϕ‖W 2

1 (∂D) + ‖Ψ‖L2(∂D)

)
. (4.2)
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Proof. The operator T : X (∂D)→ Y(∂D) defined by T (φ,ψ) = T1(φ)− G(ψ) is bounded
on X (∂D). By Theorem 2.1, T0 : X (∂D) → Y(∂D) is invertible. For δ small enough,
it follows from [13], that the operator T0 − δT is invertible. This completes the proof of
solvability of (4.1). The estimate (4.2) is a consequence of solvability and the closed graph
theorem.

Theorem 4.2 Let (uδ, pδ) be the solution to (1.3). Let Ω be a bounded region away from
∂D. For x ∈ Ω, the following pointwise asymptotic expansion holds:

uδ(x) = u(x) + δu1(x) + o(δ), (4.3)

pδ(x) = p(x) + δp1(x) + o(δ), (4.4)

where the remainder o(δ) depends only on µj for j=0,1,2, the C2-norm of X, the C1-norm
of h, and dist(Ω, ∂D), (uδ, pδ) is the unique solution to

−div
(
σD(u)− pId

)
= 0 in Ω,

∇.u = 0 in Ω,

u = F(x) on ∂Ω

(4.5)

and (u1, pδ) is the unique solution of the following transmission problem:

−div
(
σ0D(u1)− p1Id

)
= 0 in Ω\Dδ,

−div
(
σ2D(u1)− p1Id

)
= 0 in Dδ\D,

−div
(
σ1D(u1)− p1Id

)
= 0 in D,

u1

∣∣
− − u1

∣∣
+

= 0 on ∂D,

∂u1

∂ν1

∣∣∣
−
− ∂u1

∂ν0

∣∣∣
+

=
∂

∂τ

(
h
[
(M2,1 −M0,1)D(vi)

]
τ
)

on ∂D,

∇.u1 = 0 in Ω,

u1 = F(x) on ∂Ω

(4.6)

with τ is the tangential vector to ∂D,

Ml,k := 2µkI + 2(µl − µk)I⊗ (τ ⊗ τ )

By taking µ2 = µ1, we reduce our problem to that proposed in [15]. So it is obvious to
obtain the asymptotic expansion of the displacement field resulting from small perturbations
of the shape of impurety.

4.1 Proof of the theorem 4.2

We have the following Taylor expansion for x̃ = x+ δh(x)n(x) ∈ ∂Dδ:

H(x̃) = H(x) + δh(x)
∂H

∂n
(x) +O(δ2), x ∈ ∂D. (4.7)
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using the Taylor expansion, (3.1) and (3.3), we have

∂H

∂ν0
(x̃) =

∂H

∂ν0
(x) + δh(x)div(σ0D(H)) + hκ(σ0D(H)))n0(x)− δ ∂

∂τ

(
h
(
C0∇̂H

)
τ
)

(x)

+O(δ2), x ∈ ∂D. (4.8)

It follows from (2.15), (4.7), and (4.8) that

Hδ =
(
H,

∂H

∂ν0

)
+ δ
(
h
∂H

∂n
, h(x)div(σ0D(H)) + hκ(σ0D(H)))n0(x)− ∂

∂τ

(
h
[
C0∇̂H

]
τ
))

+O(δ2)

:= H0 + δH1 +O(δ2) on ∂D. (4.9)

We now introduce (φ0
1,φ

0
0) and (φ1

1,φ
1
0) by the following recursive relations

T0(φ0
1,φ

0
0) = H0, (4.10)

T0(φ1
1,φ

1
0) = H1 + T1(φ0

0)− G(φ0
1), (4.11)

where T0, T1, and G are defined in (3.16), (3.17), and (3.20), respectively. One can see the
existence and uniqueness of (φn1 ,φ

n
0 ) for n = 0, 1, by using [10].

Let (φ1, φ̃0) be the solution of (2.12). It follows from (4.10) and (4.11) that

T0(φ1 − φ
0
1 − δφ

1
1, φ̃0 ◦ Φδ − φ0

0 − δφ
1
0)− δ

[
T1(φ̃0 ◦ Φδ − φ0

0 − δφ
1
0)− G(φ1 − φ

0
1 − δφ

1
1)
]

= Hδ −H0 − δH1 + o(δ) on ∂D, (4.12)

where ‖o(δ)‖W 2
1 (∂D)×L2(∂D) ≤ Cδ1+η for some η > 0 and (φ0

1,φ
0
0) and (φ1

1,φ
1
0) are the

solutions to (4.10) and (4.11), respectively.
The following lemma holds immediately from (4.9), (4.12) and the estimate in (4.2).

Lemma 4.3 Let (φ1, φ̃0) be the solution of (2.12). For δ small enough, there exists C
depending only on µs for s=0,1,2, the C2-norm of X, and the C1-norm of h such that∥∥∥φ1 − φ

0
1 − δφ

1
1

∥∥∥
L2(∂D)

+
∥∥∥φ̃0 ◦ Φδ − φ0

0 − δφ
1
0

∥∥∥
L2(∂D)

≤ Cδ1+η (4.13)

for some η > 0, where (φ0
1,φ

0
0) and (φ1

1,φ
1
0) are the solutions to (4.10) and (4.11), respec-

tively.

Recall that the domain D is separated apart from Ω, then

sup
x∈Ω,y∈∂D

∣∣∣∂iΓ0(x− y)
∣∣∣ ≤ C, i ∈ N2,

for some constant C depending on dist(D,Ω). After the change of variables ỹ = Φδ(y), we
get from (3.2), (4.13), and the Taylor expansion of Γ0(x− ỹ) in y ∈ ∂D for each fixed x ∈ Ω
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that

S0,Dδ [φ̃0](x) =

∫
∂Dδ

Γ0(x− ỹ)φ̃0(ỹ)dσ(ỹ)

=

∫
∂D

(
Γ0(x− y) + δh(y)∇Γ0(x− y)n(y)

)(
φ0

0(y) + δφ1
0(y)

)
×
(

1− δκ(y)h(y)
)
dσ(y) + o(δ)

=S0,D[φ0
0](x) + δ

(
S0,D[φ1

0](x)− S0,D[κhφ0
0](x) + D]

0,D[hφ0
0](x)

)
+ o(δ),

Therefore, we obtain from (2.10) that for x ∈ Ω,

uδ(x) = H(x) + S0,D[φ0
0](x) + δ

(
S0,D[φ1

0](x)− S0,D[κhφ0
0](x) + D]

0,D[hφ0
0](x)

)
+ o(δ).

(4.14)

According to [2] (see also [23]), the solution (u, p) to (4.5) is represented as

u(x) =

{
H(x) + S0,D[φ0

0](x), x ∈ Ω\D,

S1,D[φ0
1](x), x ∈ D,

(4.15)

where (φ0
1,φ

0
0) is the unique solution of (4.10).

p(x) =

{
ϑD[φ0

0](x), x ∈ Ω\D,

ϑD[φ0
1](x), x ∈ D,

(4.16)

The following theorem follows immediately from (4.14) and (4.15).

Theorem 4.4 For δ small enough. The following pointwise expansion holds for x ∈ Ω

uδ(x) = u(x) + δ
(
S0,D[φ1

0](x)− S0,D[κhφ0
0](x) + D]

0,D[hφ0
0](x)

)
+ o(δ), (4.17)

where φ0
0 and φ1

0 are defined by (4.10) and (4.11), respectively. The remainder o(δ) depends
only on µs for s=0,1,2, the C2-norm of X, the C1-norm of h, and dist(Ω, D).

We now prove a representation theorem for the solution of the transmission problem
(4.6) which will help us to derive the theorem 4.2.

Theorem 4.5 The solution u1 of (4.6) is represented by

u1(x) =

{
S0,D[φ1

0](x)− S0,D[κhφ0
0](x) + D]

0,D[hφ0
0](x), x ∈ Ω\D,

S1,D[φ1
1](x), x ∈ D,

(4.18)

where φ0
0 and (φ1

1,φ
1
0) are defined by (4.10) and (4.11), respectively.
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Proof. One can easily see that

−div
(
σ0D(u1)− p1Id

)
= 0 in Ω\D, −div

(
σ2D(u1)− p1Id

)
= 0 in D.

It follows from (4.11), (4.15) (4.18) that

ui1 − ue1 =
(
S1,D[φ1

1]− S0,D[φ1
0]
)

+ S0,D[κhφ0
0]−D]

0,D[hφ0
0]
∣∣
+

=
[
H1 +Q1(φ0

0)−Z(φ0
1)
]

1
+ S0,D[κhφ0

0]−D]
0,D[hφ0

0]
∣∣
+

=h
(∂H

∂n
+
∂S0,D[φ0

0]

∂n

∣∣∣
+
− ∂S1,D[φ0

1]

∂n

∣∣∣
−

)
=h
(
∇uen−∇uin

)
=0 on ∂D.

Using (4.11), we get

∂u1

∂ν1

∣∣∣
−
− ∂u1

∂ν0

∣∣∣
+

=
(∂S1,D[φ1

1]

∂ν1

∣∣∣
−
− ∂S0,D[φ1

0]

∂ν0

∣∣∣
+

)
+
∂S0,D[κhφ0

0]

∂ν0

∣∣∣
+
−
∂D]

0,D[hφ0
0]

∂ν0

∣∣∣
+

=
[
H1 +Q1(φ0

0)−Z(φ0
1)
]

2
+
∂S0,D[κhφ0

0]

∂ν0

∣∣∣
+
−
∂D]

0,D[hφ0
0]

∂ν0

∣∣∣
+

=h(div(σ0D(H))
∣∣∣
+

+ hκ(σ0D(H))n
∣∣∣
+
− ∂

∂τ

(
h
(
σ0D(H)

)
τ
)

− ∂

∂τ

(
h
(
σ0D(S0,D[φ0

0])
)
τ
)∣∣∣

+
hdiv(σ0D(S0,D[φ0

0]))
∣∣∣
+

+ hκ(σ0D(S0,D[φ0
0]))n

∣∣∣
+
− hdiv(σ1D(S1,D[φ0

1]))
∣∣∣
−

− hκ(σ1D(S1,D[φ0
1]))n

∣∣∣
−

+
∂

∂τ

(
h
(
M2,1∇̂S1,D[φ0

1])
)
τ
)∣∣∣
−

=
∂

∂τ

(
h(M2,1∇̂ui)τ

)
− ∂

∂τ

(
h(σ0D(ue))τ

)
=
∂

∂τ

(
h([M2,1 −M0,1]D(ui))τ

)
.

This completes the proof of the theorem 4.5.
The main theorem 4.2 immediately follows from the integral representation of u1 and

the theorem 4.4.
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Let (v, q) be the solution of the following problem:

−div
(
σ0D(v)− qId

)
= 0 in Ω\D,

−div
(
σ1D(v)− qId

)
= 0 in D,

v|− = v|+ on ∂D,

∂v

∂ν1

∣∣∣
−

=
∂v

∂ν0

∣∣∣
+

on ∂D,

∇.v = 0 in Ω,

v(x) = G(x) on ∂Ω

(4.19)

As a consequence of the theorem 4.2, we obtain the following relationship between velocity
measurements and the deformation h.

Theorem 4.6 Let (uδ, pδ), (u, p), and (v, q) be the solutions to (1.3), (4.5), and (4.19),
respectively. Let S be a Lipschitz closed curve enclosing D away from ∂D. The following
asymptotic expansion holds:∫

S

(
uδ − u

)
· ∂F

∂ν0
dσ −

∫
S

(∂uδ
∂ν0
− ∂u

∂ν0

)
· Fdσ

= δ

∫
∂D

h

((
[M0,1 −M2,1]D(ui

)
τ ·D(vi)τ

)
dσ + o(δ), (4.20)

where the remainder o(δ) depends only on µs for s=0,1,2, the C2-norm of X, the C1-norm
of h, and dist(S, ∂D). The dot denotes the scalar product in R2.

4.2 Proof of the theorem 4.6

The following corollary can be proved as in exactly the same manner as Theorem 4.2.

Corollary 4.7 Let (uδ, pδ) and (u, p) be the solutions to (1.3) and (4.5), respectively and
u1 is the unique solution of (4.6).
Let Ω be a bounded region outside the inclusion D away from ∂D. For x ∈ Ω, the following
pointwise asymptotic expansion holds:

∂uδ
∂ν0

(x) =
∂u

∂ν0
(x) + δ

∂u1

∂ν0
(x) + o(δ), (4.21)

where the remainder o(δ) depends only on µj for j=0,1,2, the C2-norm of X, the C1-norm
of h, and dist(Ω, ∂D).

Let S be a Lipschitz closed curve enclosing D away from ∂D. Let v be the solution to
(4.19). As is done in [18], and by integration by parts one may combine both relations (4.3)
and (4.21) to get that,∫

S

(
uδ − u

)
· ∂F

∂ν0
dσ −

∫
S

(∂uδ
∂ν0
− ∂u

∂ν0

)
· Fdσ = δ

∫
S

(
u1 ·

∂v

∂ν0
− ∂u1

∂ν0
· v
)
dσ + o(δ)

=

∫
S

(∂ve

∂ν0
· ue1 − ve · ∂ue1

∂ν0

)
dσ + o(δ).
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Taking into account relation (4.6), we immediately get∫
S

(∂ve

∂ν0
· ue1 − ve · ∂ue1

∂ν0

)
dσ =

∫
∂D

(∂vi

∂ν1
· ui1 − vi · ∂ui1

∂ν1

)
dσ

+

∫
∂D

∂

∂τ

(
h
(
[M2,1 −M0,1]∇̂ui

)
τ
)
· vidσ. (4.22)

It follows that ∫
∂D

(∂vi

∂ν1
· ui1 − vi · ∂ui1

∂ν1

)
dσ = 0. (4.23)

We have∫
∂D

∂

∂τ

(
h
(
[M2,1 −M0,1]∇̂ui

)
τ
)
· vidσ = −

∫
∂D

h
(
[M2,1 −M0,1]D(ui)

)
τ · ∇viτdσ.

(4.24)

One can easily check that(
[M2,1 −M0,1]D(ui)

)
τ · ∇viτ =

(
[M2,1 −M0,1]D(ui)

)
τ ·D(vi)τ . (4.25)

We finally obtain from (4.22)-(4.25) the relationship between stokes solution measurements
and the shape deformation h (4.20), as desired.
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