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Abstract

We propose the class of Fredholm-Hammerstein type integral equations by considering three
different types of weakly singular kernels, such as the Hadamard type kernel, the mixed type kernel,
and the algebraic kernel. As the Hadamard type kernel and mixed type kernel are the combination
of |x − s|−α, 0 < α < 1

2
and (log |x − s|)n, n ∈ N, therefore it is difficult to handle. Moreover, the

algebraic kernel contains singularities at two points. Furthermore, due to the presence of singularities
inside the domain, it isn’t easy to analyze the solution. We have used fixed-point iteration to study
the existence of solutions. Additionally, we have demonstrated that the solution is unique to the
particular range of the parameters. The theoretical results are validated using numerical examples.
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1 Introduction

The study of integral equations has a long history. It has been investigated by many authors ([3, 8, 1]).
The beginning of this theory was mainly made by many researcher like astrophysicists, mathematicians,
etc. They found many applications and open questions in the theory of radioactive transfer, kinetic
theory of gases, etc. However, over the last few years, the theory of integral equations with singular
kernels has received a lot of attention ([3, 8, 5, 6, 1]).

In this work, we propose the following weakly singular Fredholm-Hammerstein type integral equation

µu(x) = f(x, u) + λ

∫ T

0

l(x, s)k(x, s)ψ(s, u(s))ds, T > 0, (1)

where k(x, s) is sufficiently smooth function, λ is the parameter, f(x, u(x)) and ψ(s, u(s)) are a nonlinear
functions which satisfy the Lipschitz condition with respect to u, f(x, u(x)) and ψ(s, u(s)) are continuous
on [0, T ]× R, l(x, s) is weakly singular kernel defined by

Hadamard type kernel: l(x, s) = |x− s|−α(log |x− s|)n +A1; 0 < α <
1

2
, n ∈ N, A1 is constant, (2)

Mixed type kernel: l(x, s) = a1|x− s|−α + a2(log |x− s|)n +A2; (3)

where a1, a2, A2 are constants and 0 < α < 1
2 , n ∈ N and

Algebric type kernel: l(x, s) =

∫ T

0

g3(x, t)g4(t, s)

|x− t|α1 |t− s|α2
; where α1 + α2 ≤ 1, (4)

and g3(x, t) ≥ 0, g4(t, s) ≥ 0 are sufficiently smooth and bounded functions on [0, T ]× [0, T ].
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�cagarwalr@fit.edu
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Remark 1.1. If we put ψ(s, u(s)) = u(s) in equation (1), then we have

µu(x) = f(x) + λ

∫ T

0

l(x, s)k(x, s)u(s)ds, T > 0. (5)

The equation (5) is known as Fredholm integral equation ([4]). The generalization of equation (5) is
given by equation (1). Due to the presence of nonlinear function ψ(s, u(s)), the equation (1) is said to
be Fredholm-Hammerstein type integral equation ([4, 12, 7, 34]).

These kinds of integral equations can be found in many mathematical and physical applications,
including Dirichlet problems, radiative equilibrium problems in physics, transportation issues, potential
issues, the description of hydrodynamic interactions between the elements of a polymer chain in solution
([11, 30, 17, 1, 10]), etc.

The solution of the equation (1) fully depends on the kernel l(x, s). Also, the equations (2) and (3)
indicates that l(x, s) presents the singularity at the point x = s. Furthermore, the algebraic kernel in
equation (3) contains singularities at two points x = t and t = s. Since s and t are varying throughout
the domain, therefore it is big challenge to analyze the equation theoretically as well as numerically.
Here, we study equation (1) with respect to the kernels (2), (3) and (4). We show the existence of the
unique solution in continuous space. We also derive the bounds of the parameters λ and µ. We place
the numerical examples to verify the theoretical results.

Remark 1.2. Many authors ([4, 14, 23, 29]) studied Hammerstein type integral equation by considering
the kernel either |x − s|−α, 0 < α < 1 or (log |x − s|)n, n ∈ N. Also, the behavior of the functions
|x−s|−α and (log |x−s|)n are different. As the kernels (2) and (3) are the combination of |x−s|−α and
(log |x− s|)n, therefore it is difficult to handle. Moreover, the algebraic kernel (4) contains singularity at
two points. Because of the above significance of the problem (1), we can see it isn’t easy to analyze the
solution. In this work, we provide an idea to derive the existence and uniqueness results of the solution
for the governing equation (1) concerning the kernels (2), (3) and (4). To our knowledge, there is no
work in the literature related to the proposed problem.

Below, we have mentioned existing literature related to our methodology. In 19th century a class
of integrals with strong singularities encountered by Hadamard ([2]). In [4, 7] , authors studied weakly
singular kernel of type s1−α, where 0 < α < 1 and log s, and showed that the solutions satisfy certain
regularity properties. Kabir et al. ([9]) applied the piece-wise quadratic polynomial technique to solve
singular integral equations in the presence of logarithmic and Hadamard-type kernels. In [11], Kilbas
et al. discussed the conditions for the existence of the solution of the Hammerstein integral equation
concerning Hadamard-type kernel. After that, Yonis et al. ([24]) and Pandey et al. ([15]) found
sufficient conditions for the existence of solutions. They developed an algorithm to solve a class of
Hammerstein type integral equations. In [12, 29, 13], Chebyshev expansion is used to solve Volterra
integral equations with logarithmic singularities in its kernel. The authors considered the system of
Hammerstein integral equations to show the existence of at least one solution and applied a quadratic
numerical method with respect to time for approximating the solution. Pathak et al. ([25]) used fixed
point theory to show the existence result of the fractional order non-linear Hadamard type functional
integral equations. In [20, 19, 19], some generalized Hermite-Hadamard type inequalities for fractional
integrals that depends on a parameter have been given. Abdou et al. ([14, 18]) discussed the existence
and uniqueness of solution for the nonlinear integral equation of Hammerstein type with discontinuous
kernel. Li et al. ([21, 22]) showed the uniqueness of solutions to several Hadamard-type integral equations.
Ahmat et al. ([17]) discussed the existence of solutions by using Banach’s contraction principle to
deal with a system of Hadamard-type integral boundary conditions. Abbas et al. ([26]) have shown
the existence and uniqueness results for a generalized Hadamard fractional integral equation by using
Picard and Picard-Krasnoselskii iteration methods and the Banach contraction principle. Pandit et al.
([32, 33]) converted the higher-order singular boundary value problems into equivalent Fredhlom-type
integral equations and studied the existence of at least one solution. Recently, Agarwal et al. ([31])
investigated the existence and uniqueness of the solution of an integral equation involving convex and
concave non-linearity. By using the Leray–Schauder alternative, Schauder fixed point theorem, and
Banach’s fixed point theorem, Paul et al. ([35]) have shown the existence and uniqueness of solution for
the nonlinear Volterra–Fredholm integral equations. After that, Bhat et al. ([36]) extended the results
of [35] by considering Volterra and Fredholm integral equations corresponding to the weakly singular

kernel k(x, s) = L(x,s)
(x−s)1−α , where L ∈ C([0, b]× [0, b]) and 0 < α < 1. In [40], authors considered nonlinear

integral equation of the form u(x) = N (x) + f(x)
Γ(λ)

∫ x

0
(x − µ)λ−1ξ(µ)H(u(µ))dµ to find the numerical
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approximation. To know more about the literature related to theoretical and numerical works based
on weakly singular Fredholm-Hammerstein type integral equations, the reader can read the references
([23, 30, 27, 15, 16, 28, 29, 37, 38, 39]) and the reference therein.

We organize the remaining work in the following three sections. In Section 2, we have derived a few
results which help us to show the existence and uniqueness of the solution. We have devoted Section 3
to examples to verify the theoretical results. Finally, we conclude the work in Section 4.

2 Existence of solution

Here, we show the existence and uniqueness of the solution. Below, we have derived some results which
help us to prove the main theorem. Throughout the paper, we assume X = C[0, T ] as continuous space
along with the norm ∥u∥∞ = max

x∈[0,T ]
|u(x)|. Therefore, it is easy to see that (X, ||.||∞) is a Banach space.

Lemma 2.1. Let l(x, s) be the weakly singular kernel defined by (2) of the equation (1), then

sup
x∈[0,T ]

∫ T

0

l(x, s)ds ≤ Cn +A1T, (6)

where

Cn = 2

n∑
m=1

(−1)nn!

(1− α)n+1−mm!

(
m

1− α

)m

e−m + 2
(−1)nn!

(1− α)n+1
T 1−α. (7)

Proof. For the kernel of type (2), we have∫ T

0

l(x, s)ds =

∫ x

0

l(x, s)ds+

∫ T

x

l(x, s)ds

=

∫ x

0

(log(x− s))n

(x− s)α
ds+

∫ T

x

(log(s− x))n

(s− x)α
ds+A1T.

(8)

Now, we put t = x− s and v = −x+ s. Therefore we have∫ T

0

l(x, s)ds =

∫ x

0

(log t)n

tα
dt+

∫ T−x

0

(log v)n

vα
dv +A1T. (9)

Let the first integral of equation (9) be In =
∫ x

0
(log t)n

tα dt. Therefore, by using integration by parts we
have

In =

n∑
m=1

(−1)n−mn!

(1− α)n+1−mm!
(log x)mx1−α +

(−1)nn!

(1− α)n+1
x1−α.

To find the bound for In, we assume g1(x) = (log x)mx1−α. Therefore, we have g′1(x) =
(log x)m−1

xα [(1 −
α)(log x) +m]. For extremum, g′1(x) = 0. So, the roots will be either x = 1 or x = e

−m
1−α for every values

of m ∈ N. Now

g′′1 (x) =
(log x)m−2

x1+α
[m(m− 1) +m(1− 2α) log x− α(1− α)(log x)2].

We get g′′1 (x) > 0 when m = (2n− 1) and g′′1 (x) < 0 for m = 2n , ∀n ∈ N. Therefore, the function g1(x)

attains maximum at x = e
−m
1−α for m = 2n and attains minimum at x = e

−m
1−α for m = 2n− 1. Hence, we

have

g1(x) ≤
(

−m
1− α

)m

e−m for m = 2n, (10)

and

g1(x) ≥
(

−m
1− α

)m

e−m for m = 2n− 1, 0 < α <
1

2
. (11)
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Similarly for the second integral of equation (9), we denote I ′n =

∫ T−x

0

(log z)n

zα
dz. We consider

g2(x) = [log(T−x)]m(T−x)1−α. Therefore the roots of the equation g′2(x) = 0 will be either x = T−e
−m
1−α

or x = T . Hence, we have

g2(x) ≤
(

−m
1− α

)m

e−m for m = 2n, (12)

and

g2(x) ≥
(

−m
1− α

)m

e−m for m = 2n− 1, 0 < α <
1

2
. (13)

Now, by using equations (10), (11), (12) and (13), from equation (8) we have∫ T

0

l(x, s)ds =

n∑
m=1

(−1)n−mn!

(1− α)n+1−mm!
(log x)mx1−α +

(−1)nn!

(1− α)n+1
x1−α

+

n∑
m=1

(−1)n−mn!

(1− α)n+1−mm!
[log(T − x)]m(T − x)1−α +

(−1)nn!

(1− α)n+1
(T − x)1−α +A1T

≤ 2

n∑
m=1

(−1)n−mn!

(1− α)n+1−mm!

(
−m
1− α

)m

e−m + 2
(−1)nn!

(1− α)n+1
T 1−α +A1T.

Hence, we get the result.

Lemma 2.2. Let l(x, s) be the weakly singular kernel defined by (2) of the equation (1), and if l(x, s)
satisfy the result of Lemma 2.1 i.e.,

sup
x∈[0,T ]

∫ T

0

l(x, s)ds ≤ Cn + |A1|T, (14)

then it also satisfies the following inequality

c1 = sup
x∈[0,T ]

∫ T

0

[l(x, s)]2ds ≤ B2n + 2A1Cn +A2
1T, (15)

where

B2n = 2

[ 2n∑
m=1

2n!

(1− 2α)2n+1−mm!

(
m

1− 2α

)m

e−m +
2n!

(1− 2α)2n+1
T (1−2α)

]
.

Proof. From equation (2), we get∫ T

0

[l(x, s)]2ds =

∫ T

0

[
(log |x− s|)n

|x− s|α
+A1

]2
ds

=

∫ x

0

(log t)2n

t2α
dt+

∫ T−x

0

(log z)2n

z2α
dz + 2A1

∫ T

0

(log |x− s|)n

|x− s|α
ds+A2

1T.

Consider I2n =

∫ x

0

(log t)2n

t2α
dt and g3(x) = (log x)mx1−2α. Therefore the roots of the equation g′3(x) = 0

are x = 1 and x = e
−m

1−2α . So, we have

g3(x) ≤
(

−m
1− 2α

)m

e−m for m = 2n, (16)

and

g3(x) ≥
(

−m
1− 2α

)m

e−m for m = 2n− 1, 0 < α <
1

2
. (17)

By using equations (16) and (17), we have

I2n ≤
2n∑

m=1

(−1)2n−m2n!

(1− 2α)2n+1−m

(
−m

1− 2α

)m

e−m +
2n!

(1− 2α)2n+1
x1−2α; 0 ≤ x ≤ T.
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By similar analysis, we get

I ′2n =

∫ T−x

0

(log z)2n

z2α
dt

≤
2n∑

m=1

(−1)2n−m2n!

(1− 2α)2n+1−m

(
−m

1− 2α

)m

e−m +
2n!

(1− 2α)2n+1
(T − x)1−2α; 0 ≤ x ≤ T.

Therefore, we have∫ T

0

(l(x, s))2ds ≤ I2n + I
′

2n + 2A1Cn +A2
1T

≤
2n∑

m=1

2× 2n!

(1− 2α)2n+1−mm!

(
m

1− 2α

)m

e−m +
2× 2n!

(1− 2α)2n+1
T (1−2α) + 2A1Cn +A2

1T.

Thus the proof is complete.

Lemma 2.3. Let l(x, s) be the weakly singular kernel defined by (3) of the equation (1), then

sup
x∈[0,T ]

∫ T

0

l(x, s)ds ≤ 2a1
1− α

T (1−α) + a2A
′
n +A2T, (18)

where

A′
n = 2

[ n∑
m=1

(−1)nn!

m!
mme−m + (−1)nn!T

]
. (19)

Proof. From equation (3), we have∫ T

0

l(x, s)ds =

∫ T

0

[
a1|x− s|−α + a2(log |x− s|)n +A2

]
ds

=

∫ x

0

[a1(x− s)−α + a2(log(x− s))n]ds

+

∫ T

x

[a1(s− x)−α + a2[log(s− x)]n]ds+

∫ T

0

A2ds

=
a1x

1−α

1− α
+
a1(T − x)1−α

1− α
+ a2

[ ∫ x

0

(log t)ndt+

∫ T−x

0

(log z)ndz

]
+A2T. (20)

We denote Mn =
∫ x

0
(log t)ndt. By similar calculation as in Lemma 2.2, we have

Mn =

n∑
m=1

(−1)n−mn!

m!
x[log x]m + (−1)nn!x,

and
x[log x]m ≤ (−m)me−m for m = 2n, (21)

and
x[log x]m ≥ (−m)me−m for m = 2n− 1. (22)

Hence, we have Mn ≤
n∑

m=1

(−1)nn!

m!
(m)me−m + (−1)nn!T. Similarly,

M ′
n =

∫ T−x

0

(log z)ndz

=

n∑
m=1

(−1)n−mn!

m!
(T − x)[log(T − x)]m + (−1)nn!(T − x)

≤
n∑

m=1

(−1)nn!

m!
(m)me−m + (−1)nn!T.
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Now, from (20), we get

sup
x∈[0,T ]

∫ T

0

l(x, s)ds ≤ 2a1
1− α

T (1−α) + a2A
′
n +A2T,

where A′
n = 2

∑n
m=1

(−1)nn!
m! mme−m + 2(−1)nT × n!.

Lemma 2.4. Let l(x, s) be the weakly singular kernel defined by (3) of the equation (1), and if l(x, s)
satisfy the result of Lemma 2.3, then it also satisfies the following inequality

c1 = sup
x∈[0,T ]

∫ T

0

[l(x, s)]2ds ≤ 2a21
1− 2α

T (1−2α)+a22A
′
2n+A

2
2T +2a1a2Cn+2a2A2A

′
n+

4a1A2

1− α
T (1−α), (23)

where

A′
2n = 2

[ 2n∑
m=1

2n!

m!
e−m.mm + 2n!T

]
.

Proof. From equation (3), we get∫ T

0

[l(x, s)]2ds =

∫ T

0

[
(a1|x− s|−α)2 + [a2(log |x− s|)n]2 +A2

2

+2a1a2
(log |x− s|)n

|x− s|α
+ 2a2A2(log |x− s|)n + 2a1A2|x− s|−α

]
ds

=

∫ T

0

a21
|x− s|2α

ds+ a22

∫ T

0

(log |x− s|)2nds+ 2a1A2

∫ T

0

|x− s|−αds

+2a1a2

∫ T

0

(log |x− s|)n

|x− s|α
+ 2a2A2

∫ T

0

(log |x− s|)n +A2
2T. (24)

Now, the first integral of (24) can be written as∫ T

0

a21
|x− s|2α

ds = a21

[ ∫ x

0

1

(x− s)2α
ds+

∫ T−x

x

1

(s− x)2α
ds

]
=

a21
(1− 2α)

x1−2α +
a21

(1− 2α)
(T − x)1−2α

≤ a21
(1− 2α)

T (1−2α) +
a21

(1− 2α)
T (1−2α)

≤ 2a21
(1− 2α)

T (1−2α).

By similar analysis as in Lemma 2.3, we have

a22

∫ T

0

(log |x− s|)2nds ≤ a22

[
2

2n∑
m=1

2n!

m!
e−m.mm + 2× 2n!T

]
= a22A

′
2n.

Hence, by using Lemma 2.1 and Lemma 2.3, from equation (24) we conclude the result.

Lemma 2.5. Let l(x, s) be the weakly singular kernel defined by (4) of the equation (1), then it satisfies
the following inequality

sup
x∈[0,T ]

∫ T

0

l(x, s)ds ≤ 3T (2−α1−α2)

(1− α1 − α2)
m1m2, (25)

where m1 = max
(x,t)∈[0,T ]×[0,T ]

|g3(x, t)|, m2 = max
(x,t)∈[0,T ]×[0,T ]

|g4(x, t)| and α1 + α2 < 1.

Proof. Equation (4) leads to the following∫ T

0

l(x, s)ds =

∫ T

0

[ ∫ T

0

g3(x, t)g4(t, s)

|x− t|α1 |t− s|α2
dt

]
ds

≤ max
(x,t)∈[0,T ]×[0,T ]

|g3(x, t)| max
(t,s)∈[0,T ]×[0,T ]

|g4(t, s)|
∫ T

0

[ ∫ T

0

1

|x− t|α1 |t− s|α2
dt

]
ds

≤ m1m2

[ ∫ T

0

Kds

]
. (26)
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Now, we have to show
∫ T

0
Kds is bounded. For α1 + α2 < 1 and 0 ≤ x ≤ s ≤ T , we get∫ T

0

1

|x− t|α1 |t− s|α2
dt =

∫ x

0

1

|x− t|α1 |t− s|α2
dt+

∫ s

x

1

|x− t|α1 |t− s|α2
dt+

∫ T

s

1

|x− t|α1 |t− s|α2
dt

≤
∫ x

0

dt

|x− t|α1+α2
+max

{∫ s

x

dt

|x− t|α1+α2
,

∫ s

x

dt

|t− s|α1+α2

}
+

∫ T

s

dt

|t− s|α1+α2
.

Since t ≤ x, therefore we have∫ x

0

dt

|x− t|α1+α2
=

x1−α1−α2

1− α1 − α2
≤ T 1−α1−α2

1− α1 − α2
.

Since x ≤ t ≤ s, so we get ∫ s

x

dt

|t− s|α1+α2
≤ t1−α1−α2

1− α1 − α2
≤ T 1−α1−α2

1− α1 − α2
.

and ∫ s

x

dt

|x− t|α1+α2
≤

∫ s

x

dt

|t− s|α1+α2
≤ T 1−α1−α2

1− α1 − α2
.

By using the inequality x ≤ s ≤ t ≤ T , we compute∫ T

s

dt

|t− s|α1+α2
=

(T − s)1−α1−α2

1− α1 − α2
≤ T 1−α1−α2

1− α1 − α2
.

Hence from inequality (26) we can conclude the result.

Lemma 2.6. Let l(x, s) be the weakly singular kernel defined by (4) of the equation (1), and if l(x, s)
satisfy the result of Lemma 2.5, then it also satisfies the following inequality

c1 = sup
x∈[0,T ]

∫ T

0

[l(x, s)]2ds ≤ 9T (5−2α1−2α2)m2
1m

2
2

(1− α1 − α2)2
. (27)

Proof. From equation (4), we have∫ T

0

[l(x, s)]2ds =

∫ T

0

[ ∫ T

0

g3(x, t)g4(t, s)

|x− t|α1 |t− s|α2
dt

]2
ds

≤ 9T 2(2−α1−α2)m2
1m

2
2

(1− α1 − α2)2

∫ T

0

ds, since g3(x, t) and g4(t, s) are positive,

≤ 9T (5−2α1−2α2)m2
1m

2
2

(1− α1 − α2)2
.

This completes the proof.

Let us define an operator T : X → X such that

T u(x) = f(x, u)

µ
+
λ

µ

∫ T

0

l(x, s)k(x, s)ψ(s, u(s))ds. (28)

If we show T u(x) has a fixed point, then from equation (28) we have

u = T u. (29)

Now we consider a sequence {un} such that

u1 = T u0, (30)

u2 = T u0, (31)

...

un+1 = T un, (32)

.... (33)

Here we state the following theorem to show the existence and uniqueness of the solution u.
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Theorem 2.1. Let l(x, s) be the weakly singular kernel defined by the equation (2)(respectively, (3) and
(4) ) of the integral equation (1). Assume f(x, u(x)) and ψ(s, u(s)) are continuous in [0, T ] × R and

Lipschitz with respect to u having l and c2 as a Lipschitz constant given by l = sup
(s,u(s))∈X×R

∣∣∣∣∂f∂u
∣∣∣∣ and

c2 = sup
(s,u(s))∈X×R

∣∣∣∣∂ψ∂u
∣∣∣∣ , respectively. If l(x, s) satisfy the inequality in Lemma 2.2 (respectively, Lemma

2.4 and Lemma 2.6), then for any u0 ∈ X the sequence {un}∞n=0 defined by equation (32) converge
uniformly to the solution of the integral equation (29) in X. Furthermore, the solution is unique.

Proof. From equation (28), we have

||Tu− Tv||∞ ≤ 1

|µ|
||f(x, u)− f(x, v)||∞ +

∣∣∣∣λµ
∣∣∣∣ ∣∣∣∣ ∫ T

0

l(x, s)k(x, s)[ψ(s, u(s))− ψ(s, v(s))]ds

∣∣∣∣
≤ l

|µ|
||u− v||∞ +

|λ|
|µ|

∥ψ(s, u(s))− ψ(s, v(s))∥∞
(∫ T

0

l(x, s)2ds

) 1
2
(∫ T

0

(k(x, s))2ds

) 1
2

≤
(
l

|µ|
+

|λ|
|µ|
c2
√
c1c3

)
∥u(s)− v(s)∥∞, Since ψ(s, u(s)) is Lipschitz

and c3 = sup
x∈[0,T ]

∫ T

0

[k(x, s)]2ds,

≤M∥u(s)− v(s)∥∞, where M =

(
l

|µ|
+

|λ|
|µ|
c2
√
c1c3

)
.

Since, (X, ||.||∞) is a Banach Space, therefore it is complete. If M < 1, by using Banach Fixed Point
theorem we can conclude that the equation (28) has a fixed point, which is defined by (29). Now

u2 − u1 = T u1 − T u0

=
1

µ
(f(x, u1(x)− f(x, u0(x))) +

λ

µ

∫ T

0

l(x, s)k(x, s)[ψ(s, u1(s))− ψ(s, u0(s))]ds.

Therefore, by similar analysis, we have

||u2 − u1||∞ ≤M∥u1(s)− u0(s)∥∞, where M =

(
l

|µ|
+

|λ|
|µ|
c2
√
c1c3

)
.

Similarly,

||u3 − u2||∞ = T u2 − T u1 ≤M∥u2(s)− u1(s)∥∞ ≤M2∥u1(s)− u0(s)∥∞.

In general,
∥un+1 − un∥∞ ≤Mn∥u1(s)− u0(s)∥∞.

If m > n > 0,

∥um − un∥∞ ≤ ∥um − um−1 + um−1 − um−2 + um−2 − · · ·+ un+1 − un∥∞
≤ ∥um − um−1∥∞ + ∥um−1 − um−2∥∞ + · · ·+ ∥un+1 − un∥∞
≤Mm−1∥u1(s)− u0(s)∥∞ + · · ·+Mn∥u1(s)− u0(s)∥∞
≤ [Mm−1 +Mm−2 + · · ·+Mn]∥u1(s)− u0(s)∥∞.

Taking limit on both side we get

∥um − un∥∞ ≤ ∥u1(s)− u0(s)∥∞ lim
m→0

Mn(1 +M +M2 + · · ·+Mm−1−n)

≤Mn∥u1(s)− u0(s)∥∞(1 +M +M2 + · · · )

≤ Mn

1−M
∥u1(s)− u0(s)∥∞.

Hence, {un} is a Cauchy sequence and it converge to a point u∗ in X. If m→ ∞ we get

∥u∗ − un∥∞ ≤ Mn

1−M
∥u1(s)− u0(s)∥∞.
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Therefore;

T (u∗) = lim
n→∞

T (un) = lim
n→∞

un = u∗,

where u∗ be the solution of equation (1). To show uniqueness of the solution, we assume equation (1)
has two solutions u∗1 and u∗2. Therefore we have u∗1 = T u∗1 and u∗2 = T u∗2. Now

∥u∗2 − u∗1∥∞ ≤M∥u∗2 − u∗1∥∞
=⇒ ∥u∗2 − u∗1∥∞(1−M) ≤ 0.

Since M < 1, hence we can conclude ∥u∗2 − u∗1∥∞ = 0 which implies u∗1 = u∗2. This completes the
proof.

Corollary 2.1. Let l(x, s) be the weakly singular kernel defined by equation (2) (respectively, equations
(3) and (4) ) of the integral equation (1). If l(x, s) satisfy the result of Lemma 2.2 (respectively, Lemma
2.4 and Lemma 2.6), then the solution will exists and unique for

|λ| < |µ| − l
√
c1c2

√
c3
, (34)

where c1, c2 and c3 are defined by Theorem 2.1.

Proof. For existence and uniqueness of the solution, from Theorem 2.1 we have M < 1. Therefore, we

have
(

l
|µ| +

|λ|
|µ|c2

√
c1c3

)
< 1. Hence, the proof is complete.

Remark 2.1. From Theorem 2.1 and Corrolary 2.1, we can see that the condition (34) is sufficient but

not necessary. This indicates for |λ| > |µ|−l√
c1c2

√
c3

the solution of equation (1) may or may not be exists.

Remark 2.2. In view of Theorem 2.1 and Corrolary 2.1, we have the classical solution ([41]) u(x) of
equation (1) exist, unique and it belongs to the class C[0, T ] where T > 0 subject to the condition (34).
Moreover, we could not find the higher regularity of the classical solution u(x).

3 Examples

By using Theorem 2.1, we have placed three numerical constructions of the following examples:

µu(x) = cosu+ λ

∫ 1

0

(
|x− s|− 1

3 log |x− s|+ 1
)
x sinu(s)ds. (35)

Corollary 3.1. Let the condition |λ| < |µ|−1
12.87 be true. Then for any u0 ∈ X the sequence {un}∞n=0

defined by

µun+1(x) = cosun + λ

∫ 1

0

(
|x− s|− 1

3 log |x− s|+ 1
)
x sinun(s)ds, n = 0, · · · (36)

converge uniformly to the solution u∗ of equation (35) in X. Moreover the solution is unique.

Proof. By using Theorem 2.1 and equation (32), we have un+1 = T un

µ . Now,

u2 − u1 =
1

µ

[
cosu1 − cosu0 + λ

∫ 1

0

(
|x− s|− 1

3 log |x− s|+ 1
)
x (sinu1(s)− sinu0(s)) ds

]
.

So,

∥u2 − u1∥∞ ≤ 1

|µ|
[∥ cosu1 − cosu0∥∞]

+

[
|λ|
|µ|

∥ sinu1 − sinu0∥∞
(∫ 1

0

(
|x− s|− 1

3 log |x− s|+ 1
)2

ds

) 1
2
(∫ 1

0

x2ds

) 1
2

]
.

∥u2 − u1∥∞ ≤ 1

|µ|
[l∥u1 − u0∥∞ + |λ|c2∥u1 − u0∥∞

√
c1c3] ,
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where l = sup
x∈[0,1]

∣∣∂ cosu
∂u

∣∣ = sup
x∈[0,1]

| sinu| = 1 and c2 = sup
s∈[0,1]

∣∣∂ sinu
∂u

∣∣ = sup
x∈[0,1]

| cosu| = 1. Hence, we get

∥u2 − u1∥∞ ≤ ∥u1 − u0∥∞
[
1

|µ|
+

|λ|√c1c3
|µ|

]
.

In general

∥un+1 − un∥∞ ≤ ∥u1 − u0∥∞
[
1

|µ|
+

|λ|√c1c3
|µ|

]n
. (37)

From Lemma 2.2, we have, c1 = B2n + 2A1Cn +A2
1T = 165.65 =⇒ √

c1 = 12.87. Since, k(x, s) = x, so

we have c3 = sup
x∈[0,1]

∫ 1

0

x2ds = 1. Now,

∥u1 − u0∥∞ ≤ 1

|µ|

∣∣∣∣cosu0 + λ

∫ 1

0

(
|x− s|− 1

3 log |x− s|+ 1
)
x sinu0(s)ds− |µ|u0

∣∣∣∣ (38)

≤ 1

|µ|
+

|λ|
|µ|

√
c1c3 + |u0|. (39)

Since u0 is in X, therefore we have ∥u1 − u0∥∞ < +∞. As |λ| < |µ|−1
12.87 , hence by using Corollary 2.1

and Theorem 2.1, we can conclude the sequence {un} converges uniformly to the solution u∗ of equation
(35) in X. Hence, the proof is complete.

Now, we consider weakly singular Fredholm-Hammerstein type integral equation as follows:

µu(x) = |u(x)|+ λ

∫ 2

0

(
|x− s|

−1
3 + log |x− s|+ 1

)
es sin(u(s))ds. (40)

Corollary 3.2. Assume |λ| < |µ|−1
10.65 is true. Then for any u0 ∈ X the sequence {un}∞n=0 defined by

µun+1(x) = |un(x)|+ λ

∫ 2

0

(
|x− s|− 1

3 + log |x− s|+ 1
)
es sin(un(s))ds (41)

converge uniformly to the solution u∗ of equation (40) in X. Moreover the solution is unique.

Proof. By using similar calculation as in Corollary 3.1, we have

|u2 − u1| ≤ 1

|µ|
[||u1| − |u0||]

+

[
|λ|
|µ|

|| sinu1 − sinu0||∞
(∫ 1

0

(
|x− s|− 1

3 + log |x− s|+ 1
)2

ds

) 1
2

×
(∫ 1

0

e2sds

) 1
2

]
.

Since, ||u1| − |u0|| ≤ |u1 − u0|, we have

∥u2 − u1∥∞ ≤ ∥u1 − u0∥∞
[
1

|µ|
+

|λ|√c1c3
|µ|

]
.

Now, from Lemma 2.4, we have
√
c1 = 2.13. Again, k(x, s) = es implies c3 = sup

x∈[0,2]

∫ 2

0

e2sds = 26.80. So,

√
c3 = 5.18. Hence, from Corollary 2.1 we determine the range of λ as |λ| < |µ|−1

10.65 . By using Theorem
2.1, we can conclude the sequence {un}∞n=0 converges uniformly to the solution u∗ of equation (40) in
X. This completes the proof.

In the following, we consider Fredholm-Hammerstein type integral equation corresponding to weakly
singular kernel (4) as follows:

µu(x) = x+ sinu(x) + λ

∫ 1

0

(∫ 1

0

xes

|x− t| 12 |t− s| 13
dt

)
x cos(u(s))ds. (42)
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Corollary 3.3. Assume |λ| < |µ|−1
48.90 is true. Then for any u0 ∈ X the sequence {un}∞n=0 defined by

µun+1(x) = x+ sinun(x) + λ

∫ 1

0

(∫ 1

0

xes

|x− t| 12 |t− s| 13
dt

)
x cos(un(s))ds (43)

converge uniformly to the solution u∗ of equation (42) in X. Moreover the solution is unique.

Proof. Here, α1 = 1
2 , α2 = 1

3 , g3(x, t) = x, g4(t, s) = es and k(x, s) = x. By similar analysis as in
Corollary 3.1, we have

∥u2 − u1∥∞ ≤ ∥u1 − u0∥∞
|µ|

[
l + |λ|c2

∫ 1

0

(∫ 1

0

xes

|x− t| 12 |t− s| 13
dt

)
xds

]
≤ ∥u1 − u0∥∞

[
l + |λ|c2

√
c1c3

|µ|

]
,

where l = sup
x∈[0,1]

∣∣∂ sinu
∂u

∣∣ = 1 and c2 = sup
s∈[0,1]

∣∣∂ cosu
∂u

∣∣ = 1. By using Lemma 2.6, we compute c1 =

2394.05 =⇒ √
c1 = 48.93 and

√
c3 = 1. Hence by using Theorem 2.1, we can conclude that for any

u0 ∈ X the sequence {un}∞n=0 converges uniformly to the solution u∗ of equation (42) in X subject to

the condition |λ| < |µ| − 1

48.90
. Hence the proof is complete.

Remark 3.1. Exact solution of problems (35), (40) and (42) are not known. By using Corollary 3.1,
Corollary 3.2 and Corollary 3.3, we can guarantee the existence and uniqueness of the solution of problems
(35), (40) and (42), respectively.

In below, we provide another three numerical examples with exact solutions. Corresponding to kernel
(2), we consider Fredholm-Hammerstein type integral equation given by

µu(x) = f(x) + λ

∫ 1

0

(
|x− s|− 1

3 log |x− s|+ 1
)
u2(s)ds, (44)

where

f(x) = µ(x+ x2)− λ

∫ 1

0

(
|x− s|− 1

3 log |x− s|+ 1
)
(s+ s2)2ds. (45)

The unique solution of the problem (44) is u(x) = x+ x2.

Corollary 3.4. Let the condition |λ| < |µ|
51.48 be true and f(x) is given by equation (45). Then for any

u0 ∈ X the sequence {un}∞n=0 defined by

µun+1(x) = f(x) + λ

∫ 1

0

(
|x− s|− 1

3 log |x− s|+ 1
)
u2n(s)ds, n = 0, 1, · · · (46)

converge uniformly to the solution u∗ of equation (44) in X. Moreover the solution is unique.

Proof. The proof follows from Corollary 3.1.

Now, we consider weakly singular Fredholm-Hammerstein type integral equation with respect to
kernel (3) as follows:

µu(x) = g(x) + λ

∫ 2

0

(
|x− s|

−1
3 + log |x− s|+ 1

)
u3(s)ds, (47)

where

g(x) = µex − λ

∫ 2

0

(
|x− s|

−1
3 + log |x− s|+ 1

)
e3sds. (48)

The exact solution is u(x) = ex.

Corollary 3.5. Assume |λ| < |µ|
493.38 is true and g(x) is given by equation (48). Then for any u0 ∈ X

the sequence {un}∞n=0 defined by

µun+1(x) = g(x) + λ

∫ 2

0

(
|x− s|

−1
3 + log |x− s|+ 1

)
u3n(s)ds (49)

converge uniformly to the solution u∗ of equation (47) in X. Moreover the solution is unique.
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Proof. The proof is similar to the Corollary 3.2.

Again, corresponding to weakly singular kernel (4), we consider Fredholm-Hammerstein type integral
equation in the following form:

µu(x) = h(x) + λ

∫ 1

0

(∫ 1

0

xes

|x− t| 12 |t− s| 13
dt

)
cos(u(s))ds, (50)

where

h(x) = 2µx− λ

∫ 1

0

(∫ 1

0

xes

|x− t| 12 |t− s| 13
dt

)
cos(2s)ds. (51)

The unique solution of the given problem (50) is u(x) = 2x.

Corollary 3.6. Assume |λ| < |µ|
48.90 is true and h(x) is given by equation (51). Then for any u0 ∈ X

the sequence {un}∞n=0 defined by

µun+1(x) = h(x) + λ

∫ 1

0

(∫ 1

0

xes

|x− t| 12 |t− s| 13
dt

)
cos(un(s))ds (52)

converge uniformly to the solution u∗ of equation (50) in X. Moreover the solution is unique.

Proof. The proof follows from Corollary 3.3.

Remark 3.2. We have observed that the range of the λ depends on T . If we increase the value of T
then we are getting a smaller range of the parameter for a fixed value of the parameter µ.

4 Conclusions

We successfully proposed the class of Fredholm-Hammerstein type integral equation corresponding to
different types of weakly singular kernels. We derived results to show the existence of the solution. In
view of Theorem 2.1 we conclude that the solution to the proposed problem exists and is unique in the
continuous space. We have constructed numerical iterations corresponding to different types of problems
to validate the theoretical results. Finally, we conclude that our proposed problem is reliable and valid,
which helps researchers to explore the literature.

Future Remark 4.1. Since our proposed problems are novel, therefore lots of theoretical and numerical
works can be done. Researcher may try to apply any numerical technique on (1) to compute the numerical
approximation.

Future Remark 4.2. Here, we have computed smaller range of λ corresponding to a fixed value of
µ because it is depending on the domain. Researcher may try to improve the bounds of λ which is
independent of the domain with respect to any norm.
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of an interpolation approach to weakly singular integral equations. International Journal of
Numerical Methods for Heat & Fluid Flow, 34(3), pp.1479-1499.

[37] Bhat, I. A. and Mishra, L. N., 2022. Numerical solutions of Volterra integral equations of third
kind and its convergence analysis. Symmetry, 14(12), p.2600.

[38] Pathak, V. K. and Mishra, L. N., 2023. On solvability and approximating the solutions for
nonlinear infinite system of fractional functional integral equation in the sequence space lp, p > 1.
Journal of Integral Equations and Applications, 35(4), pp.443-458.

[39] Pathak, V. K., Mishra, L. N. and Mishra, V. N., 2023. On the solvability of a class of non-
linear functional integral equations involving Erdélyi–Kober fractional operator. Mathematical
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