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UNIFORMLY CONVERGENT NUMERICAL METHOD FOR A SYSTEM OF
VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS EXHIBITING BOUNDARY

LAYERS

A. PANDA AND J. MOHAPATRA

ABSTRACT. In this article, we study a system of singularly perturbed non-linear Volterra integro-
differential equations. The leading term of each equation is multiplied by a small positive parameter
whose magnitude may vary. The presence of these parameters creates interacting and overlapping
boundary layers in the solution. To resolve the issue of boundary layers, the piecewise uniform Shishkin
mesh and the Bakhvalov-Shishkin mesh is formed. On these meshes, an upwind scheme for the derivative
part along with the left rectangular rule for the integral part proves to be almost first order convergent
uniformly in both parameters. Further, a post-processing technique is employed that improves the order
of accuracy to second order. At the end, the theoretical findings are supported by a few numerical
computations.

A widely recognized approach for modeling various physical problems involves using systems of
Volterra integro-differential equations (VIDEs). These system of equations were formulated for
describing the activity of interacting inhibitory and excitatory neurons by the Wilson-Cowan model
[20]. Its use in constructing boundary value problems for scattering [3], electrostatics [13], and fluid
dynamics [19] has historically been quite popular among mathematicians and physicists. The VIDEs
exhibit boundary layers when a small positive quantity is multiplied to the highest order derivative
term and are referred to as singularly perturbed Volterra integro-differential equations (SPVIDEs) [12].

Due to the existence of boundary layers, whose width is dependent on the perturbation parameter,
the conventional numerical approaches for single (uncoupled) singularly perturbed problems applied on
uniform meshes are insufficient [16]. These layers are not resolved unless an unreasonably high number
of mesh points is employed. The analytical techniques based on the generalized power series method
[6], additive decomposition method [2] are studied for solving the singularly perturbed differential
equation. The problem gets more challenging for coupled system. Since the perturbation parameters
linked to each equation are different from one another, the solution to any particular equation in the
system includes a sub layer for each of the parameters in the overall problem. Hence, developing
numerical methods and doing their analysis become quite complex [14].

For the systems of linear VIDEs, Berenguer et al. in [1] solved a system of VIDEs using the
approximation methods, Liang and Brunner in [9] suggested the collocation approaches. Also, in
the context of uncoupled SPVIDEs, numerous reliable techniques are developed. (One may see
[5, 15, 18]). But very few works are done related to the coupled SPVIDEs. In [7], using a uniform
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SOLUTION FOR A SYSTEM OF SPVIDES 2

grid, Kauthen constructed the implicit Volterra Runge Kutta methods for a system of SPVIDEs with
a single perturbation parameter. Recently, Liang et al. [10] studied a posteriori error estimation for
a system of SPVIDEs and obtained first order convergence. However, to the best of our knowledge,
there are no numerical algorithms for a system of SPVIDEs that can converge at second order. In this
work, our main intention is to develop an efficient, global second order accurate and parameter-uniform
numerical approximation for a system of SPVIDEs.
Consider the following one-dimensional system of integro-differential equations.

Lεu(t) =

 εru′r(t)+
2

∑
j=1

ar j(t)u j(t)+
2

∑
j=1

∫ t

0
Kr j(t,s)u j(s)ds = fr(t), r = 1,2,

u1(0) = η1, u2(0) = η2.

(1)

Rewriting the above equations for t ∈ Ω := (0,1) we have:

(2) Lεu := εu′+Au+
∫ t

0
K(t,s)u(s)ds = f , u(0) = η ,

where the unknown solution is denoted by u = (u1,u2)
T , f = ( f1, f2)

T and η = (η1,η2)
T ; A = ar j(t),

K=Kr j is a 2×2 matrix and ε = diag(ε1,ε2) is a diagonal matrix with small perturbation parameters.
For simplicity, we consider 0 < ε1 ≤ ε2 ≪ 1, the other case when ε2 ≤ ε1 can also be solved in a
similar way. The above equations satisfy the following inequalities:

ai j(t)≥ αi j > 0, ai j ≤ 0, i ̸= j, for t ∈ [0,1];(3)

γi = max
t∈[0,1]

|ai j(t)|, i ̸= j;(4)

W̃i = max
t,s∈[0,1]

|Kii(t,s)|, Wi = max
t,s∈[0,1]

|Ki j(t,s)|, i ̸= j.(5)

The functions ar j, fr,Kr j ∈C(Ω) and α = min(α1,α2). The model (1) has a unique solution with all
the above conditions and also possesses overlapping left end boundary layers at t = 0 as ε → 0 . The
main advantage of our work is to formulate a numerical scheme that not only gives a better order of
convergence for the considered model problem, but also improve the accuracy of results as the mesh is
refined in comparison to [10].

The organizational structure of the article is as follows: Section 1 proves the bounds of the exact
solution followed by the formation of meshes and numerical discretization in Section 2. The analysis of
the upwind scheme is carried out in Section 3. Section 4 implements a post-processing technique along
with their global error bounds. Numerical experiments and comparison of results are shown in Section
5 for the validation of theoretical findings. Finally, the article is summarized in Section 6. Throughout
the article, for any function f (t), we set fi = f (ti) and let C > 0 denotes a generic constant independent
of N, ε1 and ε2. The notations C k(Ω) and C k(Ω) denotes k times continuously differentiable function
in the respective domains. The maximum norm is defined by ||z||= max{∥z1∥,∥z2∥} and for any mesh
function, Z = {(Z1(ti),Z2(ti))T}N

i=0, we define ||Z||∞ = max{∥Z1∥∞,∥Z2∥∞}.
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SOLUTION FOR A SYSTEM OF SPVIDES 3

1. Analytical properties

In this section, we describe the properties of the exact solution. The stability of the solution is
established which is later used in the error analysis.

Lemma 1.1. Under the conditions (3)-(5), the solution of problem (1) satisfies the following estimate:

∥u∥ ≤C (∥η∥+∥ f∥) .

Proof. The first equation of (1) can be rewritten as:

(6) ε1u′1(t)+a11(t)u1(t)+
∫ t

0
K11(t,s)u1(s)ds = F1(t),

where
F1(t) = f1(t)−a12(t)u2(t)−

∫ t

0
K12(t,s)u2(s)ds.

Similar to Lemma 2.1 in [4], we have,

u1(t) = |η1|exp
(
−α1t

ε1

)
+

1
ε1

∫ t

0
F1(s)exp

(
− 1

ε1

∫ t

s
a11(t)dt

)
ds

− 1
ε1

∫ t

0

[∫ s

0
K11(s,ξ )u1(ξ )dξ

]
exp
(
− 1

ε1

∫ t

s
a11(t)dt

)
ds

It follows from (3)-(5) that:

|u1(t)|= |η1|exp
(
−α1t

ε1

)
+

1
ε1

∫ t

0
|F1(s)|exp

(
−α1(t − s)

ε1

)
ds

+
1
ε1

∫ t

0

[∫ s

0
[K11(s,ξ )|u1|(ξ )]dξ

]
exp
(
−α1(t −ξ )

ε1

)
ds

≤ |η1|+
1
ε1

∫ ∣∣∣∣ f1(s)−a12(s)u2(s)−
∫ s

0
K12(s,ξ )u2(ξ )dξ

∣∣∣∣exp
(
−α1(t − s)

ε1

)
ds

+
W̃1

α1

(
1− exp

(
−α1t

ε1

))∫ t

0
|u1(s)|ds

≤ |η1|+
| f1|
α1

+
(γ1 +W1)

α1
∥u2∥+

(W̃1)

α1

∫ t

0
|u1(s)|ds.

Employing the Gronwall’s inequality, the above expression becomes:

|u1(t)|=
[
|η1|+

| f1|
α1

+
(γ1 +W1)

α1
∥u2∥

]
exp(α−1

1 W̃1t).(7)

In a similar way, for the second equation of (1), we get:

|u2(t)|=
[
|η2|+

| f2|
α1

+
(γ2 +W2)

α1
∥u1∥

]
exp(α−1

2 W̃2t).(8)

Finally obtaining the bounds, we have

M

(
∥u1∥
∥u2∥

)
≤C

(
|η1|+∥ f1∥
|η2|+∥ f2∥

)
,(9)
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SOLUTION FOR A SYSTEM OF SPVIDES 4

where

M =

 1 −γ1 +W1

α1
exp(α−1

1 W̃1)

−γ2 +W2

α2
exp(α−1

2 W̃2) 1

 .

We know ‘M’ is a monotone matrix iff M−1 ≥ 0. Now, in the above expression, assuming, M is inverse
monotone, thus M−1 > 0, which completes the proof. □

Lemma 1.2. Let u(t) ∈ C 2(Ω) be the solution of (1), then the kth derivative of the exact solution
satisfies the following inequality:

|uk(t)| ≤C
(

1+
1
εk e−αt/ε

)
, for k = 1,2.

Proof. Differentiating Lεu = εu′+Au+
∫ t

0
K(t,s)u(s)ds = f , we get

Lεu′ = f ′−A′u−K(t, t)u(t)+K(t,0)u(0)−
∫ t

0

∂

∂ t

(
K(t,s)u(s)

)
ds.

Now, using Lemma 1.1, denoting the bound on u and considering the fact that kernel K is a bounded

function, we get |u′(t)| ≤ C
ε

exp
(
−αt

ε

)
+C. Similarly, the bounds for u′′(t) can be obtained using

induction. □

2. Mesh and discretization

In this section, first we generate the non-uniform meshes and then discretize (1) using appropriate
schemes. In the case of left boundary layer, we divide the domain [0,1] into two sub-intervals
corresponding to the region where the solution is smooth and to the boundary layers at t = 0. When
0 < ε1 ≤ ε2 ≪ 1, the solution to (1) has overlapping boundary layers at t = 0. This necessitates
the construction of a mesh that is uniform on each sub-intervals [0,τε1 ], [τε1 ,τε2 ] and [τε2 ,1]. On
the main sub-interval, where the smooth solution exists the mesh is coarse, else on the other two
intervals the mesh is finer. For the construction of the Shishkin mesh (S mesh), first we define the

transition points as τε2 = min
(

1
2
,
2ε2

α
lnN

)
, τε1 = min

(
τε2

2
,
2ε1

α
lnN

)
and α = min(α1,α2). Then,

a piecewise uniform S mesh is constructed by subdividing [τε2 ,1] into
N
2

mesh intervals and subdivide

the other two portions into
N
4

mesh intervals. When τε1 =
τε2

2
, then ε2 = O(ε1), and the results can be

easily obtained. Therefore, we only consider the case where τε1 <
τε2

2
. The mesh ΩN is generated as
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SOLUTION FOR A SYSTEM OF SPVIDES 5

follows

ti =



4τε1 i
N

, 0 ≤ i ≤ N
4

τε1 +

(
i− N

4

)
4(τε1 − τε2)

N
,

N
4
< i ≤ N

2
,

τε2 +

(
i− N

2

)
2(1− τε2)

N
,

N
2
< i ≤ N.

(10)

The Shishkin mesh (S mesh) is generated using the mesh function Ψ(t) = 2t lnN. Similarly, we
can generate the Bakhvalov-Shishkin mesh (B-S mesh) using the mesh generating function Ψ(t) =
− ln[1−2(1−N−1)t]. The function Ψ(t) is a monotonically decreasing function satisfying Ψ(0) =

1, and Ψ

(
1
2

)
= lnN. The following discrete scheme is proposed for solving (1) for i = 1, . . . ,N:

(LN
r Ur

N)i =

 εr(D−UN
r)i +

2

∑
w=1

arw(ti)UN
wi +

2

∑
w=1

i−1

∑
j=0

Krw(ti, t j)UN
w jh j = fr(ti),

(UN
r )0 = ηr, r = 1,2.

(11)

The numerical solution for ti, i = 1,2, . . . ,N and system of two equations r = 1,2 are defined by UN
r,i.

The differential operator D−(UN
r )i =

UN
r,i −UN

r,i−1

ti − ti−1
, is the backward Euler scheme used to approximate

the first order differentials. (UN
r )i is the discrete solution for i = 1,2, . . . ,N and r = 1,2. (r implies

system of equations)

Lemma 2.1. For a piecewise differentiable mesh generating function Ψ satisfying the condition

max
[0,1/2]

Ψ
′(x) = max

[0,1/2]

|Ψ′|
Ψ

≤CN,

the following inequality holds:

max
i

∫ xi

xi−1

(1+ ε
−1 exp(−αx/kε))dx ≤C

{
ε +
(

N−1 +N−τ/k
)

max
x∈[0,1/2]

|Ψ′(x)|
}
,

where

max
x∈[0,1/2]

|Ψ′(x)| ≤C lnN, S Mesh,

max
x∈[0,1/2]

|Ψ′(x)| ≤C, B-S Mesh.

3. Analysis of the scheme

In this section, the stability bounds are discussed along with a detailed analysis on the bounds of
truncation error. Rewriting (11), we get

LNUN
i ≡ lNUN

i + Â(ti)UN
i +

i−1

∑
j=0

K(ti, t j)UN
j h j = f (ti), 1 ≤ i ≤ N,(12)
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SOLUTION FOR A SYSTEM OF SPVIDES 6

where

lNUN
i ≡ εD−UN

i +A(ti)UN
i ,

Â(ti) =

(
0 a12(ti)+hiK12(ti, ti)

a21(ti)+hiK21(ti, ti) 0

)

and A(ti) =

(
a11(ti)+hiK11(ti, ti) 0

0 a22(ti)+hiK22(ti, ti)

)
For r = 1,2, we assume that there exist two constants α̃r, such that:

αr +hiKrr(ti, ti)≥ α̃r > 0, 1 ≤ i ≤ N.(13)

Denote LNUN
i = (LN

1 UN
1i ,L

N
2 UN

2i )
T and lNUN

i = (lN
1 UN

1i , l
N
2 UN

2i )
T . Then, under the assumptions (3), (13)

and Lemma 3.1 of [8], we reach at

max
0≤i≤N

|UN
ri | ≤ |UN

r0|+ α̃
−1
r max

1≤i≤N

∣∣lN
r UN

ri
∣∣ , r = 1,2.(14)

Now, to derive the stability bounds of the discrete scheme, we have the following lemma.

Lemma 3.1. Under the conditions (3) and (13), for the numerical solution UN = (UN
1 ,UN

2 )T of (11),
we have:

∥UN∥∞ ≤C(∥η∥+∥ f∥).(15)

Proof. Consider the first equation from (12) and using K1 = max |K1 j|, j = 1,2, we have:

|lN
1 UN

1i |=

∣∣∣∣∣LN
1 UN

1i −a12(ti)UN
2i −

i−1

∑
j=0

K12(ti, t j)UN
2 jh j −

i−1

∑
j=0

K11(ti, t j)UN
1 jh j

∣∣∣∣∣
≤ | f1(ti)|+C max

0≤i≤N
|UN

2i |+K1

i−1

∑
j=1

h j|UN
1 j|.

From (14), one can write

max
0≤i≤N

|UN
1i | ≤ |η1|+C

(
∥ f1(t)∥∞ + max

0≤i≤N
|UN

2i |+
i−1

∑
j=1

h j|UN
1 j|

)
.(16)

Applying the discrete Gronwall inequality to (16) yields:

max
0≤i≤N

|UN
1i | ≤C

(
|η1|

[
∥ f1(t)∥∞ + max

0≤i≤N
|UN

2i |
])

.(17)

Similarly, we have

max
0≤i≤N

|UN
2i | ≤C

(
|η2|

[
∥ f2(t)∥∞ + max

0≤i≤N
|UN

1i |
])

.(18)

Combining (17) and (18), we obtain:

M∥UN∥∞ ≤C (|η |+∥ f∥∞) ,
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SOLUTION FOR A SYSTEM OF SPVIDES 7

where M =

(
1 −C
−C 1

)
. Assuming C < 1 in M, then, M is a nonsingular bounded M-matrix.

Furthermore, we have M−1
> 0, which completes the proof of the lemma. □

Lemma 3.2. If u(t) is the solution of (1), then the truncation error

|Rr,i| ≤Chi, r = 1,2, i = 1, . . . ,N.

Proof. For any ur(t) we now derive the truncation error R1
r,i and R2

r,i for the backward Euler scheme
and the composite rectangular scheme respectively.

|R1
r,i|= εr|(u′r −D−ur)(ti)|

≤Cε1(ti − ti−1) max
t∈[ti−1,ti]

|u′′1(t)|

≤Cε1N−1 max
t∈[ti−1,ti]

(1+ ε
−1
1 e−αt/ε1)≤CN−1 =Chi.(19)

Again,

|R2
r,i|=

∣∣∣∣∣ 2

∑
w=1

i−1

∑
j=0

Krw(ti, t j)UN
w j −

2

∑
w=1

∫ t

0
Krwur(s)ds

∣∣∣∣∣
≤

i−1

∑
j=1

1
2
(u′(ξ1),u′(ξ2))(ti − ti−1)

2

≤
i−1

∑
j=1

M1M2

2
h2

i ≤CNh2
i ≤Chi.(20)

Since u ∈ C (1)(0,1), there exist M1 > 0 and M2 > 0 such that |u′(ξ1)| ≤ M1 and |u′(ξ2)| ≤ M2 for all
ξ1,ξ2 ∈ (0,1). Combining the bounds obtained in (19) and (20), we get the desired results. □

Let E = u−U denotes the error of the finite difference scheme, such that

(LN
r E)i = (LN

r ur)i − (LN
r UN

r )i = (LN
r ur)i − fr(ti)

= εr(D−ur −u′r)i +

(
2

∑
w=1

i−1

∑
j=0

Krw(ti, t j)UN
w jh j −

2

∑
w=1

∫ t

0
Krwur(s)ds

)
Theorem 3.3. Consider u to be the solution of (1) and U being the numerical solution of (11). Then
the following ε uniform estimate holds:

∥u−U∥∞ ≤

{
CN−1 lnN, on S mesh,

CN−1, on B-S mesh.

Proof. Using Lemma 3.2, we know that

|R j
r,i| ≤Chi, r = 1,2, j = 1,2.
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SOLUTION FOR A SYSTEM OF SPVIDES 8

For the inner layer region, i.e., [0,τε1 ], [τε1 ,τε2 ], we have hi =
4τε1

N
and

4(τε1 − τε2)

N
respectively. Also,

τε2 =
2ε2

α
lnN and τε1 <

τε2

2
. Now we calculate the bounds on each of the sub-intervals separately. So,

τε2 = α
−1

ε2 lnN and α
−1

ε2 lnN <
1
2

. On the fine S-mesh, containing boundary layers, inequality (19)
reduces to

|R1
2,i| ≤Cε2N−1 max

t∈[ti−1,ti]
(1+ ε

−1
2 e−αt/ε2)

≤Cε
−1
2

4α−1ε2 lnN
N

≤CN−1 lnN.

Now, on the B-S mesh, using Lemma 3.1, we can obtain |R1
2,i| ≤CN−1. Similarly, for bound of the

integral part,

|R2
2,i| ≤CN−1 lnN, S-mesh

|R2
2,i| ≤CN−1, B-Smesh

Now, considering the outer layer region , i.e., [τε2 ,1], for both the S mesh and B-S mesh, we know

ti = α
−1

ε2 lnN +

(
i− N

2

)
2(1− τε2)

N
, so, we can write for H =

2(1− τε2)

N
, hence the proof in the

outer layer region for obtaining the bounds reamin same for both the type of meshes.

e−
αti−1

ε2 − e−
αti
ε2 =

1
N

e−
α(i−1−N

2 )Hi
ε2

(
1− e−

αH
ε

)
< N−1.

From the above estimate, one can deduce that for the outer layer, |R j
2,i| ≤CN−1, j = 1,2. Following

the proceedings done above, we get the bounds for R j
1,i, j = 1,2. Using the bounds obtained for both

the layers and the result of Lemma 3.1, the proof of the theorem is done. □

4. Richardson extrapolation

The Richardson extrapolation is a well known acceleration technique used for improving the order
of accuracy. In the technique, the solution is calculated on two different nested meshes and then
after eliminating the leading error terms, desired higher order accuracy is obtained. One may refer to
[12, 17] for detailed explanation.

In this paper, we applied the technique for enhancing the convergence rate to second order. Initially,
we solved (1) with N mesh intervals. Keeping the transition parameters τε1 and τε2 intact, further, we
solve it with 2N number of sub-intervals. Both the meshes are nested in such a way that ΩN ⊂ Ω2N .
The solution on ΩN is represented by UN while on Ω2N , the solution is represented using U2N . Thus
from [17], we can write that

(ui −UN
i ) =CN−1 lnN +o(N−1 lnN), for all ti ∈ ΩN

=CN−1
(

ατε2

ε2

)
+o(N−1 lnN)(21)
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SOLUTION FOR A SYSTEM OF SPVIDES 9

where RN(ti) is o(N−1 lnN). In a similar manner, we have

(ui −U2N
i ) =C(2N)−1

(
ατε2

ε2

)
+o(N−1 lnN), for all ti ∈ Ω2N .(22)

Terminating O(N−1) terms from (21) and (22), we get

u(ti)− (2U2N
i −UN

i ) = o(N−1 lnN), for all ti ∈ ΩN .

Finally, we get the extrapolated solution as Ũi denoted by,

Ũi = 2U2N
i −UN

i , for all ti ∈ ΩN .(23)

Consider the error function as Ẽ = u−Ũ after extrapolation. Then, we define Ẽ to be the solution for
r = 1,2 and i = 1,2, . . . ,N as

(LN
r Ẽ)i = (LN

r u)i − (LN
r Ũ)i, (Ẽr)0 = 0.

Theorem 4.1. Let u be the solution of (1) and Ũ be the extrapolated solution obtained through
Richardson extrapolation formula (23). Then we have the following ε-uniform estimate

∥u−U∥∞ ≤

{
CN−2 ln2 N, on S mesh,

CN−2, on B-S mesh.

Proof. Here, we provide the proof of the theorem separately for inner layer and outer layer region.
From Theorem 3.3, and applying the Taylor’s series with integral form of the remainder, we have

∣∣∣LN
r (Ui −ui)−LN

r Ẽi

∣∣∣
≤ εr

2hi

∣∣∣∣∫ ti

ti−1

(s− ti−1)
2u′′′r (s)ds

∣∣∣∣+
∣∣∣∣∣ 2

∑
w=1

i−1

∑
j=0

∫ t j

t j−1

∫ t

t j−1

[Krw(ti,s)ur(s)]
′′ (s− t j−1)dsdt

∣∣∣∣∣
≤ C

2hi

∫ ti

ti−1

(t − ti−1)
2[1+ |u′r(s)|+ |u′′r (s)|]ds

+C
2

∑
w=1

i−1

∑
j=0

∫ t j

t j−1

∫ t

t j−1

[
1+ |u′r(s)|+ |u′′r (s)|

]
(s− t j−1)dsdt

≤Ch−2
i +C

∫ ti

ti−1

(s− ti−1)|u′′r (t)|ds+Ch−2
i ≤Ch2

i
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SOLUTION FOR A SYSTEM OF SPVIDES 10

Similarly, by using Taylor series expansion, we obtain∣∣∣∣LN
r (U

2N
i −ui)−

1
2

LN
r Ẽi

∣∣∣∣
≤

∣∣∣∣∣εr

hi

∫ ti

ti−1/2

u′′′r (s)(s− ti−1/2)
2ds

∣∣∣∣∣+ 1
2

2

∑
w=1

i−1

∑
j=0

∣∣∣∣∫ t j

t j−1

∫ t

t j−1

(Krw(ti,s)ur(s))′′(s− t j−1)dsdt
∣∣∣∣

+
1
2

2

∑
w=1

i−1

∑
j=0

∣∣∣∣∫ t j

t j−1

∫ t

t j−1

(Krw(ti,s)ur(s))′′(t − s)dsdt
∣∣∣∣

≤C
∫ t j

t j−1

(s− ti−1)
[
1+ |u′r(s)|+ |u′′r (s)|

]
ds

+C
2

∑
w=1

i−1

∑
j=0

∣∣∣∣∫ t j

t j−1

∫ t

t j−1

[
1+ |u′r(s)|+ |u′′r (s)|

]
(s− t j−1)dsdt

∣∣∣∣
≤Ch2

i .

Combining the above two inequalities for obtaining the global error in the inner layer region with
hi = 4ε2N−1 lnNα

−1, we have,

∥Ũ −u∥∞ ≤C
∣∣∣LNŨi −LNui

∣∣∣
=C

∣∣∣∣[LN(U2N
i −ui)−

1
2

LNẼi

]
−
[
LN(UN

i −ui)−LNẼi

]∣∣∣∣
≤C

∣∣∣∣[LN(U2N
i −ui)−

1
2

LNẼi

]∣∣∣∣+ ∣∣∣[LN(UN
i −ui)−LNẼi

]∣∣∣
≤CN−2 ln2 N, on the S mesh.(24)

Using the Lemma 3.1, one can get the bounds on B-S mesh as ∥Ũ −u∥∞ ≤CN−2. The bounds on both
the S mesh and B-S mesh are same in the outer layer region [τε2 ,1] with hi = 2N−1 as follows:

∥Ũ −u∥∞ ≤C
∣∣∣LNŨi −LNui

∣∣∣
=C

∣∣∣∣[LN(U2N
i −ui)−

1
2

LNẼi

]
−
[
LN(UN

i −ui)−LNẼi

]∣∣∣∣
≤C

∣∣∣∣[LN(U2N
i −ui)−

1
2

LNẼi

]∣∣∣∣+ ∣∣∣[LN(UN
i −ui)−LNẼi

]∣∣∣
≤CN−2.(25)

Combining (24), (25), and estimate from Lemma 3.1 we get the desired result. □

5. Numerical simulation

To demonstrate that the numerical results reproduce the error estimates, we have performed a few
numerical experiments.
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SOLUTION FOR A SYSTEM OF SPVIDES 11

Example 5.1. The following system of SPVIDEs is considered

ε1u′1 +(2+ t)u1 −u2 +
∫ t

0
(u2

1 +u2
2)ds = 1− t,

ε2u′2 − (1+ t)u1 +(2+ t)u2 +
∫ t

0
(u2

1u2
2)ds = t,

u1(0) = 1, u2(0) = 0.

Example 5.2. Consider the system

ε1u′1 +(2+ tan(t))u1 −2tu2 +
∫ t

0
((t + s)eu1 + etsu2)ds = t2,

ε2u′2 − t sin(t)u1 + etu2 +
∫ t

0
(tu1(s)+ s2u2)ds = sin(t),

u1(0) = 2, u2(0) = 2.

The exact solution of above examples are unknown. So, we use the double mesh principle to obtain the
maximum point-wise errors and order of convergence. For any given N, the maximum point-wise error

is calculated by using Σ
N
ε = ∥UN −U2N∥∞. The order of accuracy is evaluated as: rN

ε = log2

(
ΣN

ε

Σ2N
ε

)
.

Figure 1(a) shows the solution plots for both the solutions u1 and u2 with different values of ε . The
stiffness in the layers can be clearly observed from the graphs as the perturbation factor reduces. Figure
1(b) depicts the total error curve before and after extrapolation for ε1 = 10−3 and ε2 = 10−2. The
picture describes the effect on point-wise errors after the post-processing technique. The Log-log plots
are also demonstrated for the examples. Figure 2(a) draws the error obtained for u2 at ε1 = ε2 = 10−2 on
a logarithmic scale. Similarly, Figure 2(b) depicts the log-log plots for u1 at ε1 = 10−6 and ε2 = 10−3.
The computed errors drop at about the same rate as those shown theoretically, and the rate is doubled
after the application of Richardson extrapolation.

Tabular data are also recorded for showing the correctness and effectiveness of the proposed
scheme. Tables 1 and 2 show the maximum point-wise errors and rate of convergence before and
after extrapolation keeping ε2 fixed and with varying ε1. It can be observed that the scheme attains
ε-uniform convergence before and after extrapolation and the convergence rate is doubled after the use
of extrapolation formula. In the similar way, Tables 3 and 4 record the Σ

N
ε and rN

ε for Example 5.2.
One can observe that though we have assumed 0 < ε1 ≤ ε2 ≪ 1 theoretically, but computationally the
proposed scheme gives accurate results even if the assumed condition is little violated. Finally, we
have computed the results on both the S mesh and B-S mesh in Table 5 which shows that B-S mesh
gives greater accuracy than S mesh before and after extrapolation.

6. Conclusion

In this paper, the Richardson extrapolation technique is used on the classical finite difference scheme
for solving a system of Volterra integro-differential equations exhibiting boundary layers. First, by
using an upwind scheme for the derivative component, and rectangular rule for the non-linear integral
part, a difference scheme is constructed on the non-uniform meshes. Error analysis is carried out and
first order accuracy is attained. Then, the Richardson extrapolation is used on the proposed scheme,
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SOLUTION FOR A SYSTEM OF SPVIDES 12

successfully improving the order of accuracy from first order to second order. Finally, the theoretical
observations are substantiated through parameter-uniform error estimates and are corroborated by
various numerical tests.
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SOLUTION FOR A SYSTEM OF SPVIDES 14

TABLE 1. Σ
N
ε and rN

ε before and after extrapolation for Example 5.1 for ε2 = 10−1 for
u1.

ε1 N 32 64 128 256 512 1024
Before 9.4414e-3 6.3316e-3 3.9590e-3 2.3620e-3 1.3642e-3 7.6958e-4

10−1 rate 0.576 0.677 0.745 0.792 0.826
After 1.3600e-3 5.8153e-4 2.2251e-4 7.7772e-5 2.5663e-5 8.1087e-6
rate 1.226 1.386 1.517 1.600 1.662

Before 2.0528e-2 1.3869e-2 8.7787e-3 5.2945e-3 3.0775e-3 1.7432e-3
10−2 rate 0.566 0.660 0.730 0.783 0.820

After 3.6162e-3 1.6163e-3 6.3052e-4 2.2453e-4 7.5154e-5 2.3979e-5
rate 1.162 1.358 1.490 1.579 1.648

Before 2.0713e-2 1.3916e-2 8.7879e-3 5.2791e-3 3.0685e-3 1.7369e-3
10−4 rate 0.574 0.663 0.735 0.783 0.821

After 3.5063e-3 1.5689e-3 6.0852e-4 2.1667e-4 7.2479e-5 2.3074e-5
rate 1.160 1.366 1.490 1.580 1.651

Before 2.0714e-2 1.3916e-2 8.7875e-3 5.2787e-3 3.0683e-3 1.7368e-3
10−5 rate 0.574 0.663 0.735 0.783 0.821

After 3.5053e-3 1.5685e-3 6.0832e-4 2.1660e-4 7.2455e-5 2.3066e-5
rate 1.160 1.366 1.490 1.580 1.651

Before 2.0714e-2 1.3916e-2 8.7875e-3 5.2787e-3 3.0683e-3 1.7368e-3
10−6 rate 0.574 0.663 0.735 0.783 0.821

After 3.5053e-3 1.5685e-3 6.0832e-4 2.1660e-4 7.2455e-5 2.3066e-5
rate 1.160 1.366 1.490 1.580 1.651
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SOLUTION FOR A SYSTEM OF SPVIDES 15

TABLE 2. Σ
N
ε and rN

ε before and after extrapolation for Example 5.1 for ε2 = 10−1 for
u2.

ε1 N 32 64 128 256 512 1024
Before 5.8510e-3 3.6791e-3 2.2120e-3 1.2890e-3 7.3346e-4 4.1017e-4

10−1 rate 0.669 0.734 0.779 0.814 0.838
After 5.6058e-4 2.2339e-4 8.1235e-5 2.7617e-5 8.9495e-6 2.8007e-6
rate 1.327 1.459 1.557 1.626 1.676

Before 3.7919e-3 2.3063e-3 1.3428e-3 7.5704e-4 4.1699e-4 2.2578e-4
10−2 rate 0.717 0.780 0.827 0.860 0.885

After 3.1042e-4 1.1908e-4 4.1301e-5 1.3402e-5 4.1390e-6 1.2345e-6
rate 1.382 1.528 1.624 1.695 1.745

Before 5.2299e-3 3.3089e-3 1.9999e-3 1.1672e-3 6.6456e-4 3.7177e-4
10−4 rate 0.660 0.726 0.777 0.813 0.838

After 5.3814e-4 2.1506e-4 7.8216e-5 2.6581e-5 8.6145e-6 2.6949e-6
rate 1.323 1.459 1.557 1.626 1.677

Before 5.2459e-3 3.3208e-3 2.0076e-3 1.1722e-3 6.6760e-4 3.7360e-4
10−5 rate 0.660 0.726 0.776 0.812 0.837

After 5.4066e-4 2.1624e-4 7.8678e-5 2.6748e-5 8.6729e-6 2.7143e-6
rate 1.322 1.459 1.557 1.625 1.676

Before 5.2459e-3 3.3208e-3 2.0076e-3 1.1722e-3 6.6760e-4 3.7360e-4
10−6 rate 0.660 0.726 0.776 0.812 0.837

After 5.4066e-4 2.1624e-4 7.8678e-5 2.6748e-5 8.6729e-6 2.7143e-6
rate 1.322 1.459 1.557 1.625 1.676
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TABLE 3. Σ
N
ε and rN

ε before and after extrapolation for Example 5.2 for ε2 = 10−3 for
u2.

ε1 N 32 64 128 256 512 1024
Before 3.8425e-2 2.4409e-2 1.4749e-2 8.6127e-3 4.9070e-3 2.7464e-3

10−1 rate 0.655 0.727 0.776 0.812 0.837
After 3.3951e-3 1.4465e-3 4.4177e-4 1.4183e-4 4.5841e-5 1.4323e-5
rate 1.231 1.711 1.639 1.629 1.678

Before 3.8425e-2 2.4409e-2 1.4749e-2 8.6127e-3 4.9070e-3 2.7464e-3
10−3 rate 0.655 0.727 0.776 0.812 0.837

After 2.9527e-3 1.1603e-3 4.1874e-4 1.4173e-4 4.5809e-5 1.6417e-5
rate 1.348 1.470 1.563 1.629 1.480

Before 4.4835e-2 2.7659e-2 1.5883e-2 8.7943e-3 4.7157e-3 2.4759e-3
10−4 rate 0.697 0.800 0.853 0.899 0.929

After 5.2353e-3 2.0276e-3 7.0104e-4 2.2490e-4 6.7922e-5 1.9691e-5
rate 1.369 1.532 1.640 1.727 1.786

Before 6.4202e-2 4.2716e-2 2.6327e-2 1.5572e-2 8.9107e-3 4.9841e-3
10−5 rate 0.588 0.698 0.758 0.805 0.838

After 8.7957e-3 3.7437e-3 1.4337e-3 4.9758e-4 1.6275e-4 5.1072e-5
rate 1.232 1.385 1.527 1.612 1.672

Before 6.7272e-2 4.5052e-2 2.8015e-2 1.6693e-2 9.6279e-3 5.4268e-3
10−7 rate 0.578 0.685 0.747 0.794 0.827

After 9.2630e-3 3.9810e-3 1.5416e-3 5.3939e-4 1.7776e-4 5.6248e-5
rate 1.218 1.369 1.515 1.601 1.660

Before 6.7272e-2 4.5052e-2 2.8015e-2 1.6693e-2 9.6279e-3 5.4268e-3
10−8 rate 0.578 0.685 0.747 0.794 0.827

After 9.2630e-3 3.9810e-3 1.5416e-3 5.3939e-4 1.7776e-4 5.6248e-5
rate 1.218 1.369 1.515 1.601 1.660
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TABLE 4. Σ
N
ε and rN

ε before and after extrapolation for Example 5.2 for ε2 = 1 for u1.

ε1 N 32 64 128 256 512 1024
Before 1.3152e-2 6.5504e-3 3.2693e-3 1.6332e-3 8.1627e-4 4.0805e-4

100 rate 1.006 1.003 1.001 1.001 1.000
After 1.2877e-2 4.1626e-3 1.2045e-3 3.2607e-4 8.4691e-5 2.1597e-5
rate 1.629 1.789 1.885 1.945 1.971

Before 7.3246e-2 4.2288e-2 2.3259e-2 1.2196e-2 6.2458e-3 3.1616e-3
10−1 rate 0.793 0.862 0.931 0.965 0.982

After 1.2877e-2 4.1626e-3 1.2045e-3 3.2607e-4 8.4691e-5 2.1597e-5
rate 1.629 1.789 1.885 1.945 1.971

Before 1.0645e-1 7.7840e-2 5.0578e-2 3.1224e-2 1.8455e-2 1.0556e-2
10−2 rate 0.452 0.622 0.696 0.759 0.806

After 2.6737e-2 1.2281e-2 5.2461e-3 1.9410e-3 6.6711e-4 2.1613e-4
rate 1.122 1.227 1.434 1.541 1.626

Before 1.0758e-1 7.8671e-2 5.1113e-2 3.1556e-2 1.8650e-2 1.0667e-2
10−4 rate 0.452 0.622 0.696 0.759 0.806

After 2.7013e-2 1.2413e-2 5.3022e-3 1.9616e-3 6.7433e-4 2.1847e-4
rate 1.122 1.227 1.435 1.540 1.626

Before 1.0758e-1 7.8671e-2 5.1113e-2 3.1556e-2 1.8650e-2 1.0667e-2
10−5 rate 0.452 0.622 0.696 0.759 0.806

After 2.7013e-2 1.2413e-2 5.3022e-3 1.9616e-3 6.7433e-4 2.1847e-4
rate 1.122 1.227 1.435 1.540 1.626
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TABLE 5. Σ
N
ε and rN

ε before extrapolation for Example 5.2 for ε2 = 1e−1 for u1.

S mesh B-S mesh
ε1 64 128 256 64 128 256

1e−1 Before 3.5980e-3 2.1427e-3 1.2375e-3 3.0571e-3 1.4614e-3 8.1541e-4
rate 0.745 0.792 0.813 0.991 1.065 1.101

After 1.8667e-3 5.9148e-4 1.6986e-4 1.2342e-3 3.1903e-4 8.1002e-5
rate 1.413 1.658 1.800 1.952 1.978 1.988

1e−5 Before 3.6054e-3 2.1469e-3 1.2399e-3 3.3480e-3 1.7304e-3 8.7855e-4
rate 0.680 0.748 0.792 0.927 0.952 0.978

After 3.4867e-4 1.4898e-4 5.5247e-5 2.9889e-4 8.4898e-5 2.2334e-5
rate 1.227 1.431 1.550 1.816 1.926 1.998

1e−7 Before 3.6054e-3 2.1469e-3 1.2399e-3 3.3480e-3 1.7304e-3 8.7855e-4
rate 0.680 0.748 0.792 0.927 0.952 0.978

After 3.4867e-4 1.4898e-4 5.5247e-5 2.9889e-4 8.4898e-5 2.2334e-5
rate 1.227 1.431 1.550 1.816 1.926 1.998
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