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2 Wenlin Qiu et al.

1 Introduction

This work considers numerical approximation of the following partial integro-
differential equation of hyperbolic type proposed in, e.g. [1,2,8,11,26,35]

u′′(t) +Au(t)− (β ∗Au)(t) = f(t, u(t)), t > 0, (1)

subject to the initial conditions

u(0) = u0, u′(0) = u1. (2)

Here A is a positive self-adjoint densely defined linear operator on the Hilbert
space H, u0, u1 ∈ H are given data, and β(t) ∈ L1(R+) is a scalar memory
kernel. By [6, Theorem 9 and 11], there exists a unique positive self-adjoint

operator A
1
2 such that (A

1
2 )2 = A. The ∗ represents the convolution defined

by

(β ∗ ψ)(t) :=
∫ t

0

β(t− s)ψ(s)ds, t ≥ 0. (3)

Integro-differential equations such as (1)–(2) with f(t, u(t)) = f(t) arise in
several fields such as the linear viscoelasticity or heat conduction with mem-
ory [5,9,16,21,23,28–32,37,38], and the operator A usually takes the form
of the negative Laplacian, the Stokes operator, or the biharmonic operator,
etc., equipped with appropriate boundary conditions [24–26]. Furthermore,
the kernel β is assumed to satisfy the following conditions in the aforemen-
tioned works:

β(t) ≥ 0 is non-increasing, locally absolutely continuous on (0,∞)

with
∫∞
0
β(t)dt < 1.

(4)

Some typical examples of such kernels are the weak singular kernel [17,27]

β(t) = γ0
tα−1

Γ (α)
e−ρt, t > 0, ρ > 0, 0 < α < 1, γ0 ∈ (0, ρα), (5)

and the smooth kernel [36]

β(t) =
e−t(1− e−t)

t
. (6)

There exist several theoretical studies for the linear case of problem (1)–
(2) on the existence and decay properties of the solutions [1,2,7,8,11,20,26],
and some numerical studies have also been considered. For instance, Pani et
al. [22] considered the interpolation quadrature to solve (1) with a smooth
kernel. Then, Larsson et al. considered the continuous Galerkin method [14]
and discontinuous Galerkin method [15] for the linear case of (1)–(2) with
weak singular kernels. Karaa and Pani developed the mixed finite element
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Numerical approximation and analysis for partial integro-differential equation 3

method [12] and the discontinuous Galerkin method [13] for the linear case of
(1)–(2) with smooth kernels.

For nonlinear problems, a pioneering work investigated the attenuated
Westervelt equation [3], which, compared with the problem (1)–(2), contained
an additional nonlinear term k(u2)′′ for some k > 0 and the two specific
kernels, i.e. the tempered fractional kernel and the Mittag-Leffler type ker-
nel. The existence and regularity of the solutions were rigorously proved via
sophisticated analysis, which in turn supported the error estimates of the nu-
merical discretization based on the trapezoidal rule and A-stable convolution
quadrature (CQ).

Despite the aforementioned significant progress, these works rely on prop-
erties of the kernel, which are not always available. For instance, a class of
variable-order fractional kernels was considered in, e.g. [10], to account for
the varying nature of non-localities, which varied the order of the operators
in the Laplace domain such that the explicit form of the resulting kernel and
thus its properties were in general not available. For such complicated prob-
lems, Xu applied the Laplace transform for model (1)–(2) to split the solution
into two parts, and the CQ in which the underlying multistep method was
the trapezoidal rule was utilized for temporal discretization [35]. For nonlin-
ear problems, it is difficult to apply the Laplace transform method, which
motivates us to develop a direct and CQ-based computation method.

In this work, we consider a direct discretization scheme for model (1)–(2)
where the second-order difference and CQ schemes are applied for approximat-
ing the second-order time derivative and the convolution term, respectively,
which is feasible to treat nonlinear problems without explicit expressions of
kernels. The main contributions are enumerated as follows:

– We prove the finite time stability of the numerical solutions to the linear
case of problem (1)–(2) based only on the imposed properties of the Laplace
transform of the kernel, and specify the condition that ensures the long
time stability of the numerical solutions. In particular, a novel norm is
introduced (cf. Equation (25)), which captures the structure of the scheme
and thus significantly simplifies the analysis procedure.

– We prove error estimates for the numerical scheme of the linear case of
problem (1)–(2). A key ingredient lies in developing a new approximate
result of CQ for the convolution of non-smooth functions (cf. Lemma 2)
by technical derivations, which accounts for the possible singularity of the
solutions caused by that of the memory kernel.

– We extend the developed methods to construct and analyze a numerical
scheme for the nonlinear problem (1)–(2), which circumvents the limitation
of the Laplace transform method and generalizes the application of the
proposed numerical discretization method for more complicated problems.

The rest of this paper is organized as follows: We propose a discrete-in-time
scheme for the linear problem in Section 2. The stability analysis of numerical
solutions is given in Section 3. Section 4 presents the error estimates for the
proposed scheme. In Section 5, we extend the developed methods to construct
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4 Wenlin Qiu et al.

a numerical scheme of the semi-linear problem. Numerical experiments are
carried out to substantiate the theoretical results in Section 6.

2 Discrete-in-time scheme for linear problem

Define the norms by ∥w∥ =
√

⟨w,w⟩ and ∥w∥m =
∥∥Am/2w

∥∥ for m = 1, 2, 3, 4,
and denote

b(t) =

∫ ∞

t

β(q)dq and b0 := b(0) =

∫ ∞

0

β(q)dq, (7)

where β(t) is given in (4). Based on the assumptions in (4), b(t) is nonnegative,
non-increasing and convex on (0,∞). We then follow the ideas in [24,35] to
apply the integration by parts to obtain

Au(t)− (β ∗Au)(t) = (1− b0)Au(t) + b(t)Au0 + (b ∗Au′)(t).

This reformulation eliminates the negative sign in the convolution term in (1)
that facilitates the analysis. Then for f(t, u(t)) = 0, we first consider the linear
case of problem (1)–(2), and rewrite (1) as

u′′(t) + (1− b0)Au(t) + b(t)Au0 + (b ∗Au′)(t) = 0. (8)

To discretize (8), we set the time step size k and consider (8) at tn = nk

u′′(tn) + (1− b0)Au(tn) + bnAu0 + (b ∗Au′)(tn) = 0, n ≥ 1, (9)

where bn =
∫∞
tn
β(s)ds. Then we discretize the terms in (9) one by one. Let

un = u(tn) and

δtu
n =

un − un−1

k
, δ

(2)
t un = δt(δtu

n+1),

ũn =
un+1 + 2un + un−1

4
, un =

un+1 − un−1

2k
.

(10)

We approximate u′′(tn) by δ
(2)
t un with the remainder expressed by the Taylor’s

expansion

u′′(tn)− δ
(2)
t un =

−1

6k2

[∫ tn+1

tn

(tn+1 − t)3u′′′′(t)dt+

∫ tn

tn−1

(t− tn−1)
3u′′′′(t)dt

]
≡ [Rt,1]

n
, n ≥ 2,

u′′(t1)− δ
(2)
t u1 =

−1

2k2

[∫ t2

t1

(t2 − t)2u′′′(t)dt+

∫ t1

0

t2u′′′(t)dt

]
≡ [Rt,1]

1
,

(11)
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Numerical approximation and analysis for partial integro-differential equation 5

Then we follow [22] to approximate Au(tn) by Aũn with the remainder ex-
pressed by the Taylor’s expansion

Au(tn)−Aũn =
−1

4

[∫ tn+1

tn

(tn+1 − t)Au′′(t)dt+

∫ tn

tn−1

(t− tn−1)Au
′′(t)dt

]
≡ [Rt,2]

n
, n ≥ 1.

(12)

To approximate the convolution term b ∗Au′, we adopt the following second-
order CQ [18,19] for the convolution b ∗ φ

Q̃tn(φ) = Qtn(φ)+χn0(k)φ(0), where Qt(φ) =
∑

0≤tp≤t

ωp(k)φ(t− tp), (13)

with the quadrature weights ωn(k) being the coefficients of the power series

b̂

(
ζ(z)

k

)
=

∞∑
n=0

ωn(k)z
n, |z| < 1; ζ(z) =

(3− z)(1− z)

2
, z ∈ C, (14)

where b̂(s) represents the Laplace transform of b(t). The starting weight in
(13) is given in order to maintain the second-order accuracy

χn0(k) = (b ∗ 1) (tn)−
n∑

p=0

ωp(k). (15)

Based on [19], ζ(z) satisfies the following conditions:

(i) ζ(z) is analytic and without zeros in a neighborhood of the closed unit disc
|z| ≤ 1, with the exception of a zero at z = 1;

(ii) | arg ζ(z)| ≤ π/2 for |z| < 1 and 1
k ζ(e

−k) = 1 +O(k2).

Then the convolution term b ∗Au′ is approximated by integrating the second-
order CQ with the leapfrog scheme

(b ∗Au′) (tn) = Q̃tn(Au) + [Rt,3]
n
,

with u0 := u1, the initial value of u′, and the error

[Rt,3]
n
=
[
(b ∗Au′) (tn)− Q̃tn(Au

′)
]
+ Q̃tn

(
A(u′ − u)

)
=: [Rt,3,1]

n
+ [Rt,3,2]

n
.

(16)

Invoking (11)-(13) in (9) we have

δ
(2)
t un + (1− b0)Aũ

n + bnAu0 + Q̃tn(Au) = [Rt]
n
, n ≥ 1, (17)

where [Rt]
n
= −

∑3
j=1 [Rt,j ]

n
. Furthermore, the initial data (2) provides

δtu
1 −

(
u1 +

k

2
u2

)
=

1

2k

∫ k

0

(k − t)2u′′′(t)dt ≡ [Rt]
0
, u0 = u0. (18)
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where u2 := u′′(0) = −Au0 from (8). Let Un be the approximated solution of

un with U
0
= u0. Then we drop the truncation errors in (17) and (18) to get

the discrete-in-time scheme

δ
(2)
t Un + (1− b0)AŨ

n + bnAu0 + Q̃tn(AU) = 0, n ≥ 1, (19)

δtU
1 = u1 +

k

2
u2, U0 = u0. (20)

Throughout this paper, C denotes a positive constant that is independent
of the time step size but may assume different values at different occurrences.

3 Numerical stability

We first establish the finite-time stability of the numerical solution, and then
specify the condition that ensures the long-time stability. We follow [19] to
make conventional assumptions for the Laplace transform of b for the sake of
numerical analysis:

Assumption A: b̂(s) is analytic in a sector | arg(s − c)| < π − θ with

θ < π/2 and c ∈ R, and satisfies |̂b(s)| ≤ M|s|−µ for some M <∞ and µ > 0.

Theorem 1 Suppose (4) and the Assumption A hold. Then for T < ∞ with
N + 1 = T/k, the finite-time stability holds

∥Un∥+ ∥δtUn∥ ≤ C(T )
(
∥u0∥2 + k2∥u0∥3 + ∥u1∥+ k∥u1∥2

)
, 1 ≤ n ≤ N +1.

Proof First, we take the inner product of (19) with U
n
to get

1

2k3

[∥∥Un+1
∥∥2 − ∥∥Un−1

∥∥2 − 2
〈
Un, Un+1

〉
+ 2

〈
Un−1, Un

〉]
+ bn

〈
Au0, U

n
〉
+

(1− b0)

8k

[∥∥Un+1
∥∥2
1
−
∥∥Un−1

∥∥2
1

]
+

(1− b0)

8k

[
2
〈
A

1
2Un, A

1
2Un+1

〉
− 2

〈
A

1
2Un−1, A

1
2Un

〉]
+

n∑
p=0

ωp(k)
〈
A

1
2U

n−p
, A

1
2U

n
〉
+ χn0(k)

〈
Au1, U

n
〉
= 0,

(21)

where we use the results that〈
δ
(2)
t Un, U

n
〉
=

1

2k3
[
∥Un+1∥2 − ∥Un−1∥2 − 2⟨Un, Un+1⟩+ 2⟨Un, Un−1⟩

]
=

1

2k3
(
∥Un+1 − Un∥2 − ∥Un − Un−1∥2

)
,

(22)
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and that〈
AŨn, U

n
〉
=

1

8k

[
∥Un+1∥21 − ∥Un−1∥21 − 2⟨A 1

2Un, A
1
2Un+1⟩+ 2⟨A 1

2Un, A
1
2Un−1⟩

]
=

1

8k

(
∥(Un+1 + Un)∥21 − ∥(Un + Un−1)∥21

)
.

(23)

Then summing (21) for n from 1 to M for some M ≤ N , we have

∥∥UM
∥∥2
A
=
∥∥U0

∥∥2
A
− 2k3

M∑
n=1

bn

〈
Au0, U

n
〉
+ 2k3ω0(k)

〈
A

1
2u1, A

1
2u1

〉
− 2k3

M∑
n=0

n∑
p=0

ωp(k)
〈
A

1
2U

n−p
, A

1
2U

n
〉
− 2k3

M∑
n=1

χn0(k)
〈
Au1, U

n
〉
,

(24)

in which U
0
= u1 and the norm ∥ · ∥A is defined as

∥V n∥A :=

√
∥V n+1 − V n∥2 + (1− b0)k2

4

∥∥ (V n+1 + V n)
∥∥2
1
, n ≥ 0. (25)

By using [34, Lemma 3.1], we have

M∑
n=0

n∑
p=0

ωp(k)
〈
A

1
2U

n−p
, A

1
2U

n
〉
≥ 0. (26)

Using (26), (20) and Cauchy-Schwarz inequality, (24) implies

∥∥UM
∥∥2
A
≤
∥∥U0

∥∥2
A
+ 2k3

M∑
n=1

bn ∥Au0∥
∥∥Un∥∥+ 2k2ω0(k) ∥Au1∥

∥∥U1
∥∥
A

+ 2k3
M∑
n=1

|χn0(k)| ∥Au1∥
∥∥Un∥∥,

which, together with∥∥∥Un
∥∥∥ ≤

∥∥Un+1 − Un
∥∥+ ∥∥Un − Un−1

∥∥
2k

≤
∥Un∥A +

∥∥Un−1
∥∥
A

2k
, (27)

leads to

∥∥UM
∥∥2
A
≤
∥∥U0

∥∥2
A
+ k ∥u0∥2

[
k

M∑
n=1

bn
(
∥Un∥A +

∥∥Un−1
∥∥
A

)]

+ k ∥u1∥2

[
k

M∑
n=1

|χn0(k)|
(
∥Un∥A +

∥∥Un−1
∥∥
A

)
+ 2kω0(k)

∥∥U1
∥∥
A

]
.

(28)
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Denote
∥∥UJ

∥∥
A
:= max

0≤n≤N
∥Un∥A, and (28) leads to

∥∥UJ
∥∥2
A
≤
∥∥U0

∥∥
A

∥∥UJ
∥∥
A
+ k ∥u0∥2

[
k

J∑
n=1

bn
(
∥Un∥A +

∥∥Un−1
∥∥
A

)]

+ k ∥u1∥2

[
k

J∑
n=1

|χn0(k)|
(
∥Un∥A +

∥∥Un−1
∥∥
A

)
+ 2kω0(k)

∥∥U1
∥∥
A

]

≤
∥∥U0

∥∥
A

∥∥UJ
∥∥
A
+ 2k ∥u0∥2

(
k

J∑
n=1

bn

)∥∥UJ
∥∥
A

+ 2k ∥u1∥2

(
k

J∑
n=1

|χn0(k)|+ kω0(k)

)∥∥UJ
∥∥
A
,

which naturally implies

∥∥UJ
∥∥
A
≤
∥∥U0

∥∥
A
+ 2k ∥u0∥2

(
k

J∑
n=1

bn

)
+ 2k ∥u1∥2

[
k

J∑
n=1

|χn0(k)|+ kω0(k)

]

≤
∥∥U0

∥∥
A
+ 2k ∥u0∥2

(
k

N∑
n=1

bn

)
+ 2k ∥u1∥2

[
k

N∑
n=1

|χn0(k)|+ kω0(k)

]
.

(29)

By (7), the properties of b(t) and (4), we have

k

N∑
n=1

bn ≤ Tb0, (30)

and from (14) with ζ(0)
k = 3

2k , we also have

ω0(k) = b̂

(
ζ(0)

k

)
=

∫ ∞

0

e−
3
2k t b(t)dt ≤ 2b0

3
k. (31)

Inserting (30)–(31) into (29) and utilizing (25), we have

∥∥UM
∥∥
A
≤
∥∥UJ

∥∥
A
≤
∥∥U1 − U0

∥∥+ √
1− b0
2

k
∥∥U1 + U0

∥∥
1

+ 2Tb0k ∥u0∥2 +
4b0
3
k3 ∥u1∥2 + 2k2

(
N∑

n=1

|χn0(k)|

)
∥u1∥2

≤ k ∥u1∥+
k2

2
∥u0∥2 +

√
1− b0
2

k

(
2 ∥u0∥1 + k ∥u1∥1 +

k2

2
∥u0∥3

)
+ 2Tb0k ∥u0∥2 +

4b0
3
k3 ∥u1∥2 + 2k2

(
N∑

n=1

|χn0(k)|

)
∥u1∥2 ,

(32)
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where we used (20), i.e.

U1 = U0 + ku1 +
k2

2
u2 = u0 + ku1 −

k2

2
Au0. (33)

By |χn0(k)| ≤ Ctµ−1
n k [19], we have c∗N :=

N∑
n=1

|χn0(k)| ≤ C(T ) such that (32)

leads to

∥∥UM
∥∥
A
≤ k

[√
1− b0 ∥u0∥1 +

(
2Tb0 +

k

2

)
∥u0∥2 +

√
1− b0
4

k2 ∥u0∥3 + ∥u1∥

+

√
1− b0
2

k ∥u1∥1 + 2k

(
2b0
3
k + c∗N

)
∥u1∥2

]
:= kΦ(u0, u1).

(34)

Then (25) and (34) give∥∥UM+1 − UM
∥∥ ≤ kΦ(u0, u1),

∥∥δtUM+1
∥∥ ≤ Φ(u0, u1), (35)

and we use the property of A to obtain

2√
1− b0

Φ(u0, u1) ≥
∥∥(UM+1 + UM

)∥∥
1
≥ c′

∥∥UM+1 + UM
∥∥ . (36)

Combining (35) and (36), we further arrive at

∥∥UM+1
∥∥ ≤

∥∥UM+1 + UM
∥∥+ ∥∥UM+1 − UM

∥∥
2

≤
(
k

2
+

1

c′
√
1− b0

)
Φ(u0, u1).

(37)

Thus the proof is completed by combining (35) and (37).

Based on the above proof, we shall extend to establish the long-time sta-
bility of numerical solutions for model (1)–(2) with exponential decay kernels
such as (5) and (6), an important class of kernels that satisfies (4) and the
Assumption A.

Theorem 2 Let Un be numerical solution of (19)-(20) for n ≥ 0. Under (4),
the Assumption A and the following exponential decay condition:

β(t) = e−ρtβ0(t) for some 0 < ρ <∞ such that β0(t) ≥ 0 is non-increasing,

then the following long-time stability holds if the derivative initial condition
u1 = 0

∥Un∥+ ∥δtUn∥ ≤ C
(
∥u0∥2 + k2∥u0∥3

)
, n ≥ 1.
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Proof Let
∥∥UK

∥∥
A

:= max
n≥0

∥Un∥A where K might be a finite number or the

infinity. Then similar to the analysis of (29), we apply u1 = 0 to get

∥∥UM
∥∥
A
≤
∥∥UK

∥∥
A
≤
∥∥U0

∥∥
A
+ 2k ∥u0∥2

(
k

K∑
n=1

bn

)
. (38)

We use the exponential decay condition in this theorem to obtain

k

∞∑
n=1

bn ≤
∫ ∞

0

b(t)dt =

∫ ∞

0

(∫ ∞

t

e−ρseρsβ(s)ds

)
dt

≤
∫ ∞

0

β0(t)

∫ ∞

t

e−ρsdsdt =
1

ρ

∫ ∞

0

β(t)dt <
1

ρ
.

(39)

Furthermore, (33) with u1 = 0 implies

∥∥U0
∥∥
A
≤
∥∥U1 − U0

∥∥+ √
1− b0
2

k
∥∥U1 + U0

∥∥
1

≤ k2

2
∥u0∥2 +

√
1− b0
2

k

(
2 ∥u0∥1 +

k2

2
∥u0∥3

)
.

(40)

Invoking (39) and (40) in (38), we obtain

∥∥UM
∥∥
A
≤ k

(
2

ρ
+
k

2

)
∥u0∥2 +

√
1− b0
2

k

(
2 ∥u0∥1 +

k2

2
∥u0∥3

)
:= kΦ0(u0).

(41)

The rest of the proof could be performed in analogous of (34)-(37), which
completes the proof.

4 Regularity assumption and error estimate

In this section, we shall give the regularity assumptions and error estimates
for the linear case of the problem (1)–(2).

4.1 Regularity assumption

To establish the convergence, we give some necessary assumptions about the
regularity of the solutions motivated from the ordinary differential equation
analogue of (1) with f = 0, that is,

u′′(t) + λu(t)− λ

∫ t

0

β(t− s)u(s)ds = 0, t ≥ 0,

u(0) = u0, u′(0) = u1.

(42)
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Numerical approximation and analysis for partial integro-differential equation 11

Here λ is some positive constant. And then, by denoting w(t) = u′′(t), we yield
for t ≥ 0,

u(t) = u0 + tw(0) +

∫ t

0

(t− s)w(s)ds, (43)

where w(0) = −λu0. By putting (43) into (43), we thus get

w(t) = −λ
[
u0 + tw(0) +

∫ t

0

(t− s)w(s)ds

]
+ λ

∫ t

0

β(t− s)

[
u0 + sw(0) +

∫ s

0

(s− τ)w(τ)dτ

]
ds, t ≥ 0.

If t→ 0+, we have

u0 + tw(0) +

∫ t

0

(t− s)w(s)ds→ u0, λ

∫ t

0

β(t− s)u0ds = λu0

∫ t

0

β(s)ds,

λ

∫ t

0

β(t− s)

[
sw(0) +

∫ s

0

(s− τ)w(τ)dτ

]
ds→ λ

∫ t

0

β(t− s)o(1)ds.

Hence, for the kernels (5) and (6), noting that β(t) ∈ L1(0,∞), we get the
asymptotic behaviour of u′′(t) as follows

u′′(t) = w(t) ≃ −λu0 + λu0

∫ t

0

β(s)ds+ λ

∫ t

0

β(s)o(1)ds, t→ 0+. (44)

Based on this asymptotic behaviour, we assume that

∥u′′(t)∥+ ∥Au′′(t)∥ ≤ C, ∥u′′′(t)∥+ ∥Au′′′(t)∥ ≤ C|β(t)|,
∥u′′′′(t)∥ ≤ C|β′(t)|.

(45)

4.2 Error estimate

We derive auxiliary estimates to support the error estimate of the time-discrete
scheme (19)–(20). We first cite the following classical approximate result of the
convolution quadrature Q̃t from [19].

Lemma 1 Under (4) and the Assumption A, it holds for 1 ≤ n ≤ N∣∣Q̃tn(φ)− (b ∗ φ)(tn)
∣∣ ≤ Ctµ−1

n k2, for φ ∈ C2[0, T ].

For the case that φ′′(t) is singular at the initial point t = 0, we propose an
alternative approximate result in the following lemma.

Lemma 2 Under (4) and the Assumption A, then the following approximate
result holds for 1 ≤ n ≤ N∣∣Q̃tn(φ)− (b ∗ φ)(tn)

∣∣ ≤ Ck2|φ′(0)|+ Ck2
∫ tn

0

|φ′′(ϑ)| dϑ.
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12 Wenlin Qiu et al.

Proof We introduce the notations r(t) = (1∗φ′)(t), Ek[φ](t) = Qt(φ)−(b∗φ)(t)
and Ẽk[φ](t) = Q̃t(φ)− (b ∗ φ)(t). Then we apply Ẽk[1](t) = 0 to obtain

Ẽk[φ](tn) = Ẽk[r](tn) + φ(0)Ẽk[1](tn) = Ek[r](tn) + r(0)χn0(k) = Ek[r](tn),

and we apply r(t) = r′(0)t+ (t ∗ r′′)(t) to find that

Ek[r](tn) = r′(0)Ek[t](tn) + Ek [(t ∗ r′′)] (tn)

= r′(0)Ek[t](tn) + (Ek [t] ∗ r′′) (tn),
(46)

where µ is determined via the properties of b̂ in Assumption A. We first es-
timate the first right-hand side term of (46). By [19, Theorem 5.2] and the
assumptions of this lemma, we have∣∣Ek

[
tβ−1

]
(x)
∣∣ ≤ Cxµ−1kβ , for 0 < β ≤ 2, k ≤ x ≤ T. (47)

We apply (47) with β = 2 and x = tn to get

|Ek[t](tn)| ≤ Ctµ−1
n k2, for n ≥ 1. (48)

To bound the second right-hand side term of (46), we apply (47) to obtain

|Ek[t](τ)| ≤ Cτµ−1k2, for k ≤ τ ≤ tn, (49)

while for 0 ≤ τ < k, we follow the definition to obtain

|Ek[t](τ)| =
∣∣∣∣ω0(k)τ −

∫ τ

0

b(τ − ϑ)ϑdϑ

∣∣∣∣ ≤ 2b0
3
k2 +

b0
2
k2 =

7b0
6
k2. (50)

Therefore, (49) and (50) provide

|(Ek [t] ∗ r′′) (tn)| ≤
∫ k

0

|Ek[t](τ)| |r′′(tn − τ)| dτ +
∫ tn

k

|Ek[t](τ)| |r′′(tn − τ)| dτ

≤ 7b0
6
k2
∫ tn

tn−1

|r′′(ϑ)| dϑ+ Ck2
∫ tn−1

0

(tn − ϑ)µ−1 |r′′(ϑ)| dϑ.

(51)

To determine µ, w obtain from (7) that b̂(s) = b0
s − 1

s

∫∞
0
β(t)e−stdt, which

implies |̂b(s)| ≤ C|s|−1 such that µ = 1 in Assumption A. We thus invoke
µ = 1 in (48) and (51) to complete the proof.

Next, we shall derive the error estimate of the scheme (19)–(20).

Lemma 3 The following estimate holds for 1 ≤ n ≤ N + 1

∥un − Un∥+ ∥δt(un − Un)∥ ≤ C
(∥∥ [Rt]

0 ∥∥+ k
∥∥ [Rt]

0 ∥∥
1
+ k

N∑
n=1

∥[Rt]
n∥
)
.
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Numerical approximation and analysis for partial integro-differential equation 13

Proof Define ηn = un − Un and we subtract (17)–(18) from (19)–(20) to get
the error equations

δ
(2)
t ηn + (1− b0)Aη̃

n +

n∑
p=0

ωp(k)Aη
n−p = [Rt]

n
, 1 ≤ n ≤ N, (52)

δtη
1 = [Rt]

0
, η0 = 0. (53)

We take the inner product of (52) with ηn and use (22)-(23) to get

1

2k3

[∥∥ηn+1
∥∥2 − ∥∥ηn−1

∥∥2 − 2
〈
ηn, ηn+1

〉
+ 2

〈
ηn−1, ηn

〉]
+

(1− b0)

8k

[∥∥ηn+1
∥∥2
1
−
∥∥ηn−1

∥∥2
1

]
+

(1− b0)

8k

[
2
〈
A

1
2 ηn, A

1
2 ηn+1

〉
− 2

〈
A

1
2 ηn−1, A

1
2 ηn

〉]
+

n∑
p=0

ωp(k)
〈
A

1
2 ηn−p, A

1
2 ηn

〉
= ⟨[Rt]

n
, ηn⟩ .

(54)

With the definition of ∥ · ∥A, we sum (54) for n from 1 to M to get

∥∥ηM∥∥2
A
=
∥∥η0∥∥2

A
− 2k3

M∑
n=0

n∑
p=0

ωp(k)
(
A

1
2 ηn−p, A

1
2 ηn

)
+ 2k3

M∑
n=1

([Rt]
n
, ηn) ,

based on which we follow the analysis of (26) to find

∥∥ηM∥∥2
A
≤
∥∥η0∥∥2

A
+ k2

M∑
n=1

∥[Rt]
n∥
(
∥ηn∥A +

∥∥ηn−1
∥∥
A

)
. (55)

Let L be such that
∥∥ηL∥∥

A
:= max

0≤n≤N
∥ηn∥A, and (55) provides

∥∥ηL∥∥
A
≤
∥∥η0∥∥

A
+ 2k2

L∑
n=1

∥[Rt]
n∥ ≤

∥∥η0∥∥
A
+ 2k2

N∑
n=1

∥[Rt]
n∥ . (56)

Furthermore, we apply (25) and (53) to find∥∥η0∥∥
A
≤
∥∥η1∥∥+ √

1− b0
2

k
∥∥η1∥∥

1
= k

∥∥ [Rt]
0 ∥∥+ √

1− b0
2

k2
∥∥ [Rt]

0 ∥∥
1
. (57)

Combining (56) and (57) we obtain

∥∥ηM∥∥
A
≤ k

∥∥[Rt

]0 ∥∥+ √
1− b0
2

k2
∥∥ [Rt]

0 ∥∥
1
+ 2k2

N∑
n=1

∥[Rt]
n∥ . (58)

Analogous to the analysis of (35)–(37), we have

∥∥ηM+1
∥∥+ ∥∥δtηM+1

∥∥ ≤ C
(∥∥ [Rt]

0 ∥∥+ √
1− b0
2

k
∥∥ [Rt]

0 ∥∥
1
+ 2k

N∑
n=1

∥[Rt]
n∥
)
,

(59)
which completes the proof.
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14 Wenlin Qiu et al.

Based on Lemma 3, we intend to prove the convergence order based on
reasonable regularity assumptions of the solutions to problem (1)–(2).

Theorem 3 Under the regularity assumptions in (45), then for 1 ≤ n ≤ N+1
it holds that

∥un − Un∥+ ∥δt(un − Un)∥ ≤ C

(
k2
∫ T

0

β(t)dt

)

+ C

[(
k

∫ 2k

0

β(t)dt

)
+

(
k2
∫ T

k

|β′(t)|dt

)]
.

Remark 1 It is worth mentioning that for smooth kernels β such as (6), this
theorem implies the second-order accuracy

∥un − Un∥+ ∥δt(un − Un)∥ ≤ Ck2,

while for non-smooth kernels, the accuracy may be deteriorated. For instance,
for the weak singular kernel (5), the above theorem implies the accuracy of
1 + α order

∥un − Un∥+∥δt(un − Un)∥ ≤ Ck2+Ck

∫ 2k

0

tα−1dt+Ck2
∫ T

k

tα−2dt ≤ Ck1+α.

Proof At first, (45) and (18) lead to

∥∥ [Rt]
0 ∥∥+ √

1− b0
2

k
∥∥ [Rt]

0 ∥∥
1
≤ C

(
k

∫ k

0

β(t)dt+ k2
∫ k

0

β(t)dt

)
. (60)

Then we apply (11) and (45) to find that

k

N∑
n=1

∥[Rt,1]
n∥ = k

∥∥∥[Rt,1]
1
∥∥∥+ k

N∑
n=2

∥[Rt,1]
n∥

≤ C

(
k

∫ 2k

0

β(t)dt+ k2
∫ T

k

|β′(t)|dt

)
,

(61)

and we use (12) and (45) to obtain

k

N∑
n=1

∥[Rt,2]
n∥ ≤ Ck2.

We remain to estimate [Rt,3]
n
in (16). First, Lemma 2 and (45) imply

k

N∑
n=1

∥[Rt,3,1]
n∥ ≤ C(T )k2∥Au′′(0)∥+ C(T )k2

∫ T

0

∥Au′′′(t)∥dt

≤ C(T )

[
1 +

∫ T

0

β(t)dt

]
k2.

(62)
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We then combine the Taylor’s expansion with the integral remainder

A(u′ − u)(tn) =
−1

4k

[∫ tn+1

tn

(tn+1 − t)2Au′′′(t)dt+

∫ tn

tn−1

(t− tn−1)
2Au′′′(t)dt

]

with (45) to obtain

k

N∑
n=1

∥[Rt,3,2]
n∥ ≤ k

N∑
n=1

n∑
p=1

|ωn−p(k)|∥A(u′ − u)(tp)∥

≤

(
k

N∑
n=1

max
0≤p≤n−1

|ωp(k)|

)
k

2

∫ T

0

∥Au′′′(t)∥dt

≤ Ck2

(
N∑

n=1

max
0≤p≤n−1

|ωp(k)|

)∫ T

0

β(t)dt.

(63)

Following from the Assumption A and [19, (4.2) and Theorem 4.1] that

|ω0(k)| ≤ Ckµ, |ωn(k)| ≤ Ck(tn)
µ−1, 1 ≤ n ≤ N, (64)

which implies that the summation on the right-hand side of (63) is bounded.
Then we invoke (60)–(64) in (59) to get the desired result.

5 A nonlinear extension

Based on the discussion of the linear problem, we extend the developed meth-
ods and results to numerically study the nonlinear problem (1)

u′′(t) +Au(t)− (β ∗Au)(t) = f(t, u(t)), t > 0, (65)

which satisfies the initial condition (2), and the semilinear source term is Lip-
schitz continuous with the Lipschitz constant L > 0

∥f(t, u)− f(t, v)∥ ≤ L∥u− v∥. (66)

Similar to the analysis of (8), we rewrite (65) as

u′′(t) + (1− b0)Au(t) + b(t)Au0 +A(b ∗ u′)(t) = f(t, u(t)), t ≥ 0. (67)

Then we discretize (67) at t = tn via (11)–(15) to obtain

δ
(2)
t un + (1− b0)Aũ

n + bnAu0 +

n∑
p=0

ωp(k)Au
n−p + χn0(k)Au1

= f(tn, u
n) + [Rt]

n

(68)
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16 Wenlin Qiu et al.

with 1 ≤ n ≤ N , where [Rt]
n
is defined by (17). Moreover, (68) subjects to

δtu
1 =

(
u1 +

k

2
u∗2

)
+ [Rt]

0
, u0 = u0, (69)

where u∗2 = −Au0+ f(0, u0) is obtained by (67). We then drop the truncation
errors to get the time-discrete scheme

δ
(2)
t Un + (1− b0)AŨ

n + bnAu0 +

n∑
p=0

ωp(k)AU
n−p

+ χn0(k)Au1

= f(tn, U
n), 1 ≤ n ≤ N,

(70)

δtU
1 = u1 +

k

2
u∗2, U0 = u0. (71)

We then prove the stability of the time-discrete scheme (70)-(71).

Theorem 4 Let Un be the numerical solution of the time-discrete scheme
(70)–(71). Then we have

∥Un∥ ≤ C
(
∥u0∥2+k2∥u0∥3+∥u1∥+k∥u1∥2+k

N∑
n=1

∥f(tn, u0)∥
)
, 1 ≤ n ≤ N+1.

Proof We apply the triangle inequality and (66) to arrive at

∥f(tn, Un)∥ ≤ ∥f(tn, Un)− f(tn, U
0)∥+ ∥f(tn, U0)∥

≤ L∥Un − U0∥+ ∥f(tn, U0)∥ ≤ L(∥Un∥+ ∥U0∥) + ∥f(tn, U0)∥.
(72)

We incorporate this with a similar analysis as (27) to get

∥∥UM
∥∥2
A
≤
∥∥U0

∥∥2
A
+ 2k3

M∑
n=1

bn ∥Au0∥
∥∥∥Un

∥∥∥+ 2k2ω0(k) ∥Au1∥
∥∥U1

∥∥
A

+ 2k3
M∑
n=1

|χn0(k)| ∥Au1∥
∥∥∥Un

∥∥∥+ 2k3
M∑
n=1

∥f(tn, Un)∥
∥∥∥Un

∥∥∥
≤
∥∥U0

∥∥2
A
+ k2

M∑
n=1

bn ∥u0∥2 (∥U
n−1∥A + ∥Un∥A)

+ 2k2ω0(k) ∥u1∥2
∥∥U1

∥∥
A
+ k2c∗N ∥u1∥2 (∥U

n−1∥A + ∥Un∥A)

+ k2
M∑
n=1

[
L(∥Un∥+ ∥U0∥) + ∥f(tn, U0)∥

]
(∥Un−1∥A + ∥Un∥A).
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Let
∥∥UJ

∥∥
A
:= max

0≤n≤M
∥Un∥A such that

∥∥UJ
∥∥
A
≤
∥∥U0

∥∥
A
+ 2k2

J∑
n=1

bn ∥u0∥2 + 2k2ω0(k) ∥u1∥2 + 2k2c∗N ∥u1∥2

+ 2k2
J∑

n=1

[L(∥Un∥+ ∥u0∥) + ∥f(tn, u0)∥]

≤
∥∥U0

∥∥
A
+ 2k2

M∑
n=1

bn ∥u0∥2 + 2k2ω0(k) ∥u1∥2 + 2k2c∗N ∥u1∥2

+ 2k2
M∑
n=1

[L(∥Un∥+ ∥u0∥) + ∥f(tn, u0)∥] ,

and we incorporate this with (30) and (31) to further get

∥∥UM
∥∥
A
≤ k ∥u1∥+

k2

2
∥u0∥2 +

√
1− b0
2

k

(
2 ∥u0∥1 + k ∥u1∥1 +

k2

2
∥u0∥3

)
+ 2k(Tb0) ∥u0∥2 + 2k2

(
2b0
3
k

)
∥u1∥2 + 2k2c∗N ∥u1∥2

+ 2k2
N∑

n=1

[L∥u0∥+ ∥f(tn, u0)∥] + 2Lk2
N∑

n=1

∥Un∥

:= k

[
Φ1(u0, u1) + 2Lk

M∑
n=1

∥Un∥

]
.

(73)

By similar analysis as (35)–(37), (73) yields

∥∥UM+1
∥∥ ≤

(
k

2
+

1

c′
√
1− b0

)[
Φ1(u0, u1) + 2Lk

M∑
n=1

∥Un∥

]
. (74)

Then we apply the discrete Grönwall inequality to complete the proof.

We then derive the error estimate of the time-discrete scheme (70)–(71).

Lemma 4 Let un and Un satisfy (68)–(69) and the time-discrete scheme
(70)–(71), respectively. Then for 1 ≤ n ≤ N + 1

∥un − Un∥+ ∥δt(un − Un)∥ ≤ C(T )
(∥∥ [Rt]

0 ∥∥+ k
∥∥ [Rt]

0 ∥∥
1
+ k

n∑
m=1

∥[Rt]
m∥
)
.
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18 Wenlin Qiu et al.

Proof Based on (68)–(71), we obtain the error equations in terms of ηn =
un − Un

δ
(2)
t ηn + (1− b0)Aη̃

n +

n∑
p=0

ωp(k)Aη
n−p (75)

= f(tn, u
n)− f(tn, U

n) + [Rt]
n
, n ≥ 1,

δtη
1 = [Rt]

0
, η0 = 0. (76)

Analogous to the proof of Lemma 3, we obtain

∥∥ηL∥∥
A
≤
∥∥η0∥∥

A
+ 2k2

N∑
n=1

∥[Rt]
n∥+ 2k2

M∑
n=1

∥f(tn, un)− f(tn, U
n)∥ ,

where
∥∥ηL∥∥

A
:= max

0≤n≤M
∥ηn∥A. Then, we use (57) and (66) to get

∥∥ηM∥∥
A
≤ k

∥∥ [Rt]
0 ∥∥+ √

1− b0
2

k2
∥∥ [Rt]

0 ∥∥
1
+ 2k2

N∑
n=1

∥[Rt]
n∥

+ 2Lk2
M∑
n=1

∥ηn∥ := k

[
Φ2(u0, u1) + 2Lk

M∑
n=1

∥ηn∥

]
,

(77)

which in turn implies

∥∥ηM+1
∥∥ ≤ C

[
Φ2(u0, u1) + 2Lk

M∑
n=1

∥ηn∥

]
.

We incorporate this with the discrete Grönwall inequality to obtain

max
1≤n≤N+1

∥ηn∥ ≤ C(T )Φ2(u0, u1), (78)

and we invoke (78) in the right-hand side of (77) and adopt similar analysis
as (34)–(37) to get∥∥ηM+1

∥∥+ ∥∥δtηM+1
∥∥ ≤ C(T )Φ2(u0, u1).

The proof is thus completed.

Finally, we combine the analysis in Theorem 3 and the conclusion of Lemma
4 to obtain the following convergence result.

Theorem 5 Let un and Un satisfy (68)–(69) and the time-discrete scheme
(70)–(71), respectively. Then under the regularity assumptions in (45), it holds
for 1 ≤ n ≤ N + 1

∥un − Un∥+ ∥δt(un − Un)∥ ≤ C(T )

(
k2
∫ T

0

β(t)dt

)

+ C(T )

[(
k

∫ 2k

0

β(t)dt

)
+

(
k2
∫ T

k

|β′(t)|dt

)]
.
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6 Numerical experiments

We perform numerical examples to substantiate the analysis of the time-
discrete schemes. We consider a concrete problem of the form (1) or (65)
in one space dimension with the spatial domain Ω = (0, 1) and the operator
A = −d2/dx2 with boundary conditions u(t, 0) = u(t, 1) = 0 for t ∈ (0, T ].
We apply the second-order center difference for spatial discretization with a
uniform mesh size h = 1/M for some M > 0, and we denote the discrete

L2 norm for finite difference method [39] ∥Un∥ =
√
h
∑M−1

j=1

∣∣Un
j

∣∣2. Let the

time step size k = T/(N + 1) with N ≥ 1 and tN+1 = T . To illustrate the
convergence of proposed schemes, we denote the spatial error in L2 norm at
tN+1 = T and the corresponding temporal convergence order as follows

E2(N + 1) =
∥∥∥UN+1 − U2(N+1)

∥∥∥ , Rate = log2

(
E2(N + 1)

E2(2(N + 1))

)
.

We shall consider smooth and non-smooth kernels β(t) in the following exam-
ples.

6.1 A weak singular kernel

We consider the weak singular kernel (5) with γ0 = ρα/2. By (7), we have

b(t) =
Γ (α, ρt)

2
, b̂(s) =

b0
s

− (1 + s/ρ)−α

2s
,

where the upper incomplete gamma function

Γ (α, y) :=
1

Γ (α)

∫ ∞

y

tα−1e−tdt

with Γ (α, 0) = 1. Then we provide the approach to compute the quadrature
weights. By (14), we have the following representation [34]

ωn(k) =
1

2πi

∮
|z|=1

z−n−1b̂

(
ζ(z)

k

)
dz = ℜ

[
1

π

∫ π

0

Gn(y)dy

]
, (79)

in which i2 = −1, ℜ indicates the real part of a complex number and Gn(y) =

einy b̂
(

ζ(e−iy)
k

)
. In subsequent numerical implementations, we apply the com-

posite rectangle formula to approximate the last integral of (79). Specifically,
given J = N2, the quadrature weights ωn(k) are generated by

ωn(k) ≈ ℜ

 1

π

J−1∑
j=0

Gn

(
yj + yj+1

2

)∆y

 , (80)

where yj = j∆y with ∆y = π/J and j = 0, 1, 2, · · · ,J .
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Example 6.1.1. The linear case. Let the initial conditions u0(x) =
sin(πx) and u1(x) = sin(2πx) in (1), h = 1/128, T = 1 and ρ = 5. We list the
L2 errors and temporal convergence rates in Table 1, from which we observe
that the convergence rate is approximately 1 + α that is consistent with the
estimates in Theorem 3.

Table 1 Example 6.1.1: L2 errors and temporal convergence rates with different α.

α = 0.25 α = 0.5 α = 0.95

N E2(N + 1) Rate E2(N + 1) Rate E2(N + 1) Rate

32 1.1027e-3 - 1.2056e-3 - 1.0619e-3 -
64 4.5125e-4 1.289 3.9058e-4 1.626 2.7041e-4 1.973
128 1.9591e-4 1.204 1.3180e-4 1.567 6.8386e-5 1.983
256 8.5399e-5 1.198 4.5700e-5 1.528 1.7244e-5 1.988
512 3.6869e-5 1.212 1.6069e-5 1.508 4.3421e-6 1.990

To demonstrate the finite-time and long-time stability proved in Section
3, we present max

0≤n≤N+1
∥Un∥ under h = 1/128, k = 0.1, u0 = sin(πx) and

different u1 and α in Table 2, which shows that the numerical solution may
diverge with the increment of N (and thus T = Nk) if u1 ̸= 0. When u1 = 0,
the numerical solution is stable for large N , which indicates the long-time
stability of the numerical solution and thus validates the theorems in Section
3.

Table 2 Example 6.1.1: Values of max
0≤n≤N+1

∥Un∥ with different α and derivative initial

conditions u1.

α = 0.1 α = 0.5 α = 0.9

N u1 = sin(2πx) u1 = 0 u1 = sin(2πx) u1 = 0 u1 = sin(2πx) u1 = 0

2 7.0711e-1 7.0711e-1 7.0711e-1 7.0711e-1 7.0711e-1 7.0711e-1
4 7.0711e-1 7.0711e-1 7.0711e-1 7.0711e-1 7.0711e-1 7.0711e-1
8 1.2710e+0 1.0965e+0 7.0711e-1 7.0711e-1 7.0711e-1 7.0711e-1
16 1.8653e+0 1.7085e+0 8.4259e-1 8.2922e-1 7.0711e-1 7.0711e-1
32 1.9507e+0 1.7085e+0 9.3824e-1 8.2922e-1 7.0711e-1 7.0711e-1
64 4.1844e+0 1.7085e+0 1.7257e+0 8.2922e-1 7.0711e-1 7.0711e-1
128 8.0698e+0 1.7085e+0 3.6807e+0 8.2922e-1 7.0711e-1 7.0711e-1
256 1.6150e+1 1.7085e+0 7.6179e+0 8.2922e-1 1.0862e+0 7.0711e-1
512 3.2341e+1 1.7085e+0 1.5504e+1 8.2922e-1 2.2483e+0 7.0711e-1
1024 6.4737e+1 1.7085e+0 3.1280e+1 8.2922e-1 4.5731e+0 7.0711e-1

Example 6.1.2. The nonlinear case. Let the initial conditions u0(x) =
sin(πx) and u1(x) = sin(2πx) with f(t, u) = u−u3 in (65). We set h = 1/128,
T = 1 and ρ = 5, and list L2 errors and temporal convergence rates in Table
3, which indicates the 1 + α accuracy as predicted in Theorem 5.

3 Mar 2024 06:19:56 PST
231011-Zheng Version 3 - Submitted to J. Integr. Eq. Appl.



Numerical approximation and analysis for partial integro-differential equation 21

Table 3 Example 6.1.2: L2 errors and temporal convergence rates with different α.

α = 0.1 α = 0.5 α = 0.9

N E2(N + 1) Rate E2(N + 1) Rate E2(N + 1) Rate

64 3.4089e-4 - 4.1244e-4 - 2.7405e-4 -
128 1.4278e-4 1.255 1.4108e-4 1.548 7.0160e-5 1.966
256 6.6698e-5 1.098 4.9327e-5 1.516 1.7919e-5 1.969
512 3.1762e-5 1.070 1.7425e-5 1.501 4.5745e-6 1.970
1024 1.5061e-5 1.076 6.1791e-6 1.496 1.1686e-6 1.969

6.2 A smooth kernel

We choose the smooth kernel (6) and shall give β̂(s) by means of Laplace and
Stieltjes transforms. Denote the following piecewise continuous function

α0(x) =


0, x = 0,

x, 0 < x ≤ 1,

1, 1 < x <∞,

and let β0(t) :=
∫∞
0
e−xtdα0(x) such that β0(t) =

∫ 1

0
e−xtdx = 1−e−t

t . From

[33, Chapter 8], we have β̂0(s) =
∫∞
0

dα0(x)
s+x = log

(
1 + 1

s

)
. Thus, (6) gives

β(t) = e−tβ0(t), which leads to β̂(s) = β̂0(s + 1). Note that
∫∞
0
β(t)dt =

β̂(0) = log(2) < 1, which implies that (6) satisfies (4). Furthermore, we apply
(7) to obtain

b(t) =

∫ ∞

t

β(s)ds =

∫ ∞

0

β(s)ds−
∫ t

0

β(s)ds = β̂(0)−
∫ t

0

β(s)ds

= β̂(0)− (β ∗ 1)(t) = log(2)− (β ∗ 1)(t),

which yields

b̂(s) =
b0
s

− 1

s
β̂(s) =

log(2)

s
− 1

s
log

(
1 +

1

s+ 1

)
=

1

s
log

(
2(s+ 1)

s+ 2

)
. (81)

Inserting (81) into (79) we obtain the weights ωn(k) by the approximate
method (80).

Example 6.2.1. The linear case. Let u0(x) = sin(πx) and u1(x) =
sin(2πx) for model (1), and we set h = 1/128. In Table 4, we test L2 errors
and temporal convergence rates, which indicate that the proposed scheme
could achieve the second-order temporal accuracy for T not large enough. For
large T , the convergence order is not stable, which may be caused by the loss
of long-time stability of numerical solutions as we will show in Table 5.
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Table 4 Example 6.2.1: L2 errors and temporal convergence rates under different T .

T = 0.2 T = 1 T = 4

N E2(N + 1) Rate E2(N + 1) Rate E2(N + 1) Rate

32 3.9702e-5 - 5.8641e-3 - 6.2497e-2 -
64 1.0717e-5 1.889 1.6584e-3 1.822 8.8076e-3 2.827
128 2.7897e-6 1.942 4.3955e-4 1.916 1.1642e-3 2.919
256 7.1196e-7 1.970 1.1303e-4 1.959 4.8802e-4 1.254
512 1.7985e-7 1.985 2.8651e-5 1.980 1.3746e-4 1.828

In Table 5 we compute max
0≤n≤N+1

∥Un∥ under h = 1/128, u0 = sin(πx) and

different u1 and k, from which we observe that when u1 ̸= 0, the numerical
solution exhibits instability with the increment of N . When the derivative
initial condition u1 = 0, the numerical solution is stable for large N , which is
consistent with Theorem 2.

Table 5 Example 6.2.1: Values of max
0≤n≤N+1

∥Un∥ under different k and derivative initial

conditions u1.

k = 0.01 k = 0.1 k = 1

N u1 = sin(2πx) u1 = 0 u1 = sin(2πx) u1 = 0 u1 = sin(2πx) u1 = 0

2 7.0711e-1 7.0711e-1 7.0711e-1 7.0711e-1 2.8706e+0 2.7822
4 7.0711e-1 7.0711e-1 7.0711e-1 7.0711e-1 3.7904e+0 2.7822
8 7.0711e-1 7.0711e-1 7.0711e-1 7.0711e-1 9.5557e+0 2.7822
16 7.0711e-1 7.0711e-1 7.0711e-1 7.0711e-1 2.2250e+1 2.7822
32 7.0711e-1 7.0711e-1 1.5768e+0 7.0711e-1 4.7803e+1 2.7822
64 7.0711e-1 7.0711e-1 5.7869e+0 7.0711e-1 9.8916e+1 2.7822
128 7.0711e-1 7.0711e-1 1.5719e+1 7.0711e-1 2.0114e+2 2.7822
256 8.2968e-1 7.0711e-1 3.6143e+1 7.0711e-1 4.0559e+2 2.7822
512 3.8432e+0 7.0711e-1 7.7033e+1 7.0711e-1 8.1450e+2 2.7822
1024 1.1529e+1 7.0711e-1 1.5881e+2 7.0711e-1 1.6323e+3 2.7822

Example 6.2.2. The nonlinear case. Let the initial conditions u0(x) =
sin(πx) and u1(x) = sin(2πx) in (65) with h = 1/128, T = 1 and different
source term f(t, u). We present L2 errors and temporal convergence rates of
the scheme (70)–(71) in Table 6, which indicates its second-order temporal
accuracy proved in Theorem 5.

Table 6 Example 6.2.2: L2 errors and temporal convergence rates under different nonlinear
terms.

f(t, u) = u − u3 f(t, u) = sin(u) f(t, u) = e−u cos(u)

N E2(N + 1) Rate E2(N + 1) Rate E2(N + 1) Rate

32 5.6500e-3 - 5.2910e-3 - 5.8688e-3 -
64 1.5964e-3 1.823 1.4956e-3 1.823 1.6624e-3 1.820
128 4.2317e-4 1.916 3.9640e-4 1.916 4.4184e-4 1.912
256 1.0883e-4 1.959 1.0194e-4 1.959 1.1433e-4 1.950
512 2.7589e-5 1.980 2.5839e-5 1.980 2.9353e-5 1.962
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7 Concluding remarks

In this work, we investigate the numerical approximation for a nonlinear
hyperbolic-type partial integro-differential equation. For the linear case of this
equation, we discretize it by the central difference formula for space and the
second-order convolution quadrature for time, where smooth and nonsmooth
memory kernels were considered. The stability and convergence were deduced
by means of the energy argument. Then we extended the theoretical results
to the corresponding nonlinear problem. Numerical experiments validate the
theoretical findings.

There are several places in this work that could be improved. For instance,
in numerical experiments the composite rectangle formula is used to calculate
the weights ωn(k) for simplicity. Indeed, the fast Fourier transform method is
a more efficient technique to obtain weights, and we will adopt this to develop
the fast solution method in the future work. Furthermore, the proof of the
regularity of the solutions is not straightforward, and we will also investigate
this challenging issue in the near future.
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