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Abstract

The purpose of this paper to explore a multi-infection model involving Caputo Fab-
Raizo fractional order derivatives. Existence, uniqueness, positivity, and boundedness
of the solutions for the multi-infection type model are established. Further, an Adams-
Bashforth method is applied to calculate solution of the proposed fractional order model.
Finally, to show the influence of fractional order and model parameters, we present a
detailed numerical simulation for different values used in the proposed fractional order
model. The result shows the importance and convincing behavior of the fractional order
and ensures that by including the memory effects in the model seems very appropriate
for such an investigation. This study will help to understand the complexity of the co-
infection model that is valid and reliable for both integer and non-integer orders.
Keywords: Multi-infection of Malaria, Ebola and Typhoid Epidemic model, Caputo-
Fabrizio Fractional derivative, Non-singularity, Adams-Bashforth scheme Numerical sim-
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1 Introduction

Due to the geographic overlap of the three most prevalent diseases of poverty Malaria, Ebola, and Typhoid
multiple infections are very common. Their mimicking symptomatology frequently results in egregious misdi-
agnosis and mistreatment. This study was conducted to ascertain the prevalence of multiple infections with
Typhoid, Ebola, and Malaria among the adult population in Unwana Community Afikpo-North Local Gov-
ernment Area, Ebonyi State. Five species of the protozoan parasite Plasmodium, including P. Falciparum, P.
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Vivax, P. Malariae, P. Ovale, and P. Knowlesi, cause the potentially fatal illness known as malaria. Humans
contract malaria when an infected female anopheles mosquito bites them. [1, 2, 3]. P. falciparum, which is
mostly found in sub-Saharan Africa, is thought to be the sole source of malaria-related mortality in humans. It
is widely acknowledged as a public health issue with significant medical, social, and economic repercussions and
is regarded as a disease of poverty [4]. The inhabitants of the Unwana village in Afikpo are not an exception
to the fact that malaria imposes a severe cost on the most vulnerable and impoverished groups. Nevertheless,
typhoid fever, sometimes referred to as ”typhoid,” is a bacterial infection brought on by Salmonella typhi, also
known as Salmonella enterica serotype Typhi [5, 6]. Humans are the only animals that can contract it when
they consume food or water that has been tainted with the bacteria Salmonella enteric serovar typhi from an
infected person [1]. Poor sanitation and hygiene caused by poverty are risk factors [6]. Co-infections are quite
frequent since the two infections occur in the same geographic area.

The Ebola virus (Ebola) outbreak that devastated many people in Western Africa in 2014 is now known
as Ebola. In comparison to the 20 Ebola threats that have occurred since 1976, this epidemic was the worst
with more than 16,000 clinically confirmed patients and roughly 70% death cases [7]. People live near to
rainforests in Africa, especially in the areas where Ebola outbreaks occurred. They hunt bats and monkeys
for food and gather forest fruits [8, 9]. In reference [10], a novel SIR model is proposed that accounts for both
direct and indirect transmissions, ensuring the stability of Ebola virus transmission. The authors conduct a
thorough numerical analysis of their model.

Numerous mathematical models have been developed to investigate the dynamics of Ebola and other
infectious disease outbreaks from different perspectives [11, 12]. The SEIR model, which divides the population
into susceptible, exposed, infectious, and recovered compartments, is a widely used model for characterizing
disease epidemics, including Ebola [13]. Some extensions of this model incorporate explicit consideration of
transmission from deceased Ebola hosts [1, 14], while others account for mismatches between symptoms and
infectiousness. [14, 15].

Fractional calculus is an emerging field that delves into the realm of non-integer order derivatives and
integrals. Initially, it was introduced by Abel to solve the Tautochrone problem, and it has since found ap-
plications in various fields, including physics, economics, biology, medicine, viscoelasticity, and control theory.
Unlike the conventional derivative, which is a local operator, fractional order derivatives have a wider scope in
determining the equilibrium field of dynamical systems. Fractional calculus is a parallel branch of calculus that
cannot be considered a generalized version of integer order calculus [16, 17]. Fractional order systems are more
appropriate than integer order systems in many fields and can express phenomena that are linked to memory
and affected by hereditary properties [18, 19]. Fractional order models were gaining increasing attention in
various fields of science and engineering due to their unique advantages and superiority over traditional integer
order models. Here we are going to mentioned some of the keys advantages of fractional order over integer
order models i,e Increased Flexibility, Better Approximation, Improved Memory Handling, Enhanced System
Identification, Better Representation of Anomalous Behavior and Improved Stability Analysis etc. This makes
it a crucial tool for developing a mathematical model to assess the dynamics and transmissibility of Malaria,
Ebola, and Typhoid in a multi-infection setting.

2 Description and Formulation of the Model

In this section, we formulate a mathematical model of Malaria, Typhoid and Ebola Multi-infection is presented
consisting of thirteen classes with whole human population represented by N. The class having healthy but
likely to be infected individuals is represented by S, the class showing Ebola, Malaria, and Typhoid infected
individuals is represented by I, I,,andl; respectively, and co-infectious individuals classes are represented by
Iem, Iet, and I, respectively. Recovered classes of Malaria, Ebola, and Typhoid individual are denoted by
Ry, Re, R: and recovered classes of their co-infection denoted by Rem, Ret, Rmt, respectively. The total
human population is N = S+ I, + le + It + lem + Let + It + Re + R + Rt + Rem + Ret + Rimt. Susceptible
class increase by enrollment rate of Il and from Ebola, Typhoid and Malaria recovered classes rates of a,
B, and v and from their co-infection recovered class are J, ¢, and 7 respectively. A1, A2 and Ag are force of
infection of (Ebola & Malaria), (Malaria & Typhoid) respectively, where a, b and c is the interaction rate of
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Malaria, Typhoid and Ebola respectively. Malaria only and co-infectious recovered class is increased due to the
recovery rate of Malaria represented by o1, and 72, Typhoid only and co-infectious recovered compartments
increase their number with a rate of recovery of o2, and 71, and Ebola only and co-infectious recovered class
increase their number with a rate of recovery of o3 and 73, respectively.

In the co-infectious recovered class, individuals either recovered only from Malaria, Typhoid, Ebola or
from all the three diseases with a probability of 71 (1 —e), T1g(1 —e) or 71(1 — g)(1 —e), 72(1 — €), T2g9(1 —¢€)
or 72(1 — g)(1 —e), and 73(1 — e), 139(1 — e) or 73(1 — g)(1 — e), respectively, where 71, 72 73 € € (0,1) and

€ (0,1). The natural expiry rate is denoted by u and Malaria, Typhoid and Ebola causing expiry rates are
represented by 11, ¥2 and s, respectively. The parameters which we used in this model are positive. Thus,
our mathematical model is consisting of the following system of differential equations is given by

% = H+aR€+'BRt+7Rm+5Ret+CRem+'f]Rmt—()\]_+>\2—|—)\3+M)S7
% = XS —whilnm — kX3l — (01 + p+ Y2)Im,
ddlte = S —xAele — pAsle — (O’S"‘N‘i"lﬁl)]e,
i = X3S — haly —IN Ty — (02 + pu+ Ps) i,
dem = WALy + xAele — (72 + o+ 1 + G2) Lem,
% = 9l + pAsle — (Y1 + 3 + p + 73) Let,
i = pAoly + kX3l — (0 + Y2 + Y3 + 71) Lt (1)
dﬁe = osle +emalem +139(1 — )l — (4 @) Re,
%% = oulm + 1€l + 129(1 — €)lem — (v + p) R,
B = ool + mseler + T1g(1 — €)Imi — (u+ B) Ry,
et = (1 —e)(1—g)let — (14 6)Rer,
d]?iim = 7_2(1 - g)(l - e)Iem - (C + M)Rem,
Pt = 7y(1—g)(1 = €)Ims — (0 + ) Rom-
Here,
= )+ 1 (1)
N b
3y () + Ie(1))
2 N ,
5 D)+ (1)
3= N ,

with initial conditions

S(O) = SO 2 07 Ie(o) = Le(0) 2 07 Im(o) = Im(0) Z 07 It(o) = It(O) 2 07 Iem(o) = Lem(0) Z 0, Re(o) = Re(O) 2 07
Rm(o) = Rm(O) 2 07 Rt(O) = Rt(O) 2 07 Rem(o) = Rem(()) 2 07 Ret(o) = Ret(o) Z 07 Rmt(o) = Rmt(O) Z 0.
Most natural phenomena including epidemiological dynamics involve time memory effect and are valuable
to demonstrate the fact about nature related processes having non-local dynamics. Models with fractional
derivatives handle these issues in batter way because non- integral order derivatives contain time dependent
kernels.
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3 Preliminaries
Definition 3.1. Let h(7) € C*, then for the fractional derivative with order a, in the Caputo sense is defined

in [20] as,
Crapy_ 1 T (r=n)"*h " ()
Dq— h(T) - P(K/ _ Oé) A (7_ _ 77) d777

where . = [a] + 1 with [&] is the integer order part of real number . Evidently,  DEh(t) — h(r) as a — 1

Definition 3.2. Let h € H'(a,b),a < b,a € (—o0,t), and a € (0,1), [21] then the a th — order

CEDn(r) = 71_‘?14(:1)0[) /T heap|— 1 &

1(r —mn)dn,

where M () is a normalizing function depending on « such that M(0) = M (1) = 1.
Definition 3.3. For 0 <1, consider the equation

&t Din(t) = ht),
then the corresponding integral of order 1 is defined as [16].

21

EFIN = G + g [ MO0,

such that

Solving for B(1), we have B(1) = 52~,0 <1< 1.

3.1 Extension of the Proposed Model to Fractional Order

Natural phenomena exhibit time memory effect, which can be observed in various processes, including epi-
demiological dynamics. These processes are characterized by non-local dynamics, indicating the involvement
of long-range interactions. To accurately model these phenomena, fractional derivatives are often utilized
as they can handle time-dependent kernels more effectively than integer-order derivatives. While numerous
fractional derivatives exist in the literature, the Caputo fractional derivative is one of the most widely used
techniques in fractional Calculus. By employing such techniques, we can gain deeper insights into the complex
behaviors of natural systems, which can help us better understand and predict their behavior.

Utilizing the Caputo fractional derivative offers a significant benefit in that it maintains the same initial
conditions as traditional derivatives. This means that fractional initial values are not necessary, simplifying the
modeling process. Building upon this advantage, we have developed a fractional order mathematical modeling
and show multiple infectious disease model analysis, presented in equation (1) in fractional form. We have
adopted the Caputo fractional time derivative for this approach. To introduce a power-law correlation, we
incorporated a time-dependent kernel into our model. These techniques enable us to better understand the
dynamics of infectious diseases and the impact of fractional-order modeling on the co-infections dynamics in
the community.

Now by introducing the time-dependent kernel, we define the power-law correlation in the following
1 1—2
k(t—7)= =—=(t — 2
t-7) =gt 2)

To write the system (1) of differential equations in terms of an integral, we use the concept of convolution.
The convolution integral is defined as follows

(fra)(t) = / (t — r)g(r)dr,
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where (f * g)(t) is the convolution of functions f( ) and g(t). Now, our task is to find the function k(t) that

satisfies the given equation. By setting f(t) = %% and g(t) = k(t) we can find k(t) is given by,

T U0 = [ =gy

Plugging in the given expression for %,
¢
/ k(t — 7)1+ aRe + BRe + 7R + 5Ret + CRem + 1Rt — (M1 + A2 + As + 0)S)dr.
to

Now, let’s differentiate both sides of the equation with respect to t,

a5

d t
dﬁ::3i/k@—THH+aRe+ﬂ&+wﬂm+5Ra+C&m+an-%Arhb+ks+uﬁﬁr
to

Next, we can swap the order of differentiation and integration,
= [ E(t — 7)1+ aRe + BRt + YRm 4+ 0Ret + (Rem + NRmt — (A1 + A2 4+ X3 + p)S]dr.
dt2
To evaluate the derivative inside the integral, we have
= [ t - T [H + aRe + ﬂRt + ’YRm + 0Ret + CRem + 77Rmt - ()\1 + A2+ A3 + M)S]dT
dt2
Finally, we need to set this equal to %

dtQ = /[ k(t — T+ aRe + BRe + YR + 6Ret + (Rem + 1 Rme — (A1 + A2 + A3 + p)Sdr.

We can also equate the integrands on both sides of the equation

d? td
?f = /[dtk(tff)][n+aRﬁ+ﬂRt+7Rm+5Ret+§Rem+antf(A1+A2+A3+u)S]dT:(f*g)(t)-

Since, 957 = (f % g)(), we have f(t) = %5, g(t) = Lk(t),
(f * g)(t) = H + OéRe + /BRt + 'YRm + 6Ret + CRem + 77Rmt - (>\1 + >\2 + )\3 ‘|’ N)S

Now, you can see that the original differential equation can be represented in the form of the convolution
integral

ds

t
== / k(t — T[T+ aRe + BR: + YR + 6Ret + (Rem + NRms — (A1 + X2 + Az + p)S]dr

to
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and we express system (1) in term of integral as

dr,

dRem

dRm¢
dt

Ju k(t = T)[M + aRe + BRy + YR + 6Ret + (Rem + 1Rt — (A + A2 + As + ) S)dr,
S Bt =T)A2S — whiln — kA3 L — (01 + p + t2) T ]dr,
Jo k(t=7)[MS = xXele — pAsle — (03 + p+ 1) L]dr,

S k(t=7)XaS — @haly — Oy — (02 + p+ s) I1]dr,

S Bt = D) whi T 4+ XX Lo — (72 + i+ 1 + ¢h2) Lem]dr,

Ji k(=) [OM T+ phaTe — (Y1 + s + p+ ) L] dr,

i k(= 1) [dXoTs + £As T — (1 + P2 + 3 + 71) i),

Jo Bt = )osle + eralem + m3g(1 — €)Ier — (n+ a)Re]dr,
Ji k(t = 7)[o1 I + TreTmt + T2g(1 — €)Tem — (v + ) Rm]dr,
o Kt = )o2Is + seler + 11g(1 — €) It — (1 + B)Redr,
o Bt =7)[ma(1 = €)(1 = g) Lot — (1 + 6) Retdr,

Ji k(t = 7)[r2(1 = )(1 = €)Lem — (¢ + 1) Rem]dr,

Jio Rt = 1) (1= 9)(1 = &)Lt — (14 p) Rt dr.
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Next, apply the Caputo type derivative having order (» — 1) and substituting (2) in (3) yields to,

CFpeS] = CFDy IOV 4 aRe + BRy + YR + 6Ret + (Rem + NRmt — (A1 + A2 + As + p)S],
CFpyEm) = CFD TGS — wAi L — kX3 I — (01 + p+ 2) L],
D] = CFDP OIS — xdole — pAsle — (03 + p+ 1) 1],
CEDTE] = OPDyI VNS — ghaly — 9N T — (02 + i+ s) T,
CFpyTHHem] = CFDIT DA T + XA Le — (T2 + p 1+ ) em],
CEDTN ] = CFDyT VWAL A+ phsle — (1 + s + p+ 73) Let],
CED M ) = CFDITN T (@A I + kAL — (14 P2 + P03 + 71) e,
CPpytie] = PPV (os ] + emalem + T3g(1 — €)Iee — (u+ a)Re],
EDEE = CFDT D [ou L + el + 12g(1 = €)em — (7 + )R],
CEDyE] = CFDy T Y ool + Tseder + Tig(1 — €) It — (14 B)Ri],
D e = CFDTTT T (1= e) (1 = g) et — (1 + 6)Red],
D] = Dy V(1 = g) (1 = e)Lem — (C+ 1) Rem,
D] = DTV (1= g)(1 = ) Tme — (74 1) Rin].

(4)
In general the dimensions of the fractional derivatives may not coincide with the dimensions of the rates. The
proposed model represents the population dynamics with dimension of time. So, the dimensions of the time
dependent parameters in the integer-order model should be adjusted to have a balance of the dimensions.
In order to do this, % has the dimension of day " has the unit of (da 1/) , taking 0 <2 < 1 and 7 a

? dtl
parameter that possesses the dimension of day, then the dimension of [—7— ] is (day)~' [36]. As a result,

1(1 D] (1/’
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the fractional version of (4) can be introduced in the following way [?]

71171 CFD%S(t) - 1:[1 + @lRe + BZRt + ,Vsz + SZRet + ELREWL + ﬁZRnLt - (>\1 + )\2 + )\3 + ﬂ))S,
1 CF 1, — =1 —17 =1 72
T Dtlm(t) = /\QS — W A1L‘n — K ABIm - (gl + ,U + '17[)2)[777.7
1 CF -, —1 —2 —1 =1 72
DLt = MS — XNl — pAsl. — (6% + i1 + 9L,
D) = NS — ¢ haly — 9Ly — (55 + i+ 03,
1 CF — ot =1 =1 X 7
P Dtje'm(t) - w >\1[7n + X >\2[€ - (TQ + 12 + 1/)1 + wQ)Ienu
S D) = P NI+ AT — (P + b + A+ T e,
=D () = $ Nl + F As L — (A + Db + G5 + 7)ot (5)
1 CF —1 S=1 —=1-1 =1 =1 ~1
= DiRm(l) = 03lc+eéTslem + 739" (1 — &)t — (B + &) Re,
L TDiR(t) = Gl + T Lt + 75 (1 — €)Lem — (7 + i) R,
DR = Gl + e Lo + Tig (1 — &)Lt — (3" + )Ry,
1 CF =1 > =1 =1 N
i DiRem(t) = 71 —€)(1—g") e — (A" +0")Ret,
1 CF 2 —1 —12 —1 -1 =1
g DiRe(t) = 73(1—-g")(1—¢€)lem — (¢"+ i")Rem,
1 CF -, —1 —1 S =1 =1
o= DiRnu(t) = 71(1-9")1—€)lme— (7" + i) Rme.

1—1) o

The operators “D!~ ' and I=0=1 are inverse of each other and Naturally, if y = 7(! 7%, for every constant

X, we may rewrite the system as
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“FDiS(t) = M+ aRe+ BRe+YRm + 6Ret + (Rem + NRmt — (A1 4+ A2 + A3 + 1) S,

CEDIn(t) = XS —whily — kX3l — (01 4 p+ 2) In,
CEDIL(E) =  MS —xhale — pAsle — (03 + p + 1) Lo,
EDiL(t) = X3S — Aol —IN T — (02 + pu+ ¥3) I,

FDUem(t) = whilm +xX2le — (T2 + p+ U1 + 12) Lem,

“IDHe(t) = OMde+phale — (Y1 + 3 + p+ 73) e,

FDUmi(t) = ¢Xali + KAsIm — (4 P2 + b3 + 71) Int, (6)
CEFDiRn(t) = o3l +emalem +739(1 — ) Ier — (1 + ) Re,

CEDIR(t) = o1lm + Tielmt + 72g9(1 — €)em — (7 + (1) Rom,

CFDIR(t) = o2l +mseler + 11g(1 — €)Ime — (1 + B) Ry,
FDiRem(t) = m(1—e)(1 = g)let — (1t + 8)Rer,
“FDiR(t) = 72(1—g)(1—€)lem — ({+ p1)Rem,
FDi{Rmi(t) = 7i(1—g)(1 = &) Ime — (n+ p) Rons.

Here “¥ D} is the Caputo Fabrizio derivative of order z for z € (0, 1].

Theorem 3.1. In the region RTO, the proposed fractional order model (6) exhibits a unique, bounded, and
non-negative solution.

Proof. According to Wei [20], the time interval (0, 00) ensures the existence and uniqueness of the solution
to the model (6), while the non-negative region ng must be considered as a positive invariant region. We
observe from the model (6)
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CFDHS:O >0 )

B 2 o P (E IS AYES FWES e AED 7=y ey ol

B 2 Sty PSS YRS PRy ey ey 7B pyweeey vy vyl |

D=0 = S+Ie+l7n+Ievn+let+I7nt+b11{;7tz+Re+Rt+Re7n+Ret+R7nt >0,
Dilrn=0 = SEALAL AT AR R R Rt Ty T Aexle > 0,

Dilii=o = SR T R R AT R Ry T MO > 0,
Dilti=0 = S LA e R R T Ry TR Ty T A8k Im >0, (7)
“FDiRr,=0 = o3l +emolem +13g(1 —€)Ier > 0,

“FDiRre=0 = o1lm + T1elmt + 129(1 — €)Iem > 0,

CFDlRr—o = o2l + el + 11g(1 — €)Lne > 0,

CF e
Dt|R€m,:D

cF
D}|Rrei=0

73(1 —e)(1 —g)let > 0,

T2(1 — g)(1 — €)lem > 0,

EDrmi=o = Ti(1—g)(1 —e)lms > 0.

From Remark 1 and system (7) the solution will remain

{S(O)v I (0)7 15(0)7 It(0)7 Iem(0)7 Ier (0)7 T (0)7 Rm(o)’ R€(0)7 Rt(o)v Rem (0)7 Ret(o)v Rt (0) € R;—B :

Also in each line bounding the non-negative octant, the vector field points will remain in Rj;. Therefore,the
fractional model (6) of a solution

{S(t)7 Im(t)7 I (t)v ]t(t)a Iem (t)? [et(t)7 I (t)? Rm(t)7 R (t)7 Rt(t)7 Rem(t)a Rey (t)v Rt (t)}

is not negative if the initial condition is set positively invariant. O

3.2 Bounded and Existence of the System

Theorem 3.2. The closed set

A= {S(t) + Im(t) + Ie(t) + It(t) + Iem(t) + Iet(t) + Imt(t) + Rm(t) + Re(t) + Rt(t) + Rem(t) + Ret(t) + Rmt(t) S %}
(8)

1s positively invariant with respect to the model (6).

Proof. By summing up all the human equations of the model (6), the fractional derivative of the total human
population can be expressed as

‘DiN(t) = II—uN—elc—elpm—esli — (e1+ €2)lem — (€1 + €3)Ier — (€2 — €3) Lne
< I—pN(@). (9)
Taking Laplace transform of (9), we get

E—MN(S)

S*N(s)— S YUN(0) = 5
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by re-arrange that, we get

I Sl —1)
N(s) = N(0). 10
()= 5ga sy + 5N O (10)
Taking the inverse Laplace transform of (10), we have
N(t) = N(0) Ea (=pt™) 4+ IIt" Ea a1 (—pt®), (11)

where Eq g is the Mittag-Lefler function. But the fact that the Mittag-Leffler function has an asymptotic
behavior [18, 19], it follows that

w NF@
Eo1N(t) = Ek:OF(T(—i—)l)’a >0, (12)
- Nkt
Ea,a+1N(t) = Ek:()w(a)_’_l),a > 0. (13)
Expanding (13), we have
1 N(t N2(t
EaiN(t) = — + ®) ® 4. (14)

Il T(a+1)  TQa+l)
Expanding (14), we have

1 N(t) N2(t)
Ta+l) TRa+D) TGBatl)

ana+1N(t) = + ....... (15)

Since Mittag-Leffler function has an asymptotic property, we have
N(t) =14 O(N).

Taking limit as k — oo, we have N(¢) &~ 1 Then, it is clear that A is a positive invariant set. Therefore, all
solutions of the model with initial conditions in A remain in A for all ¢ > 0. Hence, A = N(¢t) > 0 implies
that it is feasible with respect to the model (6). O
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4 Existence and Uniqueness of the Presented Model

By using the fixed point theorem, we want to check the existence of the solution. From definition (1), we

obtained that
S(t) = S(0)
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§ Il + aRe + BR: + YRm + 0Ret + (Rem + NRmt — (A1 + A2 + As + 1) S},
SEIH{ NS — whiIm — kA3l — (01 4 o+ 2) I },

§ I MS — xXale — pAsle — (03 + p+ 1)1},

SEL{ X3S — pAaly — 9N Iy — (02 + p 4+ 3) I},

§F IH{wM I + X2l — (72 + p+ 91 + ¥2) Lem ),

OCFIZ{ﬁ)q[t + pAsle — (Y1 + Y3 + p + 13) et },

SEL ooy + kX3 L — (1o + Y2 + 3 + 7)) Imt b

6" i{osle + emalem + T3g(1 — €) Lot — (p+ @) Re},

OCFItZ{O'IIm + melnt + 1729(1 — €)lem — (Y + )R },

§F I {oody + Tseler + 11g(1 — €)Ime — (1 + B)Re},

6 I{rs(1 — €)(1 — g)Let — (14 6)Ret},

6 {1 —g)(1 -

e)lem — (¢ + M)Rem}v

§FL{m (1= g)(1 =€)t — (N + 1) Rt} "
1

12



For simplification, we consider the equations of the model (16)

Hqi(t,S) = I+ aRe+ BR:+ YRm + dRet + CRem + NRmt — (M1 + A2 + A3 + 1) S,
Hy(t,I) = XS —whilpm — kAslm — (01 + p + 2) Im,
Hs(t,I.) = MS—xX\ele —prsle — (05 + p+ 1)1,
Hit,I) = AsS — oLy — O Ly — (00 + o+ ¥3) I,
Hs(t, Iem) = whilm +xA2le — (12 + p+ 91 + 92) lem,
Ho(t,Io)) = OMI+ phale — (1 + 03+ + 73) Lot
Hi(t, Imt) =  dXaly + KXslpn — (j + 2 + 3 + 71 ) I,
Hg(t,R.) = o3le+emalem +139(1 —e)ler — (1 + @) Re,
Ho(t,Rm) = o1lm+ T1€lmi+ 129(1 — €)Iem — (v + p)Rim,
Hqo(t,R:) = o2l +m3elet + 11g(l — €)Ime — (0 + B) Ry,
Hii(t, Ret) = 713(1—e)(1—g)let — (14 0)Rex,
Hiz(t, Rem) = 72(1—g)(1 —e€)lem — (¢ + 1) Rem,
Hiz(t, Rme) = 71(1=g)(1 —e)lme — (n+ p) Rons.
14 Sep 2023 22:33:10 PDT 13
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By utilizing the definition of fractional integral [20], we have

St)=S(0) = FisrmHi(t,S) + =ity Jo Hi(G S)dS,
Ln(t) = In(0) = 2S5 Hat In) + =3ty Jo Ha(C, T )dg,
L(t) = I(0) = G Hs(t 1) + g Jo Ha (G Lo)dC,
L(t) - 1(0) = FSgisHat ) + a=asm Jo Ha(C, 1)dC,
Lem(t) = Iem(0) = oty Ho(t, Lem) + =arcy Jo Hs(Cs Lem)dC,
Iet(t) — It (0) = (2211)7]\/}(1)}-{6@ Iet) + mfo He (¢, Iet)dC,
It (8) = Imt(0) = osaymogy Hr (4 Ime) + =357y Jo Hr (G, Ime)C, (18)
Rin(t) = Rin(0) = G xim Hs(t: R) + gty Jo Hs (G Run)dC,
Re(t) = Re(0) = iy Holt, Re) + m=srg Jo Ho(¢ Re)d,
Ru(t) = Ri(0) = iy Hiolt, Re) + =gy Jo Hio(C, Re)dC,
Rem(t) = Rem(0) = oyarry Hit(t Rem) + =350y Jo Hi2(C, Rem)dC,
Ret(t) = Ret(0) =  oiniiy Huz(t, Ret) + =25 Jo Hi2(C, Rer)d,
Ront(t) = Rt (0) = 25y Hua(t, Rnt) + =ity Jo His(C Rne)dC.

Theorem 4.1. The kernels Hi, H2, H3, Hy, Hs and Hg hold the Lipschitz condition and contraction, if the
inequalities 0 < £; < 1 holds for i = 1(1)13, where ¢1 = {(cO1 + cO2 + aOs + aO4 + bOs5 + bOs + 1) }.

Proof. Suppose S and S are two functions, thus we have

H Hl(t,S)—Hl(t,S1) || = || {H+aRe+/BRt+7Rm+§Ret+<Rem+ant_()\1+)\2+A3+,UJ)S}_{H+QR5+,BR7§
+ YRm + 0Ret + (Rem + MRt — (A1 4 A2 + A3 + 1) S1} |

= [[{a+r+A+ w8 = 5) |,

< {at+ X+ X+t S= 5,

< Alel el +el Tem | +a | Im | +a || Zome (| 40 | Ie || b (| Lex [| +)} | S = S,
< {aF+ A+ A+ )i S— 51,

< {(cO1 + O3 + aO3 + aO4 + bOs + bOs + 1)} | S — S1 ||,

(19)
Now by taking
6 ={(cO1 + cO2z + aOs + aO4 + bO5 + bO + 1)}

where || I ||< O1, || Iem || O2 || Im |€ O3, || Imt ||€ O4 || It ||€ O5 and || I¢ ||[< ©Og all are bounded
functions, so we have
| Hi(t,S) — H1(¢,51) ||I< 1| S—=51 ] - (20)

14 Sep 2023 22:33:10 PDT 14
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Thus, we can confirm that the Lipschitz condition is obtained for H; and for the rest of the cases, it can be
easily verified, given that 0 < (¢©1 4 ¢O2 + aO3 + aO4 + bOs5 + bOs + 1) < 1 which provides a contraction.

| Ha(t, Im) — Ha(t, Im1) ||

| Hs(t, Ie) — Hs(t, Le1) ||

| Ha(t, It) — Ha(t, 1n2) ||

| Hs(t, Lem) — Hs(t, Iem) ||
| He(t, Iet) — Ho(t, Letr) ||

| Hr(t, Imt) — Hr(t, Lmer) ||

| Hs(t, Re) — Hs(t, Re1) ||

| Ho(t, Rm) — Ho(t, Rm1) ||

|| Hio(t, Re) — Hio(t, Re1) ||

| Hi1(t, Rem) — Hua(t, Rema) ||
| Hi2(t, Ret) — Haz(t, Renr) ||

|| Hi3(t, Rmt) — His(t, Rmi1) ||

14 Sep 2023 22:33:10 PDT 15
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<

<

IN

IN

IN

IN

IN

IA

IN

IN

IA

IN

bo || I — I ||

L3 || Ie = Iea ||
bo || Io — I ||
s || Tem — Tema ||
lo || Tet — Ietn ||
b7 || It — LIt ||

(21)
ls || Re = Rex ||
Lo || R — Ry ||
lio || Re — R ||
11 || Rem — Rem1 ||
l12 || Ret — Ret1 ||
b || Rt — R || -

O



The afore-mentioned equation (18), we get

14 Sep 2023 22:33:10 PDT

S(0) + sy Hi(, S) + =2y Jo Hi (¢, 8)d¢,
L (0) + 25ty Ha(t, In) + =y Jo Ha (G L),
Ie(0) + 2ty Ha(t L) + =y Jo Ha(C, I)d¢,

L(0) + 255ty Ha(t, 1) + =3y Jo Ha(C, 1)dC,

(O) + #f\?@)[ﬁ(t Iem) + m fo H5 C? evrb)dC7

Let(0) + oyar Ho(t Tet) + =atrey Jo Ho(C, Let)dC,
It (0) + iy Ha (6, Imt) + =257y Jo Hr (G Ime)dC,
R (0) + vty Hs (8, Ron) + =257y Jy Hs (G, Rm)dC,
Re(0) + oyaiy Ho (t, Re) + =357 Jo Ho(C, Re)dC,
Ry(0) + iy Hio(ts Re) + =2y Jo Hio(C, Re)dC,
Rem (0) + bty Hu (6, Rem) + =275 Jo Hi2(C, Rem ),
Ret(0) + oy Hua(t, Ret) + =247y Jo Hi2(C, Rer)d,

Rt (0) + osaymo His (8 Bont) + 5=y Jo H1s(C, Rne)dC.

16
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We get the following recursive formula

Rem,, (1)
Rey,, (1)

R, (t)

14 Sep 2023 22:33:10 PDT
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B+ e Hi(8, S-) + g Jo Hi(C Stmn)dC,
%Hz( Im_1)) + a=a5rm Jy Ha(C, I,y )dC,
ity M Lo 1) + iy Jo Ha(Go Loy ),
%Hdt,h(n_l)) + mfo Hy(C, I,y )dC,
iy Ho (b Lem, ) + m=ires Jo Ho (G Tem 1, ),
%HG(@ Lto_1y) + Goistts Jy He(, Ter,,_y,)dC,
s Hr (b It _0)) + =ity Jo Hr (G T, ),
%Hg(t, R 1)) + aovi Jy Hs(C, B, _,))dC,
%Hﬁ)(ﬁ&(n v) + T Jo Ho(¢, Re(,,_))dC,
(22%7]&“}[10('5 Rt(n 1)) + @=)M(2) Z)M(l) fo Hio(C, Rt(n 1))dC,
%Hll(t7}%em(n H)+ mfo Hi2(C, Remy,,_y,)dC,
i Hia(t Rer, 1) + ety Jo Hi2(C, Rer, ) )dG,

2 1— 7, t
7(2 oty His(t Buneg,, 1)) + moary Jo H13(C Rimeg, ) )dC.

17



The difference between successive terms of the system (18) in recursive form is given below

Win(t) = Sn(t) = Sna(t) = %(Hl(t, Sn—1) = Hi(t, Sn—2)) + a3y Jy (HU(C, Sn1) = Hi(C, Sn—2)dC,

Won(t) = Im, (t) — Im(n71)(t) = #%(HQ(uIm(nfm) - Hz(t,[m(n72))) + =) M) Z)M(z) fo (Ha(¢ Im(n71))
- HQ(Ca Im(nfz)))dC7

‘Ij?m(t) = Ien (t) - [e(n,l) (t) = (22,(21);;)(1) (HS(t Ie(n 1))
- H3(t’le(n72>)) + 2=)M@) z)M( ) fo (Hs(¢ Iﬁ(n—n) — Hs(C, Ie(n—2))dg’

Wan(t) = I, (8) = Ty () = iy (Hat, o, _y)) = Hat, o, ) + a=sry Jo (Ha(Co Trg, o)
- H4(C7 It(nfz)))d<7

\IISn(t) = Iem, (t) - Iﬂm(n—1) (t) = %(Hdt Iem(n—l)) - H5(tv Iem(n—2))) + W fo H5 Iﬂm(n_l))
H5(Ca 6m(n_2)))d<7

\I’ﬁn(t) = letn (t) - Iet(nq) (t) = %(Hﬁ(ta IEt(n—l)) - HG(tv IEt(an))) + % fg(Hﬁ(Cv Iet(nq))
- H6(C7 Iet(nfz)))dgv

\I/7n(t) = Imt, (t) - Imt(n—l)(t) = (22(11)1\/21) (H7(t Imt(n—l)) - H7(t7[mt(n—2))) + @—2)M(2) z)]\/[(z) fo H7 C Imi(n 1))
- H7(Ca mi(nfg)))dC7

\IJSH("’) = Rmn (t) - Rm(nfn = %(HS("” Rm(nfl)) - Hg(t7 Rm<n72))) + % f(;(HS(C7 Rm(nfn)
- H8(C7 Rm(n,z)))dgz

Won(t) = Re, (t) — Rﬁ(n_l) = %(Hg(t Rﬁ(n_l)) — Ho(t, Rﬁ(n—2))) + W fO (Hy (¢ Re(n—l))
- HQ(C, e(nfz)))de

—1 2 t
Wion(t) = Re, (1) = Re sy = oossary (Hio(t Reg,_y)) = Hio(t Re, o)) + oz Jo (H10(G Reg, )
H10(§7 Rt(n,,z)))d<7

\Plln(t) = Remn(t) - Rﬁm(nfm = #%(Hll(tv Rem(nq)) - Hll(tv Rem(n72))) + m fo H11 Rem(n—l))
Hll(qa Rem(n72)))dgv

Wign(t) = Ret, (t) = Reti_yy = oy (Hhz(t, Retg, ) — Hiz(t, Ret, ) + a2 Jo (Hn2(C, Ret, 1)
- H12(47Ret(’n,72)))d<7

Wisn(t) = Rint, (t) — Bme(,,_,) = #};)@(Hm(t, Runt(,_yy)) — Hi3(t, Rme(,,_,))) + W fOt(Hla(C, Rmt,_y))
- H13(§a Rmt(nfz)))dg

with the following initial conditions

So = S(O), Im(O) = ]m(())v ]e(O) = [e(o)7 It(O) = It(0)7 Iem(()) = Iem(0)7 ]et(O) = Iet( ) I, t(0) — [mt(O)a
R0y = Rm(0), Rioy = R:(0), Reo) = Re(0), Rem(o) = Rem(0), Rimt0) = Rmi(0), Rer(o) = Ret(0),

By taking the norm of the second equation in the system (24),

H \I"Qn(t) ” = |I|_ILETC(71)I( ) - [;;(55“)( ) ” ” %(HQG Im('n, 1)) - H2(t7 [m(n72))) + (2712)71]\4@) fot(H2(<aIm(n71))
- 2 ™m(p—2)
(25)
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By utilizing the triangular inequality on equation (25), we obtain

2(1—2
| Iy () = Iy () || < (2(1)7]\4@) | (Hz2(t, I, _yy) — H2(t, I, _5))) || +m fo | (H2(¢, Im,, _y))
= Hz(C Im, 5))dC | -

By applying the Lipschitz condition to equation (26), we obtain 20
L N ) Y [ A | B vy A F Y 2
0] (2—=9)M() Jo ()
Thus, we have .
| @2 |I< %ﬁzwz(mn + (2_3%/0 LaWa(n—1)dC. (28)
Similarly, for other equations in (24), we have
100l < G Y10 + g3 o %1y | 4,
| Wsn || < (22(1%53‘1’3(71 vy + E3ww Jo €Wy || G,
| Wan || < (22(11>7_1\/1()é4\114(7z Sl nl Gy y Voo 'L)N[(z) fo CaVy(ny) | dC,
[ Wsn || < W&‘I’S(n yt Tomw 'L)M(z) fo 5 Ws(n-1) || dC,
| Wen || < %EG\PGUL 1+ m f(f LeVe(n_1) || dC,
Il < X ¥ + a=im Jy Ve 16, (29)
29
[Pen | < Ear s ¥smn) + m=aarm Jo £ Vs |l d<,
|| Yo || < &W&J\I’Q(n 1) + @=)M@) 'L)M(z) fo €9\P9(n 1) H de
Ion || < @m0 Yin-1) + @ Jo 0¥oe-) | d¢,
| Urin || < 2((21 z))éllqjll(n 1y + [CEDIVIO) z)M( ) fo Wiy [ dS,
| Yion || < %512‘1’12@71) + (2_12)73\/1(1) fot L12¥1a(n—1y || dC,
| Yi3n || < %513\1’13@71) + m fO L13W 1301y || dC.
14 Sep 2023 22:33:10 PDT 19
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From above, we can write that

Sa(t) = XL, Via(t),
Iy (t) = i, Vaa(t),
Ly (t) = XL, Vsa(t),
Liny(t) = i, Van(t),
Lemmy)(t) = Eie,V¥sa(?),
Ligy(t) = X7, Wen(t),
Tty (1) = Eiin,Urn(t), (30)
Ry (t) = it VUsa(t),
Reny(t) = 37, %on(t),
Riymy(t) = XL, Pion(t),
Remmy(t) = Eio,Vina(t),
Reny(t) = X1, Pi2,(t),
Ruiimy(t) = S Wisn(t).

Theorem 4.2. A coupled solution for the system
i=1,2,3,4,...,13.

of the proposed model exists if there exists a to such that

Proof. By verifying that the kernel satisfies the conditions given in (20) and (21), we can use the recursive

14 Sep 2023 22:33:10 PDT 20
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technique to obtain the successive results for the equation (30).

[P || < | Sn(0) || [( (22 j)]v;(z)gl) + (2— 1)]\/1(1)£1t]

[ Won || < [l I, (0) | [25570562) + mmsrrry 2t

| Wan | < 1 e (0) I (2055t + =iy o]

I an | < 2 (0) 11 CES50) + =iy Catl™

I sn | < Lema (0) 1| [(25m ) + =iy fot]™

| Yer | < |l Let, (O) | [( (22 11)]\/;(7,)€6) + (2_12)11\/1(1)%75]”7
197 | < T (0) ) (g2 ) + 2y M(0)rt]", (31)
[ Wsn |l < 1 B (0) || (i3 b8) + oy st

| Won || < 1 Ren(0) | [(@2050500) + om2irey bot]”

H Wion H < H Rtn( H [((22 11)1»;(1)610) + (2— z)M( )Zlot]

| 110 | < || Rem,, (0) || [((22<7,1)]\4L( )éll) + &= z)M( )éllt]

| Wiz || < Reea (0) 1| (25005 12) + =2y aat]™
[ Uiz || <[] R, (0) | [( ;Lﬁﬂwfw)+’§tﬁ%n;€wﬂ¢

Therefore, we can conclude that the system solution exists and also continuous. Further, to confirm that the
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above functions represent a solution of the model (6), we consider

Taking norm of Ba,, we
I Ban | = || a2530
< @

S(t) = S(0) = Su(t) = Bin(t),
In(t) = Im(0) = Linn)(t) = Bza(t),
Ie(t) = 1c(0) = Ie(n)(t) — Bsn(t),
LIi(t) = I.(0) = ILiyn)(t) — Ban(t),
Tem(t) = Iem(0) = Lem(n)(t) — Bsn(t),
Lee(t) = 1et(0) = Ler(n)(t) — Bon(t),
Ine(8) = It (0) = Loy (£) — Brn(2),
Ri(t) = Bim(0) = Rinny(t) — Bsa(t),
Re(t) = Re(0) = Re(ny(t) = Bon(t),
Ri(t) = Re(0) = Rin)(t) — Bion(t),
Rem(t) = Rem(0) = Remn)(t) — Buin(t),
Ret(t) = Ret(0) = Rei(n) () = Bizn(1),
Rmi(t) = Rmt(0) = Ruyn)(t) — Bisn(t).

get

W) M (2) (Haft, ]m(n—l)) -

[ (H2

2 H Im(n 1)

(t7 Im(nfl)) -

Hs(t, Im(n—Q))) + 3 z]W(z) fo (H2(¢

H2(t7 ]7

”(71—2)

By applying the same procedure at ¢i, we obtained

14 Sep 2023 22:33:10 PDT

2(1 -1
I Ban s (2820 4

}én-‘—l .

2- ()

22

) I +5=3r uw( ) fo I (H2(¢

Im(n—l)) -

— I _o I +o=2ray 2t | In(n—1) = Im(n—2) || -
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Im(nfl)) -

(32)

HQ(C7 Im(n—z) ))dC H7

Ha(C, I, ) [l G



Applying limit to equation (34) as n — oo, we get || B2, (t) ||[— 0. In similar way we can proceed to show that
[ Bin(®) | — 0,
| Bsn(t) | — 0,
| Ban(®) | — 0,
| Bsn(t) | — 0,
| Ben(t) | — 0,
| Br(®) | — 0,

(35)
| Ben(t) | — 0,
| Bon(t) | — 0,
| Bion(t) [ — 0,
| Bun(t) | — 0,
| Bian(t) | — 0,

| Bun(®) | — 0.

Further, to establish the uniqueness of the solution, we assume the existence of another solution to the proposed
model, denoted by 51 (t), Im1 (t), [el(t), It1 (t), [eml (t), Ietl (t), [mﬂ (t), Rm1 (t), Re1 (t), Rt1 (t),Reml (t), Retl (t),
and R+ (t), and using the following proceeding, we have

21—y % t
I (t) = Im1(t) = W(Hz(tafm(t) — Ha(t, Im1 (1)) + i) /0 (Hz(C, Im ) (t) — Ha(C, Im1)(t)zZZ)a
By applying the Lipschitz condition and taking the norm of equation (36), we obtain
I 10 = s (0) = esapaste | Dnlt) = T (6) |+ Gy I b)) = Ta () - (30)
After some simplification, we get
I 10t) = L (0 | (1= Gt 4 s tat) <. (39)
O

Theorem 4.3. The model (6) solution will be unique if || Im(t) — Im1(¢) || (1 — (227(21)}/?(1)62 + 27221&“)[20 > 0.

Proof. Let the condition (38) holds, then || I, (¢) — Im1(t) || (1 — (22_(11)};)(1) Ly + 2_12]\’4(1) lot) < 0 which implies

that || Im (t) — Lm1(t) ||= 0. Thus, we get I, (t) = Im1(t). Similarly, we can prove for the remaining i.e

2(1 —1) 21

S(t) — Si(t) = W(Hl(t,s@ — Hi(t,5:(¢)) +

2 M0) X/O(HI(C,S)(t)—Hl(c,sl)(t))dg, (39)

By applying the Lipschitz condition and taking the norm of equation (39), we obtain

I15() = 51() [I=

2(1; ?) 2 S0 —Si) || - (40)

mél | S(t) —Si(2) || +m
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Can be written in simple form

_ o 2(1—9) 21
I1S(8) = S:(t) [ (1 G_ome" t B0 0t) <0. (41)

Which implies that || S(t) — S1(t) ||= 0, thus we get S(t) = S1(t)

2(1 —1) 2

Le(t) =L (t) = m(%(t, Tea(t) — Ha(t, Lea (1)) + 0 ></0 (H3(C, Le)(t) — Ha(C, Lea) (#))dC, (42)

2—1M((2
By applying the Lipschitz condition and taking the norm of equation (42), we obtain
2(1 —1) 2
Ic(t) — Ie1(t) ||= ———~03 || Le(t) — 1 (t ——————— st || I (t) — Lea(t) || - 43
[ Ze(t) = Lea(?) | (2—1)M(z)3H (t) 1()H+(2—’L)M(Z)3 [ Ze(t) = Lea(2) |l (43)

Which simplifies to
21

2 - M)

H Ie(t) - Iel(t) H ( (2 E Z) )(’L

Which implies that || I () — Ie1(¢) ||, thus we get I.(t)

) £3t) <0. (44)
Lea(t)

()= T 6) = (o CHa T () = Hat, T (0) + 5y % [ (G0 = HlG L) (0}, (49)

By applying the Lipschitz condition and taking the norm of equation (45), we obtain

110 = In@®) = =229 0 1 L) = 1a() | +

(2 — Z)M(’L) Lot ” It(t) - Itl(t) H : (46)

21
(2—2)M()
Which simplifies to

_ o 2(1—o) 21
| Le(t) = T () || (1 PR IO CENIIO] lat) < 0. (47)

Which implies that || I:(t) — I:1(t) ||, thus we get I+(t) = I+1(t)

3 o 2(1—0) B 2 ¢ B
Teon (0T (6) = G (Ht. T ()= (8 T () 5o [ (€ L) O € feme.)(tzi;zf,
By applying the Lipschitz condition and taking the norm of equation (48), we obtain
) ECED I R T .
I Zem(®) = Lo ®) 1= g o | em(®) = Tt (8) | + Gyt | on(®) = Lena () ) (49)
Which simplifies to
3 2(1—1) 1
H -Iem(t) eml ) || ( ( l)M(Z) ZE + (2 — Z)M(Z) éﬁt) S 0. (50)

Which implies that || Iem () — Iem1(t) ||, thus we get Iem (t) = Iem1(t)

o 2(1—0) 2 /f
Let(t) = Lo (1) = (s (H(t Lea (6) = Ho(t, e (0) + 7 | (HO(C L) (8) = Ho(C. Ten) (),
(51)
By applying the Lipschitz condition and taking the norm of equation (51), we obtain
[ Let(t) = Lenn () |I= 21— Co || Tes(t) @)+ 2 Cot || Tes(t) @) | (52)
et etl = T8 N/ %6 et - etl T Nags/ .\ c6 et — letl .
(2—2)M() (2—=9)M()
After some simplification, we obtain
2(1 — 2
| Eeelt) ~ L) | (= 2 2 gy <o, (53)

(2—)M() (2—)M()
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Which implies that || Tet () — Lee1 (t) ||, thus we get Iet(t) = Te ()

)= (8) = G (et s ()= Hi 8 s (0) + g — s | (€ (= Hi G L ()G

(2—2)M(2) 2—M
(54)
By applying the Lipschitz condition and taking the norm of equation (54), we obtain
21 =) _ 21 B
|| I"Lt(t) - Imtl(t) ||7 (2 — ’L)M(Z) £7 H Imt(t) mtl(t) H +(2 — Z)M(Z)€7t || I"Lt(t) Imtl(t) || . (55)
After some simplification, we have
1 Ie(®) = L) [ (1= 2020 gy 2 o (56)
m " (2—=0)M() @=9)M@) "~
Which implies that || Im:(t) — Lme1(t) ||, thus we get Int(t) = Lne ()
o 2(1—v) 21 ¢ 3
Ron() =Rt (8) = s (st R ()=t Rona ()4 5707 | (6(C. R (= G, B (1),
(57)
By applying the Lipschitz condition and taking the norm of equation (58), we obtain
o 2(1—0) B 2 _
| Fua®) = Roa(9) = st | Bua®) = Roa(9) |+ st | B0) = Bua®) . (59)
After some simplification, we get
| Run(®) = Rt (1) | (1 — 2020 g 20 < (59)
m @-0)M@ " " @M@ " =T
Which implies that || Rm(t) — Rm1(t) ||, thus we get R (t) = Rm1(t)
21— ~ 2 ‘ _
Re(t) — Re1(t) = W(HWZ Re1(t) — Ho(t, Re1 (1)) + M) ></O (Ho(C, Re)(t) — Ho(C, Re1)(t))dC,
(60)
By applying the Lipschitz condition and taking the norm of equation (60), we obtain
_ 20—y _ N _
| Re(t) — Rer(t) ||= - z)M(z)&’ | Re(t) — Rea(t) || tao Z)M(Z)ﬁst | Re(t) — Rea(t) || - (61)
Which can further simplifies to
2(1—1) 21
|| Re(t) — Rel(t) || (1 — 2—0MQ) ly + PEDIIO) Lot) < 0. (62)
Which implies that || Re(t) — Re1(t) ||, thus we get Re(t) = Re1(t)
_ t
Re(t) =B (t) = o0 (Ho(t Res () = Huolt, B () + 570 % | (Hrol, Re)6) = Hrol¢. Res) )
(63)
By applying the Lipschitz condition and taking the norm of equation (63), we obtain
_ 2=y _ A _
I Bu(®) = Bu®) |= Gt tio | Rul®) = Ra(0) | + =300t | B~ Ra®) | . (69
Which simplifies to
2(1 =) 21
|| Re(t) — Rea(t) | (1 — 2 —)M@) Lo+ 2= ) M) liot) <0. (65)
Which implies that || R¢(t) — Re1(t) ||, thus we get Re(t) = Re1(t)
o 2(1—2) 21 t 3
Rem (t)—Rema (1) = G0N (H11(t, Rema (t) = Hua (¢, Rem1 () +5— s Q) X/O (H11(¢; Bem ) (t)—Hu1 (G, Rem1)(t))dC,
(66)
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By applying the Lipschitz condition and taking the norm of equation (??7), we obtain

— = 20—y 11 - 1 o 11 - 1
H Rem(t) Reml(t) || (2 _ Z)M('L)e || Rem(t) Rem (t) H +(2 _ Z)M(’L)g t H Rem(t) Rem (t) H . (67)
After some simplification, we obtain
_ o 2(1—9) 2
H Rem(t) Reml(t) || (1 (2 — Z)M(Z) Kll + (2 — ’L)M(Z) éllt) S O (68)

Which implies that || Rem (t) — Remi(t) ||, thus we get Rem (t) = Rema (t)

2(1 — 2 ¢
Rei(t)=Ren (t) = %(HlQ(tv Retl(t)*Hm(t»Retl(t))Jrﬁ;\MX/o (H12(, Ret)(t) = H12(C, Retn ) (t))dC,
(69)
By applying the Lipschitz condition and taking the norm of equation (69), we obtain
| Bet(®) = Ren(®) 1= 2= ia || Rea(t) = Ren (&) | 45—t brst | R (8) = Renr(®) | . (70)
et etl — (2 — Z)M(Z) 12 et etl (2 — ’L)M(Z) 12 et etl .
After some simplification, we get
2(1 —1) 21
€ - e - < .
| Bee) = Rer(8) || (1 = s ha + Gy foat) <0 (1)

Which implies that || Re:(t) — Ret1(t) ||, thus we get Ret(t) = Res1(t)

2(1 — 2 k
Rint(t)=Rmui (t) = %(Hm(t,Rmtl(t)—Hl?r(t,Rmtl(t))JFﬁ;\/j(l)X/o (H13(Cs Ronie) (8) = Hu3(C, R ) (%)) dC,
(72)
By applying the Lipschitz condition and taking the norm of equation (72), we obtain
| Bt (t) = R (t) [|= 20y, | Ront (8) = R (8) | 45— —t13t || Ront (t) = Renr(8) || . (73)
mt mitl — (2 — Z)M(’L) 13 mt mtl (2 — Z)M(Z) 13 mt etl .
Which simplifies to
2(1 —1) 2
I Ral®) = Ronn(0) | (1= 2ty 4 G esbint) <0 (2
Which implies that || Rme(t) — Rme1 () ||, thus we get Rpi(t) = R (t) O

5 Numerical Scheme and Simulations

In this section, we present numerical simulations of the proposed co-infections fractional order model, by tak-
ing into account the possible treatment, explore the impact of the fractional order + and biologically significant
parameters on the disease prevalence. To solve the proposed model (6) numerically, we have employed the
technique of fractional Adams-Bashforth for the Caputo-Fabrizio (CF) fractional order derivative[26]. Specif-
ically, we utilized the second equation of the system (6) and the system (17) along with the fundamental
theorem of integration to derive the necessary numerical scheme.

In(t) — I (0) = ﬁh&(t,fm) + ML(Z)/O Ha (2, L) da. (75)
At t = tp+1, we have
1 — tn+1
I (tng1) — I (0) = M—(Z;Hg(tn,lm(n)) + ML(Z) /0 Ha(1, In)da. (76)
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and similarly

1—2 1 tn
.Im(tn) - .Im(o) - M(Z)’H2(tnfla I7n(n—1)) + Mi(l) /O H2(’L, .Im)dl (77)
From the equation (76) and (77), we have
1—2 7 tnt1
I7rL(n+1) - Irn(n) = W{H2(tna I‘"L(n)) - H2(tn*17]'m(n71))} + m / H2(Zv Im)dl (78)
tn

To approximate Ha(t, In), we can use Lagrange interpolation with a step size of h = t;41 — t; and calculating
the integral part in equation (78) over the interval [t,, tny1], to obtain

tn tna1rH2(En I (n)) Ho(tn,Im
o Ho o, Lyt = [0 [P (¢ =t y) — #2Uetmd (¢ — ¢,,)]dt

n

(79)
= S Ha(tn, In(n)) — 5 H2(tn—1, Im(n—1)-
By putting this approximated value in equation (78), we get
Innt1) = Im(n) + {]1\47_(5 + 500G )}{H2(tn,1m<n>) {ML() + 2M( )}Hz( =1, Im(n—1))- (80)
The remaining equations can be written similarly as
Sty = Sm)+ {M( ) + 2%(1)}{}11 tms(n)) {M( ) + 2M(7,)}H1(t" 1, S(n— 1))
Ly = Ly 3 + oty HHs (s Leny) — Lty + anrgy M3 (tn—1, Le(n—1)),
Lt(n+1) = Iin)+ {]\/I(z) + 21%?(11)}{H4(tn71t(n)) - {#(1) + 2NI(1)}H4( n—1,1(n-1)),
lemniry = Lemm) + {Mu) + 23&)}{1{ 5(tns Lem(n)) — {ﬁm + 21\4(1)}H 5(tn—1, lem(n—1)),
Lttty = Lesn) + {51 + ontey HHo(tn, Levny) — {57y + zrey Mo (tn—1, Lettn-1y),
Lnttntty = Loy + {3705 + sagiy HH (b Lneny) — {575 + zgey V7 (bn=1, Tt 1)) .
Rpmt1y = Ry + {3505 + oty HHs(tn, Rininy) — {37y + zarey YHs(ta-1, Ri(n-1));
Rensry = Rey + {5705 + anry HHo (tn, Ren)) — {575y + margy HHo(tn-1, Re(n-1)),
Rt(n+1) = Rt(") + {M(z) + QJVI(z)}{Hlo( n Rt(n)) {#m + %}Hlo(tn*th(nfl))a
Bemnsty = Romn) + {2555 + 535 HH (b Remn) — {555 + 550 P (bats Remn),
Reyininy = Rem) + {375 + simey HH12(tn, Ren) — {7y + zrey iz (ba—1, Restn 1)),
Ruptnst)y = R + {3105 + aarey HH13(En, Rnen)) — {375y + aargy H13(En—1, Ring(n—1))-

The graphical results are obtained for various values of ¢« € (0, 1] while the parameters used in simulations

are I =1, a =3x103% 8 =396x10"2 v =2x10"2 6§ =31x1073% ¢ =4x107% 5 = 0.05,
=51x107% N = 50, w = 0.005, kK = 4 x 107%, o1 = 0.0396, 02 = 0.02, 03 = 0.017, ¢ = 0.15,
ha = 1.6 x 1073, ¢p3 = 0.51, 71 = 3.96 x 1072, 75 = 0.02, 73 = 0.017, e = 0.00035, g = 1.2x 107*, a = 1 x 1078,
b=1x10"% and ¢ = 1 x 107!°. The time level is taken up to 30 days. Figurel, shows the dynamics of
suspectable individuals for five different values of fractional order 2. It is observed that the population in class
S(t) increases for the decreasing the values of . The effects of ¢ on the dynamics of remaining model classes
ie (Im, Lo, Ity Iem, Iet, Im¢) is depicted in Figures(2 — 7). It is clear from the Figures(2-7) that the population
in all infected classes decreases significantly for the decreasing the values of 2. Also from figures(8,....,13) the
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Figure 1: Simulation of susceptible human population
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Figure 2: Simulation of infected human population from Malaria

14 Sep 2023 22:33:10 PDT

29

230505-Zaman Version 3 - Submitted to Rocky Mountain J. Math.




6 T T T T T

==enn\imath=0.6
== = = \imath=0.7
5+ == =\imath=0.8 |
\imath=0.9

m— \imath=1.0

Infected population from Ebola
w

Time "t" (Days)

Figure 3: Simulation of infected human population from Ebola
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Figure 4: Simulation of infected human population from Typhoid
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Figure 5: Simulation of co-infected human population from Malaria & Ebola
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Figure 6: Simulation of co-infected human population from Ebola & Typhoid
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Figure 7: Simulation of co-infected human population from Malaria & Typhoid
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Figure 8: Simulation of recovered human population from Malaria
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Figure 9: Simulation of recovered human population from Ebola

14 Sep 2023 22:33:10 PDT 36
230505-Zaman Version 3 - Submitted to Rocky Mountain J. Math.

30



10 |

==esr\imath=0.6
=== = \imath=0.7
== =\imath=0.8
\imath=0.9
= \imath=1.0

Recovered population of Typhoid

0 5 10 15 20 25
Time "t" (Days)

Figure 10: Simulation of recovered human population from Typhoid
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Figure 11: Simulation of recovered human population from Ebola & Malaria co-infection
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Figure 13: Simulation of recovered human population from Malaria & Typhoid co-infection
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Parameter value Source
11 1 Assumed
0% 2x 1072 | Assumed
I5] 3.96 Assumed
« 3x 1073 Assumed
7 0.05 [30]
¢ 4x107* | Assumed
§ 3.1 x 1072 [33]

L 5.1 x 1073 [30]
al 3.96 x 1072 | Assumed
7 0.02 [31]
T3 0.017 Assumed
1 0.15 Assumed
o 1.6 x 1073 | Assumed
3 0.51 Assumed
o1 0.0396 Assumed
09 0.02 [34]
o3 0.017 [32]

population in all five recovered classes i.e (Re, Rm, Rt, Rem, Rmt) increased for decreasing the values of ¢. It
means that for decreasing the values of 1, the disease endemic state moves to disease free state. Also this
behavior become more biologically feasible for decreasing values of 2 of CF operator used in the proposed
model.

6 Conclusion

In this work, we developed multi-infections model by using the Caputo Fab-Raizo fractional order derivatives.
First, we investigated the existence and uniqueness of the proposed fractional order model by using Lipschitz
and the convolution functions theory. The positivity and boundedness of the solutions for the multi-infection
type model are also established. For the numerical solution we applied an Adams-Bashforth method to
calculate solution of the proposed fractional order model. Finally, to show the influence of fractional order
and model parameters, a detailed numerical simulation for different values of fractional order is presented.
It is clear from our numerical results that the population in all infected classes decreased significantly by
decreasing different values of the given parameters, while the recovered classes increased. It means that for
decreasing the values of the disease endemic state moves to disease free state, which showed the importance
and convincing behavior of the fractional order and ensures that by including the memory effects in the
model seems very appropriate for such an investigation. This research study helps to generate meaningful
predictions regarding co-infections rather than prevention and management of multiple infections. Since it
allows the proper information regarding infection transmission to be clarified, the fractional model offers a
more acceptable solution than the integer scenario, as shown by the graphical representations.
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