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Abstract

In this article, we study two semi-analytical methods: the successive approximation

method, i.e., the Picard method (PM), the Adomian decomposition method (ADM),

and one numerical technique (NT) method for finding the approximate solution of Gen-

eralized Nonlinear Functional Integral Equations (GNFIE). The existence and unique-

ness results are proved by applying Banach’s contraction theorem. In some cases, it

is difficult to find the integral when we use the ADM to find the approximate solu-

tion of certain nonlinear integral equations. To overcome this problem, some numerical

techniques are applied based on GNFIE. Our existence results contain many functional

integral equations as a special case. Finally, we discuss some examples and compare the

methods along with the error analysis.
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1 Introduction

Generalized Nonlinear Functional Integral Equations (GNFIE) have numerous applications

in various fields, including the theory of neutron transport, the theory of radiative transfer,

the kinetic theory of gases, and traffic theory. Numerous papers, monographs, and ap-
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plications frequently involve the GNFIE. For more details, see ([9]-[11], [12]-[14], [21]-[23],

[25],[26],[28]-[31], and references therein).

In 1987, R. Rach [39] and N. Bellomo and D. Sarafyan [19] compared ADM with the

Picard method (PM) on several examples. In 1999, Golberg [33] investigated whether the

Adomian method for linear differential equations is equivalent to the traditional method of

successive approximations (PM). But this is not true in general for all nonlinear differential

equations. In 2010, El-Sayed et al. [31] studied the existence and uniqueness of solutions

for the following quadratic integral equation (QIE):

z(µ) = s(µ) + h(µ, z(µ))

∫ µ

0
f(υ, z(υ))dυ,

where h(µ, z(µ)) and f(υ, z(υ)) are bounded functions and compared their results with

ADM and Picard method.

In 2013, E.A.A. Ziada [43] proved the existence and uniqueness of a solution for the

following QIE:

z(µ) = s(µ) +

(∫ µ

0
K1(µ, υ)f(υ, z(υ))dυ

)(∫ µ

0
K2(µ, υ)g(υ, z(υ))dυ

)
,

and applied ADM and the repeated trapizoidal rule to solve the above equation with com-

parisons.

In this article, we prove the existence and uniqueness of the following GNFIE:

z(µ) = s(µ) + h(µ, z(µ))

(∫ µ

0
K1(µ, υ)f(υ, z(υ))dυ

)(∫ µ

0
K2(µ, υ)g(υ, z(υ))dυ

)
, (1)

and apply ADM, the Picard method, and one numerical technique to solve the above equa-

tion. To solve the numerical examples, we use MATLAB 2021a software. Apart from this,

a detailed comparison of these methods, including the error analysis, is discussed.

2 Main results

In this section, we investigate the existence and uniqueness of the solution to the following

GNFIE:

z(µ) = s(µ) + h(µ, z(µ))

(∫ µ

0
K1(µ, υ)f(υ, z(υ))dυ

)(∫ µ

0
K2(µ, υ)g(υ, z(υ))dυ

)
. (2)
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Using the subsequent presumption:

(i) s : I → R+ is a continuous function on I, where I= [0, 1] and R+=[0,+∞];

(ii) h, f and g : I × Ω ⊂ R+ → R+ are continuous and P= sup {|h(µ, 0)| : µ ∈ [0, 1]},

Q= sup {|f(µ, 0)| : µ ∈ [0, 1]}, S= sup {|g(µ, 0)| : µ ∈ [0, 1]} and |z(µ)|5 H ;

(iii) K1,K2 : I × I → R are continuous such that Ki= max
µ,υ∈I

|Ki(µ, υ)|, i=1,2;

(iv) h, f , and g satisfy the Lipschitz condition with Lipschitz constants C1, C2 and C3 such

that

|h(µ, z)− h(µ, y)| 5 C1|z − y|,

|f(µ, z)− f(µ, y)| 5 C2|z − y|,

|g(µ, z)− g(µ, y)| 5 C3|z − y|.

Assuming C = C(I) to be the space of all real-valued functions that are continuous on I.

Consider the operator M as,

(Mz)(µ) = s(µ)+h(µ, z(µ))

(∫ µ

0
K1(µ, υ) f(υ, z(υ))dυ

)(∫ µ

0
K2(µ, υ) g(υ, z(υ))dυ

)
∀ z ∈ C.

Theorem 2.1. Let s(µ) ∈ C(I) and the presumptions (i)-(iv) be satisfied.

If K = K1K2[C1 (C2H+Q) (C3H+ S) +C2 (C1H+ P) (C3H+ S)+C3 (C1H+ P) (C2H+Q)]

and K < 1 , then the GNFIE (2) has a unique positive solution z ∈ C.

Proof. Clearly, the operator M maps C into C.

Define D as a subset of C,

D = {z ∈ C : |z − s(µ)| ≤ M} where M = K1K2 (C1H+ P) (C2H+Q) (C3H+ S) > 0.

So, the operator M maps D into D. For z ∈ D, we have

|(Mz)(µ)− s(µ)| 5 |h(µ, z(µ))|
(∫ µ

0
|K1(µ, υ)| |f(υ, z(υ))|dυ

)(∫ µ

0
|K2(µ, υ)| |g(υ, z(υ))|dυ

)
5 K1K2 (|h(µ, z(µ))− h(µ, 0)|+ |h(µ, 0)|)

(∫ µ

0
(|f(υ, z(υ))− f(υ, 0)|+ |f(υ, 0)|) dυ

)
(∫ µ

0
(|g(υ, z(υ))− g(υ, 0)|+ |g(υ, 0)|) dυ

)
5 K1K2 (C1|z(µ)|+ P) (C2|z(υ)|+Q) (C3|z(υ)|+ S)

(∫ µ

0
dυ

)(∫ µ

0
dυ

)
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= K1K2 (C1|z(µ)|+ P) (C2|z(υ)|+Q) (C3|z(υ)|+ S)µ2

5 K1K2 (C1H+ P) (C2H+Q) (C3H+ S)µ2

5 K1K2 (C1H+ P) (C2H+Q) (C3H+ S)

Also, one can easily verify that D is a closed subset of C. Now we prove that M is a

contraction. For z, y ∈ D, we get

(Mz)(µ)− (My)(µ) = h(µ, z(µ))

(∫ µ

0

K1(µ, υ)f(υ, z(υ))dυ

)(∫ µ

0

K2(µ, υ)g(υ, z(υ))dυ

)
−h(µ, y(µ))

(∫ µ

0

K1(µ, υ)f(υ, y(υ))dυ

)(∫ µ

0

K2(µ, υ)g(υ, y(υ))dυ

)
= h(µ, z(µ))

(∫ µ

0

K1(µ, υ)f(υ, z(υ))dυ

)(∫ µ

0

K2(µ, υ)g(υ, z(υ))dυ

)
−h(µ, y(µ))

(∫ µ

0

K1(µ, υ)f(υ, y(υ))dυ

)(∫ µ

0

K2(µ, υ)g(υ, z(υ))dυ

)
+h(µ, y(µ))

(∫ µ

0

K1(µ, υ)f(υ, y(υ))dυ

)(∫ µ

0

K2(µ, υ)g(υ, z(υ))dυ

)
−h(µ, y(µ))

(∫ µ

0

K1(µ, υ)f(υ, y(υ))dυ

)(∫ µ

0

K2(µ, υ)g(υ, y(υ))dυ

)
= [h(µ, z(µ))− h(µ, y(µ))]×

(∫ µ

0

K1(µ, υ)f(υ, z(υ))dυ

)(∫ µ

0

K2(µ, υ)g(υ, z(υ))dυ

)
+h(µ, y(µ))

(∫ µ

0

K1(µ, υ) [f(υ, z(υ))− f(υ, y(υ))]dυ

)(∫ µ

0

K2(µ, υ) g(υ, z(υ))dυ

)
+h(µ, y(µ))

(∫ µ

0

K1(µ, υ) f(υ, y(υ))dυ

)(∫ µ

0

K2(µ, υ) [g(υ, z(υ))− g(υ, y(υ))]dυ

)
|(Mz)(µ)− (My)(µ)| 5 |h(µ, z(µ))− h(µ, y(µ))|

(∫ µ

0

|K1(µ, υ)| |f(υ, z(υ))|dυ
)(∫ µ

0

|K2(µ, υ)| |g(υ, z(υ))|dυ
)

+|h(µ, y(µ))|
(∫ µ

0

|K1(µ, υ)| |f(υ, z(υ))− f(υ, y(υ))|dυ
)(∫ µ

0

|K2(µ, υ)| |g(υ, z(υ))|dυ
)

+|h(µ, y(µ))|
(∫ µ

0

|K1(µ, υ)| |f(υ, y(υ))|dυ
)(∫ µ

0

|K2(µ, υ)| |g(υ, z(υ))− g(υ, y(υ))|dυ
)

∴ ‖Mz −My‖ = max
µ∈I
|(Mz)(µ)− (My)(µ)|

5 K1K2C1 (C2H+Q) (C3H+ S) ‖z − y‖µ2 +K1K2C2 (C1H+ P) (C3H+ S) ‖z − y‖µ2

K1K2C3 (C1H+ P) (C2H+Q) ‖z − y‖µ2

5 K1K2[C1 (C2H+Q) (C3H+ S) + C2 (C1H+ P) (C3H+ S)

+C3 (C1H+ P) (C2H+Q)] ‖z − y‖

= K × ‖z − y‖,

where K = K1K2 [C1 (C2H+Q) (C3H+ S) + C2 (C1H+ P) (C3H+ S) + C3 (C1H+ P) (C2H+Q)].

If K < 1, the operator M is a contraction. By Banach contraction theorem, M has a fixed point

which is unique in D. Hence, GNFIE (2) has a unique solution.
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3 Applications

Our proposed GNFIE contains several nonlinear integral equations as a special case.

• If h(µ, z(µ)) = 1, Eq. (1) becomes the subsequent nonlinear QIE, which was studied by

E.A.A. Ziada in [43].

z(µ) = s(µ) +

(∫ µ

0
K1(µ, υ)f(υ, z(υ))dυ

)(∫ µ

0
K2(µ, υ)g(υ, z(υ))dυ

)
.

• If we put K1(µ, υ) = K2(µ, υ) = 1 in Eq. (1), we get the following nonlinear GNFIE:

z(µ) = s(µ) + h(µ, z(µ))

(∫ µ

0
f(υ, z(υ))dυ

)(∫ µ

0
g(υ, z(υ))dυ

)
.

• If we put K1(µ, υ) = K2(µ, υ) = K(µ, υ) and f(υ, z(υ))= g(υ, z(υ)) in Eq. (1), we get the

following nonlinear GNFIE:

z(µ) = s(µ) + h(µ, z(µ))

(∫ µ

0
K(µ, υ)f(υ, z(υ))dυ

)2

.

• If we put h(µ, z(µ)) = 1;K1(µ, υ) = K2(µ, υ) = 1 in Eq. (1), we get the following nonlinear

QIE:

z(µ) = s(µ) +

(∫ µ

0
f(υ, z(υ))dυ

)(∫ µ

0
g(υ, z(υ))dυ

)
.

• If g(υ, z(υ)) = 1 and K2(µ, υ) = 1, Eq. (1) transforms to the subsequent nonlinear GNFIE

studied by E.A.A. Ziada [42].

z(µ) = s(µ) + h1(µ, z(µ))

(∫ µ

0
K1(µ, υ)f(υ, z(υ))dυ

)
.

• If g(υ, z(υ)) = 1 and K1(µ, υ) = K2(µ, υ) = 1, Eq. (1) transforms to the following

nonlinear QIE studied by A.M.A El-Sayed et al. [31].

z(µ) = s(µ) + h1(µ, z(µ))

(∫ µ

0
f(υ, z(υ))dυ

)
. (3)

Also, if h1(µ, z(µ)) = 1 in Eq. (3), we get the following nonlinear Volterra integral equation

[24]

z(µ) = s(µ) +

(∫ µ

0
f(υ, z(υ))dυ

)
.

• If g(υ, z(υ)) = 1 , s(µ) = 0 and K1(µ, υ) = K2(µ, υ) = 1, Eq. (1) transforms to the

subsequent nonlinear QIE studied by Maleknejad et al. [38].

z(µ) = h1(µ, z(µ))

(∫ µ

0
f(υ, z(υ))dυ

)
.
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4 Picard method (PM)

Applying PM to GNFIE (2), the solution occurs by the sequence

z0(µ) = s(µ),

zn(µ) = s(µ) + h(µ, zn−1(µ))

(∫ µ

0
K1(µ, υ) f(υ, zn−1(υ))dυ

)
×(∫ µ

0
K2(µ, υ) g(υ, zn−1(υ))dυ

)
; n = 1 (4)

where zn(µ) are continuous functions and we can write zn as a sum of successive differences:

zn = z0 +
n∑
i=1

(zi − zi−1).

This implies that the convergence of the sequence {zn} is equivalent to the convergence of

the infinite series
∑∞

i=1(zi − zi−1) and the solution will be the limit of the sequence {zn},

i.e.,

z(µ) = lim
n→∞

zn(µ).

If the series
∑

(zi − zi−1) convergent, then the sequence {zn(µ)} is uniformly converges to

z(µ). To show uniform convergence of {zn(µ)}, we consider the series

∞∑
n=1

[zn(µ)− zn−1(µ)].

For n=1 in Eq. (4), we get

z1(µ)− z0(µ) = h(µ, z0(µ))

(∫ µ

0
K1(µ, υ) f(υ, z0(υ))dυ

)(∫ µ

0
K2(µ, υ) g(υ, z0(υ))dυ

)
and |z1(µ)− z0(µ)| 5 K1K2 (C1H+ P) (C2H+Q) (C3H+ S)µ2 =M µ2. (5)

Now, to find an estimation for (zn − zn−1), n = 2

zn − zn−1 = h(µ, zn−1(µ))

(∫ µ

0
K1(µ, υ) f(υ, zn−1(υ))dυ

)(∫ µ

0
K2(µ, υ) g(υ, zn−1(υ))dυ

)
−h(µ, zn−2(µ))

(∫ µ

0
K1(µ, υ) f(υ, zn−2(υ))dυ

)(∫ µ

0
K2(µ, υ) g(υ, zn−2(υ))dυ

)
= h(µ, zn−1(µ))

(∫ µ

0
K1(µ, υ) f(υ, zn−1(υ))dυ

)(∫ µ

0
K2(µ, υ) g(υ, zn−1(υ))dυ

)
−h(µ, zn−2(µ))

(∫ µ

0
K1(µ, υ) f(υ, zn−2(υ))dυ

)(∫ µ

0
K2(µ, υ) g(υ, zn−1(υ))dυ

)
+h(µ, zn−2(µ))

(∫ µ

0
K1(µ, υ) f(υ, zn−2(υ))dυ

)(∫ µ

0
K2(µ, υ) g(υ, zn−1(υ))dυ

)
−h(µ, zn−2(µ))

(∫ µ

0
K1(µ, υ) f(υ, zn−2(υ))dυ

)(∫ µ

0
K2(µ, υ) g(υ, zn−2(υ))dυ

)
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zn − zn−1 = [h(µ, zn−1(µ))− h(µ, zn−2(µ))]×
(∫ µ

0
K1(µ, υ) f(υ, zn−1(υ))dυ

)
×
(∫ µ

0
K2(µ, υ) g(υ, zn−1(υ))dυ

)
+h(µ, zn−2(µ))

(∫ µ

0
K1(µ, υ) [f(υ, zn−1(υ))− f(υ, zn−2(υ))]dυ

)
×
(∫ µ

0
K2(µ, υ) g(υ, zn−1(υ))dυ

)
+h(µ, zn−2(µ))

(∫ µ

0
K1(µ, υ) f(υ, zn−2(υ))dυ

)
×
(∫ µ

0
K2(µ, υ) [g(υ, zn−1(υ))− g(υ, zn−2(υ))]dυ

)
∴ |zn − zn−1| 5 K1K2C1 (C2H+Q) (C3H+ S)µ2 ‖zn−1 − zn−2‖

+K1K2C2 (C1H+ P) (C3H+ S)µ

∫ µ

0
|zn−1(υ)− zn−2(υ)|dυ

+K1K2C3 (C1H+ P) (C2H+Q)µ

∫ µ

0
|zn−1(υ)− zn−2(υ)|dυ. (6)

Putting n=2 in Eq. (6) and using Eq. (5), we get

|z2 − z1| 5 K1K2C1 (C2H+Q) (C3H+ S)µ2 ‖z1 − z0‖

+K1K2C2 (C1H+ P) (C3H+ S)µ

∫ µ

0
|z1(υ)− z0(υ)| dυ

+K1K2C3 (C1H+ P) (C2H+Q)µ

∫ µ

0
|z1(υ)− z0(υ)| dυ.

5 MK1K2C1 (C2H+Q) (C3H+ S)µ4 +MK1K2C2 (C1H+ P) (C3H+ S)
1

3
µ4

MK1K2C3 (C1H+ P) (C2H+Q)
1

3
µ4

= MK1K2

[
C1 (C2H+Q) (C3H+ S) +

1

3
C2 (C3H+ S (C1H+ P)) +

1

3
C3 (C1H+ P) (C2H+Q)

]
µ4.

Putting n=3 in Eq. (6) and using Eq. (5), we get

|z3 − z2| 5 K1K2C1 (C2H+Q) (C3H+ S)µ2 ‖z2 − z1‖

+K1K2C2 (C1H+ P) (C3H+ S)µ

∫ µ

0
|z2(υ)− z1(υ)| dυ

+K1K2C3 (C1H+ P) (C2H+Q)µ

∫ µ

0
|z2(υ)− z1(υ)| dυ.

5 M(K1K2)
2

[
C1 (C2H+Q) (C3H+ S) +

1

3
C2 (C3H+ S (C1H+ P)) +

1

3
C3 (C1H+ P) (C2H+Q)

]
×
[
C1 (C2H+Q) (C3H+ S) +

1

5
C2 (C3H+ S (C1H+ P)) +

1

5
C3 (C1H+ P) (C2H+Q)

]
µ6.
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By continuing the same procedure, we get

|zn − zn−1| 5 M(K1K2)n−1
[
C1 (C2H+Q) (C3H+ S) +

1

3
C2 (C3H+ S) (C1H+ P) +

1

3
C3 (C1H+ P) (C2H+Q)

]
×
[
C1 (C2H+Q) (C3H+ S) +

1

5
C2 (C3H+ S) (C1H+ P) +

1

5
C3 (C1H+ P) (C2H+Q)

]
× ...×[

C1 (C2H+Q) (C3H+ S) +
1

2n− 1
C2 (C3H+ S) (C1H+ P) +

1

2n− 1
C3 (C1H+ P) (C2H+Q)

]
µ2n

5 M(K1K2)n−1 [C1 (C2H+Q) (C3H+ S) + C2 (C3H+ S) (C1H+ P) + C3 (C1H+ P) (C2H+Q)]× ..×

[C1 (C2H+Q) (C3H+ S) + C2 (C3H+ S) (C1H+ P) + C3 (C1H+ P) (C2H+Q)]

= M [K1K2 {C1 (C2H+Q) (C3H+ S) + C2 (C3H+ S) (C1H+ P) + C3 (C1H+ P) (C2H+Q)}]n−1 .

Since, K = [K1K2 {C1 (C2H+Q) (C3H+ S) + C2 (C3H+ S) (C1H+ P) + C3 (C1H+ P) (C2H+Q)}]

and K < 1 also M > 0, so the convergence of the series

∞∑
i=1

[zn(µ)− zn−1(µ)]

is uniform. Hence, zn(µ) is uniformly convergent.

Since h(µ, z), f(µ, z) and g(µ, z) are continuous at z, so

z(µ) = s(µ) + lim
n→∞

h(µ, zn(µ))

(∫ µ

0
K1(µ, υ) f(υ, zn(υ))dυ

)(∫ µ

0
K2(µ, υ) g(υ, zn(υ))dυ

)
= s(µ) + h(µ, z(µ))

(∫ µ

0
K1(µ, υ) f(υ, z(υ))dυ

)(∫ µ

0
K2(µ, υ) g(υ, z(υ))dυ

)
.

Therefore, the solution exists.

Now to show the uniqueness of the solution, assume x1(µ) is another solution of Eq. (2)

which is continuous. Thus,

x1(µ) = s(µ) + h(µ, x1(µ))

(∫ µ

0
K1(µ, υ) f(υ, x1(υ))dυ

)(∫ µ

0
K2(µ, υ) g(υ, x1(υ))dυ

)
, ∀ µ ∈ [0, 1] (7)

and

x1(µ)− zn(µ) = h(µ, x1(µ))

(∫ µ

0
K1(µ, υ) f(υ, x1(υ))dυ

)(∫ µ

0
K1(µ, υ) g(υ, x1(υ))dυ

)
−h(µ, zn−1(µ))

(∫ µ

0
K1(µ, υ) f(υ, zn−1(υ))dυ

)(∫ µ

0
K2(µ, υ) g(υ, zn−1(υ))dυ

)
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= h(µ, x1(µ))

(∫ µ

0
K1(µ, υ) f(υ, x1(υ))dυ

)(∫ µ

0
K2(µ, υ) g(υ, x1(υ))dυ

)
− h(µ, zn−1(µ))

(∫ µ

0
K1(µ, υ) f(υ, zn−1(υ))dυ

)(∫ µ

0
K2(µ, υ)g(υ, x1(υ))dυ

)
+ h(µ, zn−1(µ))

(∫ µ

0
K1(µ, υ) f(υ, zn−1(υ))dυ

)(∫ µ

0
K2(µ, υ) g(υ, x1(υ))dυ

)
− h(µ, zn−1(µ))

(∫ µ

0
K1(µ, υ) f(υ, zn−1(υ))dυ

)(∫ µ

0
K2(µ, υ) g(υ, zn−1(υ))dυ

)
.

|x1(µ)− zn(µ)| 5 K1K2C1 (C2H+Q) (C3H+ S)µ2 ‖z1 − zn−1‖

+K1K2C2 (C1H+ P) (C3H+ S)µ

∫ µ

0
|z1(υ)− zn−1(υ)|dυ

+K1K2C3 (C1H+ P) (C2H+Q)µ

∫ µ

0
|z1(υ)− zn−1(υ)|dυ. (8)

From Eq. (7), we obtain

|x1(µ)− s(µ)| 5 K1K2 (C1H+ P) (C2H+Q) (C3H+ S)µ2 = M µ2 5M. (9)

From Eq. (8) and (9), we get

|x1(µ)− zn(µ)| 5M [K1K2 {C1 (C2H+Q) (C3H+ S) + C2 (C3H+ S) (C1H+ P) + C3 (C1H+ P) (C2H+Q)}]n−1 .

Hence,

lim
n→∞

zn(µ) = x1(µ) = z(µ).

5 Adomian’s Decomposition Method (ADM)

The ADM was first introduced and developed by George Adomian [1] in the 1970s and 1990s. It

is a semi-analytical method for solving a wide class of linear and nonlinear ODEs, PDEs, integral

equations, functional equations, integro-differential equations, and differential delay equations. For

more details, refer to ([1]-[6] and references therein). ADM is a type of algorithm based on the

decomposition technique to build approximate solutions and numerical simulations for real-world

problems in applied sciences and engineering without restrictive assumptions such as those required

by linearization, perturbation, temporary assumptions, guessing the initial terms or a set of basis

functions, and so forth. For details, one may refer ([1]-[6],[22],[23], and references therein). It

provides the solution as an infinite series that converges faster towards accurate solutions. In 1989,

Cherruault [22] provided the first proof of convergence for the ADM using fixed point theorems for

abstract functional equations. After that, Abbaoui and Cherruault ([5],[7]), Himoun et al. ([34],[35]),

Hosseini and Nasabzadeh [36] have further explored the convergence of the ADM. Additionally,
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Babolian and Biazar [16] introduced the order of convergence, while Boumenir and Gordon [20]

discussed the rate of convergence, and El-Kalla [32] presented another perspective on error analysis.

In 2011, Abdelrazae and Pelinovsky [8] provided a rigorous proof of convergence for the ADM,

utilizing the Cauchy-Kovalevskaya theorem for initial value problems. In references ([16]-[18],[40]),

application and convergence of ADM to several forms of integral equations were examined.

In this section, our main objective is to construct an algorithm using ADM (motivated by the work

of Fu et al. [41]) to find the solution of our proposed GNFIE:

z(µ) = s(µ) + h(µ, z(µ))

(∫ µ

0

K1(µ, υ)f(υ, z(υ))dυ

)(∫ µ

0

K2(µ, υ)g(υ, z(υ))dυ

)
, (10)

where the functions s, h, f, g and kernel K1,K2 satisfies the condition [(i)− (iv)] defined in section

2.

The ADM representing the solution z(µ) into a series form

z(µ) =

∞∑
i=0

zi(µ), (11)

and the nonlinear functions h(µ, z(µ)), f(υ, z(υ)) and g(υ, z(υ)) decomposed as follows:

h(µ, z(µ)) =

∞∑
i=0

Ui(µ), f(υ, z(υ)) =

∞∑
i=0

Vi(υ), and g(υ, z(υ)) =

∞∑
i=0

Wi(υ). (12)

Here Ui(µ), depending on z0(µ), z1(µ), ..., zi(µ) is the Adomian’s polynomial of h(µ, z(µ)) defined as

follows

Ui(µ) =
1

i!

di

dλi

[
h

(
µ,

∞∑
n=0

λnzn(µ)

)]
λ=0

, i = 0. (13)

Similarly we can define Vi(υ) and Wi(υ). Thus the nonlinear term in Eq. (10) is decomposed into

N (z(µ)) = h(µ, z(µ))

(∫ µ

0

K1(µ, υ)f(υ, z(υ))dυ

)(∫ µ

0

K2(µ, υ)g(υ, z(υ))dυ

)
=

∞∑
i=0

Bi(µ), (14)

where the Adomian polynomials are

Bi(µ) =

i∑
j=0

j∑
n=0

Un(µ)

(∫ µ

0

K1(µ, υ)Vj−n(υ)dυ

)(∫ µ

0

K2(µ, υ)Wi−j(υ)dυ

)
. (15)

Therefore, the Adomian recurrence scheme for the solution of Eq. (10) is

z0(µ) = s(µ), (16)

zi+1(µ) = Bi(µ), i = 0. (17)
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6 Numerical Technique (NT)

Sometimes the evaluation of integrals in ADM is very difficult or impossible to calculate. For that

reason, finding the series solution terms of the ADM is challenging for the researchers. So this

numerical technique will be helpful to overcome this problem. In 2005, E. Babolian [15] applied

this method to the second kind of linear Volterra integral equations. In this section, we apply this

numerical technique to solve the GNFIE (2). Applying ADM to Eq. (2), we get

z0(µ) = s(µ),

zn+1(µ) = h(µ, zn(µ))

(∫ µ

0

K1(µ, υ) f(υ, zn(υ))dυ

)(∫ µ

0

K2(µ, υ) g(υ, zn(υ))dυ

)
. (18)

Now to approximate the integral terms in (18), we will use the numerical technique discussed in [27].

We take a regular mesh in µ and setting µ = µi = ih∗, where h∗ is the step size = 1
n . Hence, the

integral in (18) can be approximated as,

(∫ µi

0

K1(µi, υ) f(υ, zn(υ))dυ

)(∫ µi

0

K2(µi, υ) g(υ, zn(υ))dυ

)
∼=

h∗ i∑
j=0

αij K1(µi, υj) f(υj , zn(υj))


×

h∗ i∑
j=0

αij K2(µi, υj) g(υj , zn(υj))

 ,

where µi = υi, i = 0, 1, 2, ....n.

So we have

z0(µi) = s(µi),

zn+1(µi) ∼= h(µi, zn(µi))

h∗ i∑
j=0

αij K1(µi, υj) f(υj , zn(υj))

h∗ i∑
j=0

αij K2(µi, υj) g(υj , zn(υj))

 , (19)

i= 0,1,2 ... and n=0,1,2... .

We can choose suitable weights αij for each i and j = 0, 1, ..i, which represent the weights for (i+ 1)

points quadrature rules of Newton-Cotes type for the interval [0, ih∗].

Now we apply the above three methods to solve the following examples.

7 Numerical Examples

Example 7.1. Consider following GNFIE

z(µ) =

(
µ2 − µ17

1350

)
+ z(µ)

(∫ µ

0

υz2(υ)dυ

)(∫ µ

0

υ2

25
z3(υ)dυ

)
, (20)
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and z(µ) = µ2 is the exact solution of this equation.

Applying successive approximation method (PM) to the Eq. (20), we get

z0(µ) =

(
µ2 − µ17

1350

)
,

zn(µ) =

(
µ2 − µ17

1350

)
+ zn−1(µ)

(∫ µ

0

υz2n−1(υ)dυ

)(∫ µ

0

υ2

25
z3n−1(υ)dυ

)
, n = 1, 2, ...,

and the solution is

z(µ) = lim
n→∞

zn(µ).

Applying Adomian decomposition method (ADM) to the Eq. (20), we get

z0(µ) =

(
µ2 − µ17

1350

)
,

zi+1(µ) = Bi(µ), i = 0,

where

Bi(µ) =

i∑
j=0

j∑
n=0

zn(µ)

(∫ µ

0

υAj−n(υ)dυ

)(∫ µ

0

υ2

25
Di−j(υ)dυ

)
is the Adomian polynomial of the nonlinear term

N (z(µ)) = z(µ)

(∫ µ

0

υz2(υ)dυ

)(∫ µ

0

υ2

25
z3(υ)dυ

)
in Eq. (20) and

Ak(υ) =

k∑
i=0

zi(υ)zk−i(υ), Dk(υ) =

k∑
j=0

j∑
i=0

zi(υ)zj−i(υ)zk−j(υ),

are the Adomian polynomial of z2 and z3 respectively.

The approximate solution upto (p+ 1)th terms by ADM is

z(µ) =

p∑
i=0

zi(µ).

If we apply the discussed Numerical Technique (NT) to Eq. (20), we get

z0(µi) =

(
µ2
i −

µ17
i

1350

)
,

zn+1(µi) ∼= zn(µi)

h∗ i∑
j=0

αij υj z
2
n(υj)

h∗ i∑
j=0

αij
υ2j
25
z3n(υj)

 ,

where µi = υi for i = 0, 1, 2, ...n.

Table (1) compares the absolute error of the ADM, PM, and NT methods. Figure (1) shows the

exact solution and the approximate solution of these three methods, along with an absolute error

graph.
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µ |zexact − zPicard| |zexact − zADM | |zexact − zNT |

0.1 2.8536e-74 9.0405e-74 9.2592e-20

0.2 1.3159e-55 4.1692e-55 2.5379e-15

0.3 1.0887e-44 3.4492e-44 1.0109e-12

0.4 6.0689e-37 1.9227e-36 7.2382e-11

0.5 6.1877e-31 1.9604e-30 2.0105e-09

0.6 5.0207e-26 1.5906e-25 3.0570e-08

0.7 7.1034e-22 2.2504e-21 3.0612e-07

0.8 2.7987e-18 8.8660e-18 2.2548e-06

0.9 4.1530e-15 1.3151e-14 1.3084e-05

1.0 2.8516e-12 9.0126e-12 6.1778e-05

Table 1: Comparison of absolute error for ADM, PM and NT methods

Example 7.2. Consider following GNFIE

z(µ) =

(
µ3 − µ25

1760
− µ26

2200

)
+
µ3

10
z2(µ)

(∫ µ

0

(υ + 1) z(υ)dυ

)(
1

4

∫ µ

0

(υµ) z3(υ)dυ

)
, (21)

and z(µ) = µ3 is the exact solution of this equation. Applying Picard method (PM) to the Eq. (21),

we get

z0(µ) =

(
µ3 − µ25

1760
− µ26

2200

)
,

zn(µ) =

(
µ3 − µ25

1760
− µ26

2200

)
+
µ3

10
z2n−1(µ)

(∫ µ

0

(υ + 1) zn−1(υ)dυ

)(
1

4

∫ µ

0

(υµ) z3n−1(υ)dυ

)
, n = 1, 2, ...,

and the solution is

z(µ) = lim
n→∞

zn(µ).

Applying ADM to the Eq. (21), we get

z0(µ) =

(
µ3 − µ25

1760
− µ26

2200

)
,

zi+1(µ) =
µ3

10
Bi(µ), i = 0,

where

Bi(µ) =

i∑
j=0

j∑
n=0

An(µ)

(∫ µ

0

(υ + 1)zj−n(υ)dυ

)(∫ µ

0

υµ

4
Di−j(υ)dυ

)
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is the Adomian polynomial of the nonlinear term

N (z(µ)) = z2(µ)

(∫ µ

0

(υ + 1) z(υ)dυ

)(
1

4

∫ µ

0

(υµ) z3(υ)dυ

)
in Eq. (21) and

Ak(υ) =

k∑
i=0

zi(υ)zk−i(υ), Dk(υ) =

k∑
j=0

j∑
i=0

zi(υ)zj−i(υ)zk−j(υ),

are the Adomian polynomial of z2 and z3 respectively.

The approximate solution upto (p+ 1)th terms by ADM is

z(µ) =

p∑
i=0

zi(µ).

Applying NT method to the Eq. (21), we get

z0(µi) =

(
µ3
i −

µ25
i

1760
− µ26

i

2200

)
,

zn+1(µi) ∼=
µ3
i

10
z2n(µi)

h∗ i∑
j=0

αij (υj + 1) zn(υj)

µi (h∗/4)

i∑
j=0

αij υjz
3
n(υj)

 ,

where µi = υi for i = 0, 1, 2, ...n.

Table (2) compares the absolute error of the ADM, PM, and NT methods. Figure (2) shows the

exact solution and the approximate solution with these three methods, along with an absolute error

graph.

Example 7.3. Consider following GNFIE

z(µ) =

(
µ− µ6

20
(1 + µ− eµ)

)
+
z2(µ)

5

(∫ µ

0

(υ − µ) ez(υ)dυ

)(∫ µ

0

υ2 z(υ)dυ

)
, (22)

and z(µ) = µ is the exact solution of this equation.

Applying PM to Eq. (22), we get

z0(µ) =

(
µ− µ6

20
(1 + µ− eµ)

)
,

zn(µ) =

(
µ− µ6

20
(1 + µ− eµ)

)
+
z2n−1(µ)

5

(∫ µ

0

(υ − µ) ezn−1(υ)dυ

)(∫ µ

0

υ2 zn−1(υ)dυ

)
, n = 1, 2, ...,

and the solution is

z(µ) = lim
n→∞

zn(µ).

Applying ADM to Eq. (22), we get

z0(µ) =

(
µ− µ6

20
(1 + µ− eµ)

)
,

zi(µ) =
1

5
Bi(µ), i = 0,
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µ |zexact − zPicard| |zexact − zADM | |zexact − zNT |

0.1 2.9814e-103 6.8526e-76 4.4205e-28

0.2 9.8204e-76 4.8603e-55 1.0978e-21

0.3 1.3557e-59 8.1636e-43 1.1138e-16

0.4 4.0743e-48 4.0115e-34 1.9898e-13

0.5 3.3960e-39 2.2749e-27 6.1306e-11

0.6 6.8062e-32 7.6553e-22 6.4826e-09

0.7 1.0385e-25 3.6620e-17 3.3135e-07

0.8 2.4015e-20 4.1948e-13 9.9875e-06

0.9 1.3121e-15 1.6063e-09 0.00020154

1.0 2.2928e-11 2.5114e-06 0.00297882

Table 2: Comparison of absolute error for ADM, PM and NT methods

where

Bi(µ) =

i∑
j=0

j∑
n=0

An(µ)

(∫ µ

0

(υ − µ)Bj−n(υ)dυ

)(∫ µ

0

υ2zi−j(υ)dυ

)

is the Adomian polynomial of the nonlinear term

N (z(µ)) = z2(µ)

(∫ µ

0

(υ − µ) ez(υ)dυ

)(∫ µ

0

υ2 z(υ)dυ

)
,

in Eq. (21) and

Ak(υ) =

k∑
i=0

zi(υ)zk−i(υ),

is the Adomian polynomial of z2. Also the Adomian polynomials for f(υ, z(υ)) = ez(υ) are

B0(υ) = ez0(υ),

B1(υ) = z1(υ)ez0(υ),

B2(υ) =
1

2
z21(υ)ez0(υ) + z2(υ)ez0(υ),

.....

The approximate solution upto (p+ 1)th terms by ADM is

z(µ) =

p∑
i=0

zi(µ).

1529 Feb 2024 23:24:37 PST
230309-Deepmala Version 4 - Submitted to J. Integr. Eq. Appl.



Applying NT to Eq. (22), we get

z0(µi) =

(
µi −

µ6
i

20
(1 + µi − eµi)

)
,

zn+1(µi) ∼=
z2n(µi)

5

h∗ i∑
j=0

αij (υj − µi) ezn(υj)
h∗ i∑

j=0

αij υ
2
j zn(υj)

 ,

where µi = υi for i = 0, 1, 2, ...n.

Table (3) compares the absolute error of the ADM, PM, and NT methods. Figure (3) shows the

exact solution and the approximate solution with these three methods, along with an absolute error

graph.

µ |zexact − zPicard| |zexact − zADM | |zexact − zNT |

0.1 9.0827e-27 1.2073e-26 2.4145e-10

0.2 4.2235e-20 5.6167e-20 1.5718e-08

0.3 3.5097e-16 4.6696e-16 1.8003e-07

0.4 2.1894e-13 2.9145e-13 1.0161e-06

0.5 3.3082e-11 4.4072e-11 3.9392e-06

0.6 2.0408e-09 2.7221e-09 1.2674e-05

0.7 6.7922e-08 9.0825e-08 4.1146e-05

0.8 1.4416e-06 1.9378e-06 1.6049e-04

0.9 2.1756e-05 2.9564e-05 7.3709e-04

1.0 2.5178e-04 3.4983e-04 0.0035

Table 3: Comparison of absolute error for ADM, PM and NT methods

8 Conclusion

In this article, we discussed the solvability of a generalized nonlinear functional integral equation.

Some examples are provided and solved by two semi-analytical methods and one numerical technique

(NT) method. A detailed comparison of these three methods is also provided, along with three

different examples. We have shown that all three methods give a solution that is almost close to the

exact solution, but based on the absolute error graph, we conclude that the Picard method (PM)

provides a more accurate solution compared to the ADM and NT methods, respectively. In the

future, one may compare our results with some other methods to find more accurate solutions.
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Figure 1: Exact Solution and Approximate Solution with Absolute Error graph.
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Figure 2: Exact Solution and Approximate Solution with Absolute Error graph.
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Figure 3: Exact Solution and Approximate Solution with Absolute Error graph.
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