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Abstract

The work is concerned with coupled fixed point theorems for mixed monotone operators on
Banach spaces. Especially, some examples and applications to nonlinear integral equations are
given here to illustrate the usability of the obtained results.
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1 Introduction

Fixed point theorem for mixed monotone operators is introduced by Guo and Lakshmikantham at first
in [3], where Guo and Lakshmikantham give some existence theorems of the coupled fixed points for
both continuous and discontinuous operators and offered some applications to the initial value prob-
lems of ordinary differential equations with discontinuous right-hand sides. In 1996, Zhang studied
fixed point of mixed monotone operators with convexity and concavity, and offered some application-
s to nonlinear integral equations on unbounded regions and differential equations in Banach spaces
[13]. Thereafter many authors have investigated these kinds of operators in Banach spaces and ob-
tained a lot of interesting and important results, which are used extensively in nonlinear differential
and integral equations. In recent years, fixed point theory for mixed monotone operators is considered
as one of the most important tools of nonlinear analysis that widely applied to optimization, computa-
tional algorithms, physics, variational inequalities, ordinary differential equations, integral equations,
matrix equations and so on (see, for example,[13, 4, 7, 8, 1, 6]).

The purpose of this paper is to present a fixed point theorem for a mixed monotone operator on
a real Banach space. The main result is a generalizations of the results of Zhang in [13]. Moreover,
different examples and applications to non-linear integral equations are considered to illustrate the
usability of our obtained results.

Now we briefly recall various basic definitions and facts.
Let (E, ‖ · ‖) be a real Banach space and P ⊂ E be a nonempty closed convex subset. P is a cone

in E if the following properties hold:
(1) for any x ∈ P and λ > 0, then λx ∈ P,
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(2) for any x ∈ P, if −x ∈ P then x = ϑ,

where ϑ denotes the zero element of the Banach space E. If there exists a constant C > 0 such that

‖x‖ 6 C‖y‖ for any x, y ∈ P with ϑ 6 x 6 y,

then P is called a normal cone.
The Banach space E is partially ordered by P, means x 6 y if and only if y− x ∈ P for any x, y ∈ P.

For arbitrary x1, x2 ∈ E, the ordered interval is defined by

[x1, x2] = {x ∈ E : x1 6 x 6 x2}.

Let E be a Banach space, which is partially ordered by a cone P and F : E × E → E. F is said to a
mixed monotone operator if F(x, y) is non-decreasing in x and is non-increasing in y, that is,

F(x1, y) 6 F(x2, y) holds for any x1, x2, y ∈ E with x1 6 x2,

and

F(x, y1) 6 F(x, y2) holds for any x, y1, y2 ∈ E with y1 > y2.

An element (x∗, y∗) ∈ E × E is said to be a coupled fixed point of the operator F if

F(x∗, y∗) = x∗ and F(y∗, x∗) = y∗.

The element x∗ ∈ E is called a fixed point of F if F(x∗, x∗) = x∗. Clearly, if x∗ is a fixed point of F,
then (x∗, x∗) is a coupled fixed point of F.

2 Fixed point theorem

First, we give the following lemma, which is a key result.

Lemma 2.1. Let (E, ‖ · ‖) be a real Banach space, P be a normal cone in E, F : P×P→ P be a mixed
monotone operator, the map ϕ : (0, 1) → (0, 1) be well-defined. Suppose that there exist t0 ∈ (0, 1),
ϕ(t0) ∈ (t0, 1) and x0 ∈ P such that

t0x0 6 F(x0, x0) 6
1
t0

x0 (2.1)

and
1

ϕ(t0)
F(t0x,

1
t0

y) − F(x, y) > 0 (2.2)

holds for any x, y ∈ P.
Then there exist k ∈ Z+ and u0, v0 ∈ P such that

t2k
0 v0 6 u0 < v0 and u0 6 F(u0, v0) 6 F(v0, u0) 6 v0.

Proof. It is easy to get from (2.1) that

F(
1
t0

x, t0y) 6
1

ϕ(t0)
F(x, y) (2.3)

holds for any x, y ∈ P.
Since ϕ(t0) ∈ (t0, 1), there exists k ∈ Z+ such that

[ϕ(t0)]k > tk−1
0 . (2.4)
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Taking u0 = tk
0x0 and v0 = t−k

0 x0, one finds that u0, v0 ∈ P and u0 = t2k
0 v0 < v0. Moreover, one obtains

from (2.3) and (2.4) that

F(u0, v0) = F(tk
0x0, t−k

0 x0) = F(t0tk−1
0 x0,

1
t0

1
tk−1
0

x0)

> ϕ(t0)F(tk−1
0 x0,

1
tk−1
0

x0) > · · · > [ϕ(t0)]kF(x0,
1
t0

x0)

> [ϕ(t0)]kt0x0

and

F(v0, u0) = F(t−k
0 x0, tk

0x0) = F(
1
t0

1
tk−1
0

x0, t0tk−1
0 x0)

6
1

ϕ(t0)
F(

1
tk−1
0

x0, tk−1
0 x0) 6 · · · 6

1
[ϕ(t0)]k F(x0, x0)

6
1

[ϕ(t0)]kt0
x0.

According to (2.4), one gets that

u0 6 [ϕ(t0)]kt0x0 6 F(u0, v0) 6 F(v0, u0) 6
1

[ϕ(t0)]kt0
x0 < v0 (2.5)

and the desired results. �

In the sequel, we state and prove the main result.

Theorem 2.1. Let (E, ‖ · ‖) be a real Banach space, P be a normal cone in E, F : P × P → P be a
mixed monotone operator, the map ϕ : (0, 1) → (0, 1) be an increasing function. Suppose that there
exist t0 ∈ (0, 1), ϕ(t0) ∈ (t0, 1] and x0 ∈ P such that the following properties hold

• t0x0 6 F(x0, x0) 6 1
t0

x0,

• 1
(ϕ ◦ · · · ◦ ϕ)︸        ︷︷        ︸

n

(t0)
F((ϕ ◦ · · · ◦ ϕ)︸        ︷︷        ︸

n−1

(t0)x, 1
(ϕ ◦ · · · ◦ ϕ)︸        ︷︷        ︸

n−1

(t0)
y) − F(x, y) > 0 holds for any x, y ∈ P and

any n ∈ Z+ with (ϕ ◦ · · · ◦ ϕ)︸        ︷︷        ︸
0

(t0) = t0,

• lim
n→∞

(1 − (ϕ ◦ · · · ◦ ϕ)︸        ︷︷        ︸
n

(t0)) = 0.

Then the mixed monotone operator F admits a unique fixed point x∗ ∈ P.

Proof. According to Lemma 2.1, there exist k ∈ Z+ and u0, v0 ∈ P such that

t2k
0 v0 6 u0 < v0 and u0 6 F(u0, v0) 6 F(v0, u0) 6 v0.

Taking u0 = tk
0x0 and v0 = t−k

0 x0, we get that u0, v0 ∈ P satisfy that

t2k
0 v0 = u0 < v0 and u0 6 F(u0, v0) 6 F(v0, u0) 6 v0.

Construct the sequences

un = F(un−1, vn−1) and vn = F(vn−1, un−1) (n = 1, 2, · · · ).
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It follows from Lemma 2.1 that

u0 6 u1 = F(u0, v0) 6 v1 = F(v0, u0) < v0.

It is easy to deduce from (2.4) and (2.5) that

u2 = F(u1, v1) > F([ϕ(t0)]kt0x0,
1

[ϕ(t0)]kt0
x0) > F(tk

0x0,
1
tk
0

x0) = u1

v2 = F(v1, u1) 6 F(
1

[ϕ(t0)]kt0
x0, [ϕ(t0)]kt0x0) 6 F(

1
tk
0

x0, tk
0x0) = v1.

Moreover,

u2 = F(u1, v1) > F([ϕ(t0)]kt0x0,
1

[ϕ(t0)]kt0
x0) > ϕ(t0)F([ϕ(t0)]kx0,

1
[ϕ(t0)]k x0) > ϕ(t0)u1

and

v2 = F(v1, u1) 6 F(
1

[ϕ(t0)]kt0
x0, [ϕ(t0)]kt0x0) 6

1
ϕ(t0)

F(
1

[ϕ(t0)]k x0, [ϕ(t0)]kx0) 6
1

ϕ(t0)
v1.

Assume that

un > (ϕ ◦ · · · ◦ ϕ)︸        ︷︷        ︸
n−1

(t0)un−1, vn 6
1

(ϕ ◦ · · · ◦ ϕ)︸        ︷︷        ︸
n−1

(t0)
vn−1.

So, un+1 = F(un, vn) > F(un−1, vn−1) = un, vn+1 = F(vn, un) 6 F(vn−1, un−1) = vn and

un+1 = F(un, vn)

> F((ϕ ◦ · · · ◦ ϕ)︸        ︷︷        ︸
n−1

(t0)un−1,
1

(ϕ ◦ · · · ◦ ϕ)︸        ︷︷        ︸
n−1

(t0)
vn−1)

> (ϕ ◦ · · · ◦ ϕ)︸        ︷︷        ︸
n

(t0)F(un−1, vn−1)

> (ϕ ◦ · · · ◦ ϕ)︸        ︷︷        ︸
n

(t0)un,

vn+1 = F(vn, un)

6 F(
1

(ϕ ◦ · · · ◦ ϕ)︸        ︷︷        ︸
n−1

(t0)
vn−1, (ϕ ◦ · · · ◦ ϕ)︸        ︷︷        ︸

n−1

(t0)un−1)

6
1

(ϕ ◦ · · · ◦ ϕ)︸        ︷︷        ︸
n

(t0)
F(vn−1, un−1)

6
1

(ϕ ◦ · · · ◦ ϕ)︸        ︷︷        ︸
n

(t0)
vn.

Thus, the sequences {un} and {vn} satisfy that

u0 6 u1 6 · · · 6 un 6 · · · 6 vn 6 · · · 6 v1 6 v0. (2.6)
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Noting that u0 6 t2k
0 v0, we can get un > u0 > t2k

0 v0 > t2k
0 vn (n = 1, 2, · · · ). Moreover,

v1 = F(v0, u0) > F(t−2k
0 u0, t2k

0 v0) > F(t0u0, t−1
0 v0) > ϕ(t0)u1.

Assume that vn > (ϕ ◦ · · · ◦ ϕ)︸        ︷︷        ︸
n

(t0)un. Then

vn+1 = F(vn, un)

> F((ϕ ◦ · · · ◦ ϕ)︸        ︷︷        ︸
n

(t0)un,
1

(ϕ ◦ · · · ◦ ϕ)︸        ︷︷        ︸
n

(t0)
vn)

> (ϕ ◦ · · · ◦ ϕ)︸        ︷︷        ︸
n+1

(t0)F(un, vn)

> (ϕ ◦ · · · ◦ ϕ)︸        ︷︷        ︸
n+1

(t0)un+1.

Thus, it holds for any natural number p that

θ 6 un+p − un 6 vn − un 6 (1 − (ϕ ◦ · · · ◦ ϕ)︸        ︷︷        ︸
n

(t0))vn 6 (1 − (ϕ ◦ · · · ◦ ϕ)︸        ︷︷        ︸
n

(t0))v0,

θ 6 vn − vn+p 6 vn − un 6 (1 − (ϕ ◦ · · · ◦ ϕ)︸        ︷︷        ︸
n

(t0))vn 6 (1 − (ϕ ◦ · · · ◦ ϕ)︸        ︷︷        ︸
n

(t0))v0.

Since the come P is normal and lim
n→∞

(ϕ ◦ · · · ◦ ϕ)︸        ︷︷        ︸
n

(t0) = 1, one gets that

‖un+p − un‖ 6 (1 − (ϕ ◦ · · · ◦ ϕ)︸        ︷︷        ︸
n

(t0))‖v0‖ → 0 (n→ ∞)

and

‖vn − vn+p‖ 6 (1 − (ϕ ◦ · · · ◦ ϕ)︸        ︷︷        ︸
n

(t0))‖v0‖ → 0 (n→ ∞).

So, the sequences {un} and {vn} are Cauchy sequences. Because E is complete, there exist u∗ and v∗

such that

un → u∗ (n→ ∞) and vn → v∗ (n→ ∞).

According to (2.6), one obtains that un 6 u∗ 6 v∗ 6 vn with u∗, v∗ ∈ P and

θ 6 v∗ − u∗ 6 vn − un 6 (1 − (1 − (ϕ ◦ · · · ◦ ϕ)︸        ︷︷        ︸
n

(t0)))v0.

The fact that lim
n→∞

(1 − (ϕ ◦ · · · ◦ ϕ)︸        ︷︷        ︸
n

(t0)) = 1, implies that u∗ = v∗. Setting x∗ := u∗ = v∗, one gets that

un+1 = F(un, vn) 6 F(x∗, x∗) 6 F(vn, un) = vn+1.

Taking n→ ∞, we obtain that x∗ = F(x∗, x∗). That is, x∗ is a fixed point of F in P.
The uniqueness of x∗ is deduced from the definiteness of x0 ∈ P and the value of k obtained in

Lemma 2.1. �
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Remark 2.1. Compared with the corresponding result in [[11], Theorem 2.1], we focus on one spe-
cial point t0 ∈ (0, 1) with ϕ(t0) ∈ (t0, 1) and one element x0 ∈ P such that

t0x0 6 F(x0, x0) 6
1
t0

x0.

The assumption in Theorem 2.1, is weaker than the assumption in [11] to a certain extent.

Remark 2.2. For Theorem 2.1, it is not easy to find the special point t0 ∈ (0, 1) and the mapping
ϕ such that lim

n→∞
(1 − (ϕ ◦ · · · ◦ ϕ)︸        ︷︷        ︸

n

(t0)) = 0. Compared with the assumption of special point and the

mapping in Theorem 2.1, Zhai [12] introduced a fixed point theorem for a class of a mixed monotone
operators which is stated as Theorem 2.2.

Theorem 2.2. ([12]) Let (E, ‖ · ‖) be a real Banach space, P be a normal cone in E. Suppose that
F : P × P→ P is a mixed monotone operator satisfying

(1) for any c ∈ (0, 1), x, y ∈ P, there exists α(c, x, y) ∈ (1,+∞) such that

F(cx, y) 6 cα(c,x,y)F(x, y);

(2) there exists u0, v0 ∈ P, r ∈ (0, 1) such that

u0 6 rv0, F(u0, v0) > u0, F(v0, u0) 6 v0.

Then, F has a unique fixed point u∗ ∈ [u0, rv0]. Moreover, the successive sequences

xn = F(xn−1, yn−1), yn = F(yn−1, xn−1) (n = 1, 2, · · · )

for any initial values x0, y0 ∈ [u0, rv0], has the following property

lim
n→∞
‖xn − u∗‖ = 0 and lim

n→∞
‖yn − u∗‖ = 0.

3 Application to nonlinear nonlinear integral equations

As mentioned in Remark 2.2, there are fewer examples to explain how use Theorem 2.1. In this
section, we present some examples, where Theorem 2.2 can be applied. Let D ⊂ Rn be a simply
connected region. We consider the following nonlinear integral equation

x(t) = Ax(t) =

∫
D

K(t, s)g(t, x(s), f (x(s)))ds. (3.1)

Theorem 3.1. Suppose that D ⊂ Rn is a simply connected region, CB(D) is the Banach space with
‖x‖ = sup

t∈D
|x(t)|, g(t, u, v) : D × R × R→ R+ is continuous, K : D × D→ R+ is a continuous function.

Assume that
(i) the mapping f : CB(D)→ CB(D) is positive on the domain of f ;
(ii) g(t, u, v) is non-decreasing in u and non-increasing in v;
(iii) for any c ∈ (0, 1), any nonnegative continuous functions u(s), v(s) ∈ CB(D), there exists

α(t, u, v) ∈ (1,+∞) such that
g(t, cu, v) 6 cα(t,u,v)g(t, u, v)

and g(t, u, v) = 0 whenever K(t, s) = 0;
(iv) there exist nonnegative continuous functions u0(s), v0(s) ∈ CB(D), r ∈ (0, 1) such that

u0 6 rv0,

∫
D

K(t, s)g(t, u0(s), f (v0(s)))ds > u0(t),
∫

D
K(t, s)g(t, v0(s), f (u0(s)))ds 6 v0(t).
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Then, the equation (3.1) has a unique solution u∗ ∈ [u0, rv0]. Moreover, the successive sequences

xn =

∫
D

K(t, s)g(t, xn−1(s), yn−1(s))ds, yn =

∫
D

K(t, s)g(t, yn−1(s), xn−1(s))ds (n = 1, 2, · · · )

for any initial values x0, y0 ∈ [u0, rv0], has the following property

lim
n→∞
‖xn − u∗‖ = 0 and lim

n→∞
‖yn − u∗‖ = 0.

Proof. Let P = C+
B(D) denote the set of nonnegative functions of CB(D). Then P is a normal cone of

CB(D). The equation (3.1) can be written in the form

x = F(x, x),

where

F(x, y) =

∫
D

K(t, s)g(t, x(s), f (y(s)))ds.

According to the hypothesis of Theorem 3.1, one finds that F : P × P → P is a mixed monotone
operator. Moreover, for any c ∈ (0, 1), any nonnegative continuous functions u(s), v(s) ∈ CB(D), there
exists α(t, u, v) ∈ (1,+∞) such that

F(cx, y) =

∫
D

K(t, s)g(t, cx(s), f (y(s)))ds

6 cα(c,x,y)
∫

D
K(t, s)g(t, x(s), f (y(s)))ds

= cα(c,x,y)F(x, y).

Also, one can choose u0, v0 ∈ P and r ∈ (0, 1) such that

F(u0, v0) =

∫
D

K(t, s)g(t, u0(s), f (v0(s)))ds > u0(t),

F(v0, u0) =

∫
D

K(t, s)g(t, v0(s), f (u0(s)))ds 6 v0(t).

Based on Theorem 2.2, F has a unique nonnegative function u∗ ∈ P such that F(u∗, u∗) = u∗. So, u∗

is the solution to the equation (3.1). �

Remark 3.1. Theorem 3.1 conditions onto mapping f is wide range. Consequently, this theorem can
be considered as the generalization of such type theorems in [1, 2, 5, 6].

Remark 3.2. Theorem 3.1 is a useful tool to deal with the existence and uniqueness of positive
solutions for nonlinear integral equation and non-linear fractional partial differential equations

Now, we present the following nonlinear integral equation.

x(t) = Ax(t) =

∫
Rn

K(t, s)
[
4t2 + 1 + x2(s) +

√
1 − x2(s)

]
ds. (3.2)

Proposition 3.1. Suppose that K : Rn × Rn → R+ is a continuous function and K(t, s) . 0. Then for
any fixed a ∈ [0, 1) the equation (3.2) has a unique solution x∗(t) satisfying a 6 x∗ < 1 and x∗(t) . 0,
provided that one of the following holds

(i) 0 6
∫
Rn K(t, s)ds 6 1

4t2+2 for a = 0;
(ii) a

4t2+1+a2 6
∫
Rn K(t, s)ds 6 1

4t2+2+
√

1−a2
for a ∈ (0, 1).
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Proof. Let CB(Rn) be the Banach space with ‖x‖ = sup
t∈Rn
|x(t)| and P = C+

B(Rn) denote the set of

nonnegative functions of CB(Rn). Then P is a normal cone of CB(Rn). The equation (3.2) can be
written in the form

x = F(x, x),

where

F(x, y) =

∫
Rn

K(t, s)g(t, x(s), f (y(s)))ds

and

g(t, x(s), f (y(s))) = 4t2 + 1 + x2(s) + f (y(s)).

where f (y(s)) =
√

1 − y2(s). Obviously, g(t, x, f (y)) is increasing in x ∈ P and decreasing in y ∈ P.
So, F : P × P→ P is a mixed monotone operator. Moreover,

g(t, cx, y) 6 cα(c,x,y)g(t, x, y)

for c ∈ (0, 1), nonnegative continuous functions x(s), y(s) ∈ P making g(t, x, y) sense, where

1 < α(c, x, y) 6
(
ln

[
1
c

])−1

ln

 1 + x2(s) +
√

1 − y2(s)

1 + c2x2(s) +
√

1 − y2(s)

 .
Taking u0 = a and v0 = 1, one finds that

F(u0, v0) = F(a, 1) =

∫
Rn

K(t, s)g(t, a, f (1))ds = (4t2 + 1 + a2)
∫
Rn

K(t, s)ds >
{

0 for a = 0,
a for a ∈ (0, 1),

F(v0, u0) = F(1, a) =

∫
Rn

K(t, s)g(t, 1, f (a))ds = (4t2 + 2 +
√

1 − a2)
∫
Rn

K(t, s)ds 6 1.

Thus, all hypothesis of Theorem 3.1 are satisfied. So, F has exactly one fixed point x∗ with a 6
x∗(t) < 1. Therefore, the equation (3.2) has a unique solution x∗(t) satisfying a 6 x∗ < 1 and x∗(t) . 0
for any fixed a ∈ [0, 1). �

Example 3.1. The non-linear integral equation

x(t) =

∫ 1

0
(1 +

√
1 − x2(s) + x

3
2 (s))e−2t−2s−1ds (t ∈ [0, 1]), (3.3)

has a unique solution x∗(s) satisfying 0 6 x∗(s) < 1 and x∗(s) . 0.

Proof. Let C[a, b] be the Banach space with ‖x‖ = sup
t∈[a,b]

|x(t)| and P = C+[a, b] denote the set of

nonnegative functions of C[a, b]. Then P is a normal cone of C[a, b]. The equation (3.3) can be
written in the form

x = F(x, x),

where

F(x, y) =

∫ 1

0
e−2t−2s−1g(s, x(s), y(s))ds
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and

g(t, x(s), y(s)) = 1 + x
3
2 (s) +

√
1 − y2(s).

Obviously, g(t, x, y) is increasing in x and non-increasing in y. So, F : P×P→ P is a mixed monotone
operator. Moreover,

g(t, cx, y) 6 cα(c,x,y)g(t, x, y)

for c ∈ (0, 1), nonnegative continuous functions x(s), y(s) ∈ P with making g(t, x, y) sense, where

1 < α(c, x, y) 6
(
ln

[
1
c

])−1

ln

 1 + x
3
2 (s) +

√
1 − y2(s)

1 + c
3
2 x

3
2 (s) +

√
1 − y2(s)

 .
Taking u0 = 0 and v0 = 1, one finds that

F(u0, v0) = F(0, 1) =

∫ 1

0
e−2t−2s−1g(s, 0, 1)ds =

∫ 1

0
e−2t−2s−1ds =

e2 − 1
2e2 e−2t−1 > 0,

F(v0, u0) = F(1, 0) =

∫ 1

0
e−2t−2s−1g(s, 1, 0)ds = 3

∫ 1

0
e−2t−2s−1ds =

3(e2 − 1)
2e2 e−2t−1 6 1.

Thus, all hypothesis of Theorem 3.1 are satisfied. So, F has exactly one fixed point x∗ with 0 6
x∗(t) < 1. Therefore, the equation (3.3) has a unique solution x∗(t) satisfying a 6 x∗ < 1 and x∗(t) . 0
for any fixed a ∈ [0, 1). �

Fractional differential equations can describe many phenomena in various fields of science and
engineering such as control, porous media, electrochemistry, etc. Recall that the Riemann-Liouville
fractional derivative of order α for a continuous function f is defined by

Dαy(t) =
1

Γ(n − α)

(
d
dt

)n ∫ t

0

y(s)
(t − s)α−n+1 ds,

where Γ is the gamma function and n = [α] + 1. Next, we give an application of Theorem 3.1 to the
initial value problem for the fractional differential equation

Dνu(t) + h(t) f (t, u(t)) = 0, 0 < t < 1, n − 1 < ν 6 n,
u(0) = u′(0) = · · · = u(n−2)(0) = 0,
[Dαu(t)]t=1 = 0, 1 6 α 6 n − 2,

(3.4)

where n ∈ N and n > 3, Dν is the standard Riemann-Liouville fractional derivative, f ∈ C([0, 1] ×
[0,∞)) and h ∈ C(0, 1) ∩ L(0, 1) is nonnegative and may be singular at t = 0 and/or t = 1.

Lemma 3.1. ([2]) Let f ∈ C([0, 1]× [0,∞), (0,∞)) and h ∈ C(0, 1)∩ L(0, 1) be nonnegative and may
be singular at t = 0 and/or t = 1. Then the problem (3.4) is equivalent to

u(t) =

∫ 1

0
G(t, s)h(s) f (s, u(s))ds, (3.5)

where

G(t, s) =
1

Γ(ν)

{
tν−1(1 − s)ν−α−1 − (t − s)v−1, 0 6 s 6 t 6 1,
tν−1(1 − s)ν−α−1, 0 6 t 6 s 6 1.

(3.6)

Inspired by Goodrich[2] and Xu, Wei and Dong[10], we establish the existence and uniqueness of
solution to the problem (3.4) as an application of Theorem 3.1, which may be regarded as an extension
of [10].
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Theorem 3.2. Let f ∈ C([0, 1] × [0,∞), (0,∞)) and h ∈ C(0, 1) ∩ L(0, 1) be nonnegative (may be
singular at t = 0 and/or t = 1). Suppose that

(i) f (s, x) is non-decreasing in x;
(ii) for any c ∈ (0, 1) and nonnegative continuous function x(s) ∈ C[a, b], there exists α(t, x) ∈

(1,+∞) such that
f (s, cx) 6 cα(t,x) f (s, x);

(iii) the function G(t, s) : [0, 1] × [0, 1] is stated as (3.6) satisfying∫ 1

0
G(t, s)h(s) f (s, 1)ds 6 1.

Then, the problem (3.5) has a unique solution x∗ ∈ [0, 1). Moreover, the successive sequences

xn =

∫ 1

0
G(t, s)h(s) f (s, xn−1)ds (n = 1, 2, · · · )

for any initial values x0 ∈ [0, 1), has the following property

lim
n→∞

max
t∈[0,1]

|xn(t) − x∗(t)| = 0.

Proof. Let C[a, b] be the Banach space with ‖x‖ = sup
t∈[a,b]

|x(t)| and P = C+[a, b] denote the set of

nonnegative functions of C[a, b]. Then P is a normal cone of C[a, b]. The equation (3.5) can be
written in the form

x = F(x, x),

where

F(x, y) =

∫ 1

0
G(t, s)h(s)g(s, x(s), y(s))ds

and

g(t, x(s), y(s)) = f (s, x(s)).

Obviously, G(t, s) is continuous and nonnegative on [0, 1] × [0, 1], g(t, x, y) is increasing in x and
non-increasing in y. So, F : P × P→ P is a mixed monotone operator. Moreover,

g(t, cx, y) = f (s, cx(s)) 6 cα(c,x)g(t, x, y) = cα(c,x) f (s, x(s))

for c ∈ (0, 1) and x ∈ P. Taking u0 = 0 and v0 = 1, one finds that

F(u0, v0) = F(0, 1) =

∫ 1

0
G(t, s)h(s)g(s, 0, 1)ds =

∫ 1

0
G(t, s)h(s) f (s, 0)ds > 0,

F(v0, u0) = F(1, 0) =

∫ 1

0
e−2t−2s−1g(s, 1, 0)ds =

∫ 1

0
G(t, s)h(s) f (s, 1)ds 6 1.

Thus, all hypothesis of Theorem 3.1 are satisfied and so F has exactly one fixed point x∗ ∈ [0, 1).
Therefore, the equation (3.5) has a unique solution x∗(t) ∈ [0, 1) satisfying x∗(t) . 0. �
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Next, we use Theorem 3.1 to give existence and uniqueness results for a classical fractional-
boundary-value problem in [5], which reads as

Dν

Dt u(s, t) + f
(
s, t, u(s, t), ∂∂s u(s, t)

)
= 0,

0 < ε < T, T > 1, t ∈ [ε,T ], 0 < ν < 1, s ∈ [a, b],
u(s, η) = u(s,T ), (s, η) ∈ [a, b] × (ε,T ).

(3.7)

Lemma 3.2. ([5]) Let (s, t) ∈ [a, b] × [ε,T ], (s, η) ∈ [a, b] × (ε, t) and 0 < ν < 1. Then the equation

Dν

Dt
u(s, t) + f

(
s, t, u(s, t),

∂

∂s
u(s, t)

)
= 0

with boundary condition u(s, η) = u(s,T ), has a solution u0 if and only if u0 is a solution of the
fractional integral equation

u(s, t) =

∫ T

ε
G(t, ξ) f

(
s, ξ, u(s, ξ),

∂

∂s
u(s, ξ)

)
dξ

where

G(t, ξ) =
1

Γ(ν)


[tν−1(η − ξ)ν−1 − tν−1(T − ξ)ν−1]/(ην−1 − T ν−1) − (t − ξ)ν−1, ε 6 ξ 6 η 6 t 6 T,[
−tν−1 − (T − ξ)ν−1

]
/(ην−1 − T ν−1) − (t − ξ)ν−1, ε 6 η 6 ξ 6 t 6 T,[

−tν−1(T − ξ)ν−1
]
/(ην−1 − T ν−1), ε 6 η 6 t 6 ξ 6 T.

(3.8)

Let E = C([a, b] × [ε,T ]) be the Banach space of continuous functions on [a, b] × [ε,T ] with the
sup norm, and set

P = {y ∈ C([a, b] × [ε,T ]) : min
(s,t)∈[a,b]×[ε,T ]

y(s, t) > 0}.

It is pointed out in [5] that P is a normal cone in E. Thus, the Theorem 2.2 in [5] is regarded as a
corollary of Theorem 3.1.

Corollary 3.1. (Theorem 2.2 in [5]) Let 0 < ε < T be given. Suppose that the following properties
hold:

(H1) ∂
∂s v(s, t) > 0 for any v(s, t) > 0;

(H2) f (s, t, u(s, t), v(s, t)) ∈ C([a, b]× [ε,T ], [0,∞), [0,∞)) is increasing in u and decreasing in v;
(H3) for c ∈ (0, 1), u, v ∈ P, there exists α(c, u, v) ∈ (1,∞) such that

f (s, t, cu(s, t), v(s, t)) 6 cα(c,u,v) f (s, t, u(s, t), v(s, t))

and f (s, t, u(s, t), v(s, t)) = 0 whenever G(s, t) < 0;
(H4) there u0, v0 ∈ P and r ∈ (0, 1) such that

u0(s, t) 6 rv0(s, t),∫ T

ε
G(t, ξ) f

(
s, ξ, u0(s, ξ),

∂

∂s
v0(s, ξ)

)
dξ > u0(s, t),∫ T

ε
G(t, ξ) f

(
s, ξ, u0(s, ξ),

∂

∂s
v0(s, ξ)

)
dξ 6 v0(s, t)

for (s, t) ∈ [a, b] × [ε,T ]. Then the fractional-boundary-value problem (3.7) has a unique solution
u∗ ∈ [u0, rv0]. Moreover, the sequencesun+1(s, t) =

∫ T
ε

G(t, ξ) f
(
s, ξ, un(s, ξ), ∂∂s vn(s, ξ)

)
dξ,

vn+1(s, t) =
∫ T
ε

G(t, ξ) f
(
s, ξ, vn(s, ξ), ∂∂s un(s, ξ)

)
dξ

n = 0, 1, · · ·

satisfy that lim
n→∞
‖un − u∗‖ = 0 and lim

n→∞
‖vn − u∗‖ = 0.
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