WELL-POSEDNESS OF
TRICOMI-GELLERSTEDT-KELDYSH-TYPE FRACTIONAL
ELLiptic PROBLEMS

MICHAEL RUZHANSKY, BERIKBOL T. TOREBEK*, BATIRKHAN KH. TURMETOV

Abstract. In this paper Tricomi-Gellerstedt-Keldysh-type fractional elliptic equations are studied. The results on the well-posedness of fractional elliptic boundary value problems are obtained for general positive operators with discrete spectrum and for Fourier multipliers with positive symbols. As examples, we discuss results in half-cylinder, star-shaped graph, half-space and other domains.

1. Introduction

1.1. Statement of the problem and historical background. The main purpose of this paper is to study the following fractional elliptic equation

\[D^{2\alpha} u(x, y) - x^{2\beta} L u(x, y) = 0, \quad (x, y) \in \mathbb{R}^+_+ \times \Omega, \]

where \(1/2 < \alpha \leq 1, \beta > -\alpha, \Omega \subset \mathbb{R}^N \) is a bounded domain with smooth boundary or \(\Omega = \mathbb{R}^N \), and \(D^{2\alpha} \) means \(D^{2\alpha} = \partial_0^\alpha, x \partial_0^\alpha, x \). Here \(\partial_0^\alpha, x \) is a Caputo fractional derivatives of order \(\alpha \):

\[\partial_0^\alpha, x u(x, y) = \frac{1}{\Gamma(1-\alpha)} \int_0^x (x-s)^{-\alpha} \partial_s u(s, y) ds, \]

and \(L \) satisfies one of the following properties (A):

- a linear self-adjoint positive operator with a discrete spectrum \(\{\lambda_k \geq 0 : k \in \mathbb{N}\} \) on the Hilbert space \(L^2(\Omega) \). According to \(\lambda_k \), the operator \(L \) has the system of orthonormal eigenfunctions \(\{e_k : k \in \mathbb{N}\} \) on \(L^2(\Omega) \).

As an example of \(L \), we can consider all self-adjoint positive operators that were given in [22, 23]. For example:

- Dirichlet-Laplacian, Neumann-Laplacian or fractional Dirichlet-Laplacian in a bounded domain;
- Sturm-Liouville operator or its involution perturbations in a finite interval;
- integro-differential operators with fractional derivatives.

*Corresponding author

2010 Mathematics Subject Classification. 35R11, 35C10.

Key words and phrases. Caputo derivative, fractional Laplacian, Kilbas-Saigo function, boundary value problem.

The first author was supported in parts by the FWO Odysseus Project 1 grant G.0H94.18N: Analysis and Partial Differential Equations, by the EPSRC grant EP/R003025/2 and by the Methusalem programme of the Ghent University Special Research Fund (BOF) (Grant number 01M01021). The second author was supported in parts by the FWO Odysseus Project 1 grant G.0H94.18N: Analysis and Partial Differential Equations and by a grant No.AP08052046 from the Ministry of Science and Education of the Republic of Kazakhstan.

9 Sep 2021 07:02:39 PDT
(B): Fourier multiplier \(a(D) \) with symbol \(a(\xi) \geq 0, \xi \in \mathbb{R}^N \), i.e. \(a(D) = \mathcal{F}^{-1}(a(\xi)\mathcal{F}), \xi \in \mathbb{R}^N \), where \(\mathcal{F} \) is the Fourier transform and \(\mathcal{F}^{-1} \) is the inverse Fourier transform.

As an example of \(\mathcal{L} \), we can consider all operators with nonnegative symbol (see [21]). For example:
- Laplace operator \(-\Delta\) with symbol \(|\xi|^2\) or fractional Laplacian \((-\Delta)^s, s \in (0,1)\), with symbol \(|\xi|^{2s}\);
- Linear partial differential operator \(\sum_{|\beta| \leq m} a_{\beta}D^\beta\), \(a_{\beta} \geq 0\), with nonnegative symbol \(\sum_{|\beta| \leq m} a_{\beta}|\xi|^\beta \geq 0\), with \(D^\beta = \left(\frac{1}{i} \partial_{x_1} \right)^{\beta_1} \cdots \left(\frac{1}{i} \partial_{x_N} \right)^{\beta_N}\).

The need to study the boundary value problems for the fractional elliptic equations to describe the production processes in mathematical modeling of socio-economic systems was shown in [19]. In [19] the attention was drawn to the fact that the problem of finding a generalized two-factor Cobb-Douglas function is reduced to the Dirichlet problem for the fractional elliptic equation.

The equation (1.1) is a generalization of the following well-known equations:
- If \(\alpha = 1, \beta = 0\) and \(\mathcal{L} = -\Delta = -\sum_{j=1}^{n} \frac{\partial^2}{\partial y_j^2}\), then the equation (1.1) coincides with the classical Laplace equation
 \[u_{xx}(x,y) + \Delta_y u(x,y) = 0, \quad x > 0, \quad y \in \mathbb{R}^N; \]
- If \(N = 1, \alpha = 1, \beta = \frac{1}{2}\) and \(\mathcal{L} = -\frac{\partial^2}{\partial y^2}\), then the equation (1.1) coincides with the classical Tricomi equation ([26])
 \[u_{xx}(x,y) + xu_{yy}(x,y) = 0, \quad x > 0, \quad y \in \mathbb{R}; \]
- If \(N = 1, \alpha = 1, \beta = m > 0\) and \(\mathcal{L} = -\frac{\partial^2}{\partial y^2}\), then the equation (1.1) coincides with the classical Gellerstedt equation ([10])
 \[u_{xx}(x,y) + x^m u_{yy}(x,y) = 0, \quad x > 0, \quad y \in \mathbb{R}; \]
- If \(N = 1, \alpha = 1, \beta = -k \in (-2,0)\) and \(\mathcal{L} = -\frac{\partial^2}{\partial y^2}\), then the equation (1.1) coincides with the classical Keldysh equation ([11])
 \[u_{xx}(x,y) + x^{-k} u_{yy}(x,y) = 0, \quad x > 0, \quad y \in \mathbb{R}. \]

The above equations are used in transonic gas dynamics [7], and in mathematical models of cold plasma [20].

Note that the study of Tricomi, Gellerstedt and Keldysh equations was done in many papers [1, 4, 5, 6, 18, 29]. The boundary value problems for the fractional elliptic equations are studied in [2, 9, 16, 15].

1.2. **Three-parameter Mittag-Leffler (Kilbas-Saigo) function.** First, we recall the definition of the Kilbas-Saigo function (three-parameter Mittag-Leffler function) and some of its particular cases.
• **Classical Mittag-Leffler function.** The classical Mittag-Leffler function $E_{\alpha,1}(z)$ defined by ([17])

$$E_{\alpha,1}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + 1)}, \quad \alpha > 0, \: z \in \mathbb{C},$$

is a natural extension of the exponential function $E_{1,1}(z) = \exp(z)$, and also of the hyperbolic cosine function $E_{2,1}(z) = \cosh \sqrt{z}$.

The most interesting properties of Mittag-Leffler function are associated with its upper-lower estimates for $0 < \alpha < 1$ as follows ([24]):

$$\frac{1}{1 + \Gamma(1-\alpha)z} \leq E_{\alpha,1}(-z) \leq \frac{1}{1 + \frac{1}{\Gamma(1+\alpha)} z}, \quad z \geq 0.$$ \hspace{1cm} (1.2)

• **Two-parameter Mittag-Leffler function.** The two-parameter Mittag-Leffler function $E_{\alpha,\beta}(z)$ is defined by

$$E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)}, \quad \alpha > 0, \: \beta > 0, \: z \in \mathbb{C}.$$

This function, sometimes called a Mittag-Leffler-type function, first appeared in [28]. When $\beta = 1$, $E_{\alpha,\beta}(z)$ coincides with the classical Mittag-Leffler function $E_{\alpha,1}(z)$.

• **Three-parameter (Kilbas-Saigo) Mittag-Leffler function.** Another generalization of the Mittag-Leffler function was introduced by Kilbas and Saigo [13] in terms of a special function of the form

$$E_{\alpha,m,n}(z) = 1 + \sum_{k=1}^{\infty} \prod_{j=0}^{k-1} \frac{\Gamma(\alpha jm + n + 1)}{\Gamma(\alpha jm + n + 1 + 1)} z^k,$$ \hspace{1cm} (1.3)

where α, m are real numbers and $n \in \mathbb{C}$ such that

$$\alpha > 0, \: m > 0, \: \alpha jm + n + 1 \neq -1, -2, -3, \ldots (j \in \mathbb{N}_0).$$ \hspace{1cm} (1.4)

In particular, if $m = 1$, the function $E_{\alpha,m,n}(z)$ is reduced to the two-parameter Mittag-Leffler function:

$$E_{\alpha,1,n}(z) = \Gamma(\alpha n + 1) E_{\alpha,\alpha n+1}(z),$$

and if $m = 1, n = 0$, then it coincides with the classical Mittag-Leffler function:

$$E_{\alpha,1,0}(z) = E_{\alpha,1}(z).$$

Recently Simon et al. [8] obtained the following interesting estimates of the Kilbas-Saigo functions:

$$\frac{1}{1 + \Gamma(1-\alpha)z} \leq E_{\alpha,m,m-1}(-z) \leq \frac{1}{1 + \frac{1}{\Gamma(1+(m-1)\alpha)} z}, \quad z \geq 0,$$ \hspace{1cm} (1.5)

where $m > 0$ and $0 < \alpha < 1$.
1.3. **Ill-posedness of the non-sequential problem.** As generally
\[\partial_x^\alpha \partial_x^\alpha \neq \partial_x^{2\alpha}, \]
the equation (1.1) is different from the following non-sequential equation
\[\partial_x^{2\alpha} u(x, y) - x^{2\beta} \mathcal{L} u(x, y) = 0, (x, y) \in \mathbb{R}_+ \times \Omega. \tag{1.6} \]
However, we cannot consider the problem of bounded solutions of equation (1.6) in \(x \in \mathbb{R}_+ \), since for such class of functions, nontrivial solutions of equation (1.6) may not exist. We demonstrate this with the following example:

Let \(1 < 2\alpha < 2, \beta = 0, \) and \(\mathcal{L} = -\Delta = -\sum_{j=1}^n \frac{\partial^2}{\partial y_j^2} \) in (1.6). Then using the Fourier transform to (1.6) with respect to \(y \) we have
\[\partial_x^{2\alpha} \hat{u}(x, \xi) - |\xi|^2 \hat{u}(x, \xi) = 0, x > 0, \xi \in \mathbb{R}^N. \tag{1.7} \]

The general solution to the equation (1.7) has the form [14, Example 4.10]
\[\hat{u}(x, \xi) = C_1(\xi) E_{\alpha,1}(|\xi|^2 x^\alpha) + C_2(\xi) t E_{\alpha,2}(|\xi|^2 x^\alpha), \]
where \(C_1(\xi), C_2(\xi) \) are arbitrary constants and \(E_{\alpha,\beta}(z) \) is the Mittag-Leffler function. From the asymptotic estimate of the Mittag-Leffler function
\[E_{\alpha,\beta}(z) \sim z^{1-\alpha} e^{z^{1-\beta}}, \ z \to \infty, \]
it follows that
\[\lim_{x \to \infty} E_{\alpha,1}(|\xi|^2 x^\alpha) \to \infty \quad \text{and} \quad \lim_{z \to \infty} E_{\alpha,2}(|\xi|^2 x^\alpha) \to \infty. \]
Therefore, the equation (1.7) does not have a bounded solution in \(x \in \mathbb{R}_+ \).

1.4. **One dimensional fractional differential equation.** Let \(0 < \alpha \leq 1, \mu \) is a positive real number. For further exposition we need to give some information about the exact solutions of differential equations of the form:
\[D^{2\alpha} h(x) - \mu^2 x^{2\beta} h(x) = 0, x > 0. \tag{1.8} \]

Using the method of constructing the solution of the fractional-order differential equations developed in [3, 27], one can show that the functions
\[\left\{ E_{\alpha,1+\beta, \frac{\alpha-\beta}{\alpha}}(\mu x^{\alpha+\beta}), E_{\alpha,1+\beta, \frac{\alpha-\beta}{\alpha}}(-\mu x^{\alpha+\beta}) \right\}, \tag{1.9} \]
are solutions of the equation (1.8).

It is easy to show that the functions (1.9) are linearly independent. Hence, the system of functions (1.9) is a fundamental system for the equation (1.8), and therefore the general solution of this equation has the form:
\[h(x) = C_1 E_{\alpha,1+\beta, \frac{\alpha-\beta}{\alpha}}(\mu x^{\alpha+\beta}) + C_2 E_{\alpha,1+\beta, \frac{\alpha-\beta}{\alpha}}(-\mu x^{\alpha+\beta}), \tag{1.10} \]
where \(C_1 \) and \(C_2 \) are arbitrary constants.

It is easy to see that, if \(x \to +\infty \), then
\[E_{\alpha,1+\beta, \frac{\alpha-\beta}{\alpha}}(\mu x^{\alpha+\beta}) \to +\infty, \]
since
\[E_{\alpha,1+\beta, \frac{\alpha-\beta}{\alpha}}(\mu x^{\alpha+\beta}) \geq \frac{\mu \Gamma(\beta + 1)}{\Gamma(\alpha + \beta + 1)} x^{\alpha+\beta}, x > 0. \tag{1.11} \]
And for the function $E_{\alpha,1+\frac{\beta}{2},\frac{\beta}{2}} (-\mu x^{\alpha+\beta})$, the following estimate holds ([8]):

$$E_{\alpha,1+\frac{\beta}{2},\frac{\beta}{2}} (-\mu x^{\alpha+\beta}) \leq \frac{1}{1 + \Gamma(\beta+1)\Gamma(\alpha+\beta+1)\mu x^{\alpha+\beta}}, \quad x > 0. \quad (1.12)$$

2. Well-posedness in a bounded domain

Let \mathcal{L} be a self-adjoint, positive operator with the discrete spectrum $\{\lambda_k \geq 0 : k \in \mathbb{N}\}$ on $L^2(\Omega)$. The main assumption in this section is that the system of eigenfunctions $\{e_k \in L^2(\Omega) : k \in \mathbb{N}\}$ of the operator \mathcal{L} is an orthonormal basis in $L^2(\Omega)$.

The Hilbert space $H^\mathcal{L}(\Omega)$ is defined by

$$H^\mathcal{L}(\Omega) = \{u \in L^2(\Omega) : \sum_{k=0}^{\infty} \lambda_k^2 |(u, e_k)|^2 < \infty\},$$

with the norm

$$\|u\|_{H^\mathcal{L}(\Omega)} = \sum_{k=0}^{\infty} \lambda_k^2 |(u, e_k)|^2.$$

Definition 2.1. The generalised solution of equation (1.1) in $\Omega \subset \mathbb{R}^N$ is a bounded function $u \in C(\mathbb{R}^+; L^2(\Omega))$, such that $x^{-2\beta}D_x^{2\alpha}u, \mathcal{L}u \in C(\mathbb{R}^+; L^2(\Omega))$.

Theorem 2.2. Let $\phi \in H^\mathcal{L}(\Omega)$. Then the generalised solution of equation (1.1) satisfying conditions

$$u(0, y) = \phi(y), \quad y \in \Omega, \quad (2.1)$$

and

$$\lim_{x \to +\infty} u(x, y) \text{ is bounded for almost every } y \in \Omega, \quad (2.2)$$

exists, it is unique and can be represented as

$$u(x, y) = \sum_{k=0}^{\infty} \phi_k E_{\alpha,1+\frac{\beta}{2},\frac{\beta}{2}} (-\sqrt{\lambda_k} x^{\alpha+\beta}) e_k(y), \quad (x, y) \in [0, \infty) \times \Omega, \quad (2.3)$$

where $\phi_k = \int_{\Omega} \phi(y) e_k(y) dy$, $k \in \mathbb{Z}_+ = 0, 1, 2, \ldots$, and $E_{\alpha,m,l}(z)$ is a Kilbas-Saigo function.

In addition, the solution u satisfies the following estimates:

$$\|u\|_{C(\mathbb{R}^+; L^2(\Omega))} \leq \|\phi\|_{L^2(\Omega)},$$

$$\sup_{x \in (0, \infty)} \|x^{-2\beta}D_x^{2\alpha}u(x, \cdot)\|_{L^2(\Omega)} \leq \|\phi\|_{H^\mathcal{L}(\Omega)},$$

and

$$\sup_{x \in (0, \infty)} \|\mathcal{L}u(x, \cdot)\|_{L^2(\Omega)} \leq \|\phi\|_{H^\mathcal{L}(\Omega)}.$$
bounded solution to Problem (1.1), (2.1) has the form (2.3). However, if we take into account condition (2.4), then, for the existence of a solution to problem (1.1), (2.1), (2.4), it is necessary and sufficient to have the condition

\[\int_{\Omega} \phi(y) dy = 0. \]

2.1. Particular cases. We now specify Theorem 2.2 to several concrete cases.

2.1.1. Laplace equation in the half-strip and in the star-shaped graphs. Our first example will focus on the Laplace equation.

- Let \(\Omega = (0, 1) \), \(\alpha = 1 \), \(\beta = 0 \) and \(L = -\frac{\partial^2}{\partial y^2}, D(L) := \{ u \in W^1_2([0, 1]), u(0) = u(1) = 0 \} \).

Then the equation (1.1) coincides with the classical Laplace equation on the half-strip

\[u_{xx}(x, y) + u_{yy}(x, y) = 0, \quad (x, y) \in \mathbb{R}_+ \times (0, 1). \]

(2.5)

It is known that the unique solution to problem (2.5), (2.1), (2.2) is represented in the form

\[u(x, y) = \sum_{k=1}^{\infty} \phi_k e^{-k\pi x} \sin k\pi y. \]

- Let \(\Omega \) be a star-shaped metric graph consisting of \(d \) segments of equal length, \(\alpha = 1 \), \(\beta = 0 \), and let \(L \) be a differential operator \(L = -\frac{\partial^2}{\partial y_j^2}, j = 1, \ldots, d \), with boundary conditions

\[v_j(0) = 0, \quad j = 1, \ldots, d, \]
\[v_1(\pi) = v_2(\pi) = \cdots = v_d(\pi), \]
\[v_1'(\pi) + v_2'(\pi) + \cdots + v_d'(\pi) = 0. \]

It is known ([30]) that the above operator is self-adjoint in \(L^2([0, \pi]) = \bigotimes_{i=1}^{d} L^2([0, \pi]) \) and has discrete spectrum \(\lambda_k^d = (k - \frac{1}{2})^2, k \in \mathbb{N} \). Then the equation (1.1) coincides with the Laplace equation on the star-shaped graphs

\[\Delta u(x, y) \equiv \Delta \begin{pmatrix} u_1(x, y) \\ u_2(x, y) \\ \vdots \\ u_d(x, y) \end{pmatrix} = 0. \]

(2.6)

Then the unique solution to problem (2.6), (2.1), (2.2) is represented in the form

\[u(x, y) \equiv \begin{pmatrix} u_1(x, y) \\ u_2(x, y) \\ \vdots \\ u_d(x, y) \end{pmatrix} = \sum_{k=1}^{\infty} \phi_k e^{- (k - \frac{1}{2}) x} \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \sin (k - \frac{1}{2}) y. \]
2.1.2. Fractional analogue of the Laplace equation with involution. Let $\Omega = (-\pi, \pi)$, $\beta = 0$, and
\[
\mathcal{L} u(x) = -\frac{\partial^2}{\partial y^2} u(x) + \varepsilon \frac{\partial^2}{\partial y^2} u(-x), \ |\varepsilon| < 1,
\]
\[
D(\mathcal{L}) := \{ u \in W^1_2([-\pi, \pi]), \ u(-\pi) = u(\pi) = 0 \}.
\]
Then the equation (1.1) coincides with the fractional analogue of the Laplace equation with involution
\[
D_x^{2\alpha} u(x, y) + u_{yy}(x, y) - \varepsilon u_{yy}(x, -y) = 0, \ (x, y) \in \mathbb{R}^+ \times (-\pi, \pi).
\]
(2.7)
It is known ([15]) that there exist a unique solution to problem (2.7), (2.1), (2.2) and it can be represented in the form
\[
u (x, y) = \sum_{k=1}^{\infty} \phi_k E_{\alpha,1} \left(- (1 + (-1)^k \varepsilon) k \pi x^\alpha \right) \sin k \pi y.
\]

2.1.3. Elliptic Tricomi and Gellerstedt equation. Let $\alpha = 1$, $\beta > -2$, and $\mathcal{L} = -\frac{\partial^2}{\partial y^2}$, $D(\mathcal{L}) := \{ u \in W^1_2([0, 1]), \ u(0) = u(1) = 0 \}$.

• If $\beta = 1$ then the equation (1.1) coincides with the classical Tricomi equation
\[
u_{xx}(x, y) + xu_{yy}(x, y) = 0, \ x > 0, \ y \in (0, 1),
\]
(2.8)
and the unique solution to problem (2.8), (2.1), (2.2) can be written as
\[
u (x, y) = \sum_{k=1}^{\infty} \phi_k \text{Ai}(-k \pi x) \sin k \pi y,
\]
where $\text{Ai}(z)$ is the Airy function.

• If $\beta > -2$ then the equation (1.1) coincides with the classical Gellerstedt equation
\[
u_{xx}(x, y) + x^\beta u_{yy}(x, y) = 0, \ x > 0, \ y \in (0, 1),
\]
(2.9)
and the unique solution to problem (2.9), (2.1), (2.2) can be written as (see [18])
\[
u (x, y) = \sum_{k=1}^{\infty} \phi_k \sqrt{x} K_{\nu} \left(\frac{2\pi k x^{2+\beta}}{\beta + 2} \right) \sin k \pi y,
\]
where $K_{\nu}(z)$ is the Macdonald function.

2.1.4. Fractional elliptic equation with variable coefficients. If $\beta = 0$ and
\[
\mathcal{L} = (1 - y)^\mu (1 + y)^\mu D_{1-y}^\mu \partial_{1+y}^\mu,
\]
\[
u(-1) = J_{1-y}^{1-\mu} \partial_{1+y}^{\mu} u(1) = 0,
\]
then the equation (1.1) coincides with the equation
\[
u_{xx}(x, y) + (1 - y)^\mu (1 + y)^\mu D_{1-y}^\mu \partial_{1+y}^\mu u(x, y) = 0, \ x > 0, \ y \in (-1, 1),
\]
(2.10)
where $\mu \in (0, 1)$, D_{1-y}^μ is a right-side Riemann-Liouville fractional derivative of order $\mu \in (0, 1)$
\[
D_{1-y}^\mu u(x, s) = \frac{1}{\Gamma(1-\mu)} \frac{\partial}{\partial y} \int_y^1 (s - y)^{-\mu} u(x, s) ds,
\]
\(\partial_{-1+y}^{\mu} \) is a left-side Caputo fractional derivative of order \(\mu \in (0,1) \)

\[
\partial_{-1+y}^{\mu} u(x, y) = \frac{1}{\Gamma(1-\mu)} \int_{-1}^{y} (y-s)^{-\mu} u_s(x,s) ds,
\]

\(I_{1-y}^{1-\mu} \) is a right-side Riemann-Liouville fractional integral of order \(\mu \in (0,1) \)

\[
I_{1-y}^{1-\mu} u(x, y) = \frac{1}{\Gamma(1-\mu)} \int_{y}^{1} (s-y)^{-\mu} u(x, s) ds.
\]

The unique solution of problem (2.10), (2.1), (2.2) can be written as

\[
u(x, y) = \sum_{k=1}^{\infty} \phi_k \exp \left(-\frac{\Gamma(k+\mu)}{\Gamma(k-\mu)} x \right) (1+y)^{\mu} P_{k-1-\mu}^{\alpha, \beta}(y),
\]

where \(P_{k-1-\mu}^{\alpha, \beta}(y) \) is the Jacobi polynomial ([31])

\[
P_{k-1-\mu}^{\alpha, \beta}(y) = \sum_{n=0}^{k-1} \left(\frac{k-1-\mu}{k-1-n} \right) \left(\frac{k-1+\mu}{n} \right) \left(\frac{y-1}{2} \right)^{n} \left(\frac{y+1}{2} \right)^{k-1-n}.
\]

2.2. Proof of Theorem 2.2.

2.2.1. Existence of solution. As \(\mathcal{L} \) is self-adjoint in \(L^2(\Omega) \), any solution of problem (1.1), (2.1)–(2.2) can be represented as:

\[
u(x, y) = \sum_{k=0}^{\infty} u_k(x) e_k(y), (x, y) \in \mathbb{R}_+ \times \Omega.
\]

(2.11)

It is clear that if \(\phi \in \mathcal{H}^\mathcal{L}(\Omega) \), then it can be represented in the form

\[
\phi(y) = \sum_{k=0}^{\infty} \phi_k e_k(y), y \in \Omega,
\]

(2.12)

where \(\phi_k = \int_{\Omega} \phi(y) \overline{e_k(y)} dy \).

Substituting function (2.11) into equation (1.1), we obtain the following problem for \(u_k(x) \),

\[
D^{2\alpha} u_k(x) - \lambda_k x^{2\beta} u_k(x) = 0, x > 0,
\]

(2.13)

\[
u_k(0) = \phi_k, u_k(\infty) \leq C, C = \text{const},
\]

(2.14)

where \(\lambda_k > 0 \) are eigenvalues of \(\mathcal{L} \).

According to formula (1.10), the general solution to equation (2.13) has the form:

\[
u_k(x) = C_1 E_{\alpha,1+\frac{\alpha}{\alpha}} \left(\sqrt{\lambda_k} x^{\alpha+\beta} \right) + C_2 E_{\alpha,1+\frac{\alpha}{\alpha}} \left(-\sqrt{\lambda_k} x^{\alpha+\beta} \right),
\]

where \(C_1 \) and \(C_2 \) are arbitrary constants.

Since

\[
E_{\alpha,1+\frac{\alpha}{\alpha}} \left(\sqrt{\lambda_k} x^{\alpha+\beta} \right) \to +\infty, \text{ as } x \to +\infty,
\]

we have \(C_1 = 0 \).
Since
\[E_{\alpha+1+\frac{\beta}{n}, \frac{\beta}{n}} \left(-\sqrt{\lambda_k} x^{\alpha+\beta} \right) \to 0, \quad \text{as} \quad x \to +\infty, \]
then by (2.14) we have
\[u_k (x) = \phi_k E_{\alpha,1+\frac{\beta}{n}, \frac{\beta}{n}} \left(-\sqrt{\lambda_k} x^{\alpha+\beta} \right), \quad (2.15) \]
hence
\[u (x, y) = \sum_{k=0}^{\infty} \phi_k E_{\alpha,1+\frac{\beta}{n}, \frac{\beta}{n}} \left(-\sqrt{\lambda_k} x^{\alpha+\beta} \right) e_k (y), \quad (x, y) \in \mathbb{R}_+ \times \Omega. \]

2.2.2. Convergence of solution. The estimate (1.12) gives
\[|u_k (x)| \leq \frac{|\phi_k|}{1 + \frac{\Gamma(\beta+1)}{\Gamma(\alpha+\beta+1)} \sqrt{\lambda_k} x^{\alpha+\beta}}, \]
which implies
\[
\sup_{x \geq 0} \| u (x, \cdot) \|_{L^2(\Omega)}^2 \leq \sup_{x \geq 0} \sum_{k=0}^{\infty} |\phi_k|^2 \| E_{\alpha,1+\frac{\beta}{n}, \frac{\beta}{n}} \left(-\sqrt{\lambda_k} x^{\alpha+\beta} \right) \|^2 \| e_k \|_{L^2(\Omega)}^2 \nleq \sup_{x \geq 0} \sum_{k=0}^{\infty} |\phi_k|^2 \left(1 + \frac{\Gamma(\beta+1)}{\Gamma(\alpha+\beta+1)} \sqrt{\lambda_k} x^{\alpha+\beta} \right)^2 \nleq \sum_{k=0}^{\infty} |\phi_k|^2 = \| \phi \|_{L^2(\Omega)}^2 < \infty,
\]
thanks to Parseval’s identity. Let us calculate \(D_x^{2\alpha} u \) and \(L u \). We have
\[
D_x^{2\alpha} u (x, y) = \sum_{k=0}^{\infty} \phi_k D_x^{2\alpha} E_{\alpha,1+\frac{\beta}{n}, \frac{\beta}{n}} \left(-\sqrt{\lambda_k} x^{\alpha+\beta} \right) e_k (y) \n= x^{2\beta} \sum_{k=0}^{\infty} \lambda_k \phi_k E_{\alpha,1+\frac{\beta}{n}, \frac{\beta}{n}} \left(-\sqrt{\lambda_k} x^{\alpha+\beta} \right) e_k (y), \quad (x, y) \in \mathbb{R}_+ \times \Omega,
\]
and
\[
L u (x, y) = \sum_{k=0}^{\infty} \phi_k E_{\alpha,1+\frac{\beta}{n}, \frac{\beta}{n}} \left(-\sqrt{\lambda_k} x^{\alpha+\beta} \right) \mathcal{L} e_k (y) \n= \sum_{k=0}^{\infty} \lambda_k \phi_k E_{\alpha,1+\frac{\beta}{n}, \frac{\beta}{n}} \left(-\sqrt{\lambda_k} x^{\alpha+\beta} \right) e_k (y), \quad (x, y) \in \mathbb{R}_+ \times \Omega.
\]
Applying the above calculations and Parseval’s identity we have
\[
\sup_{x \in (0, \infty)} \| x^{-2\beta} D_x^{2\alpha} u (x, \cdot) \|_{L^2(\Omega)}^2 \leq \sum_{k=0}^{\infty} \lambda_k^2 |\phi_k|^2 = \| \phi \|_{H^2(\Omega)}^2 < \infty,
\]
and
\[
\sup_{x \in (0, \infty)} \| L u (x, \cdot) \|_{L^2(\Omega)}^2 \leq \sum_{k=0}^{\infty} \lambda_k^2 |\phi_k|^2 = \| \phi \|_{\mathcal{H}^2(\Omega)}^2 < \infty.
\]
2.2.3. Uniqueness of solution. Suppose that there are two solutions \(u_1(x, y) \) and \(u_2(x, y) \) of problem (1.1), (2.1)–(2.2). Let \(u(x, y) = u_1(x, y) - u_2(x, y) \). Then \(u(x, y) \) satisfies the equation (1.1) and homogeneous conditions (2.1)–(2.2).

Let us consider the function

\[
 u_k(x) = \int_{\Omega} u(x, y) e_k(y) dy, \quad k \in \mathbb{Z}_+, \quad x \geq 0. \tag{2.16}
\]

Applying \(D^{2\alpha} \) to the function (2.16) by (1.1) we have

\[
 D^{2\alpha} u_k(x) = \int_{\Omega} D_x^{2\alpha} u(x, y) e_k(y) dy = x^{2\beta} \int_{\Omega} \mathcal{L} u(x, y) e_k(y) dy \\
 = x^{2\beta} \int_{\Omega} u(x, y) \mathcal{L} e_k(y) dy = x^{2\beta} \lambda_k \int_{\Omega} u(x, y) e_k(y) dy \\
 = x^{2\beta} \lambda_k u_k(x), \quad k \in \mathbb{Z}_+, \quad x \geq 0.
\]

Also from (2.1) and (2.2) we have \(u_k(0) = 0 \), \(u_k(\infty) \) is bounded. Then from (2.15) we conclude that \(u_k(x) = 0, \quad x \geq 0 \). This implies \(\int_{\Omega} u(x, y) e_k(y) dy = 0 \), and the completeness of the system \(e_k(x), k \in \mathbb{Z}_+ \), gives \(u(x, y) \equiv 0, \quad (x, y) \in [0, \infty) \times \Omega \).

3. Well-posedness in \(\mathbb{R}^N \)

The Sobolev space \(\mathcal{H}^L(\mathbb{R}^N) \) is defined by

\[
 \mathcal{H}^L(\mathbb{R}^N) = \{ f \in L^2(\mathbb{R}^N) : a(\xi) \hat{f} \in L^2(\mathbb{R}^N) \},
\]

where \(\hat{f}(\xi) = \frac{1}{(2\pi)^{N/2}} \int_{\mathbb{R}^N} e^{-i\xi \cdot y} f(y) dy \), \(\xi \in \mathbb{R}^N \).

The space \(\mathcal{H}^L(\mathbb{R}^N) \) is a Hilbert space; it is equipped with the norm

\[
 \| f \|_{\mathcal{H}^L(\mathbb{R}^N)}^2 = \int_{\mathbb{R}^N} |a(\xi) \hat{f}(\xi)|^2 d\xi.
\]

Definition 3.1. The generalised solution of equation (1.1) in \(\mathbb{R}^N \) is a function \(u \in C \left((0, \infty); L^2(\mathbb{R}^N) \right) \), such that \(x^{-2\beta} D_x^{2\alpha} u, \mathcal{L} u \in C \left((0, \infty); L^2(\mathbb{R}^N) \right) \).

Theorem 3.2. Let \(\phi \in \mathcal{H}^L(\mathbb{R}^N) \). Then the generalised solution of equation (1.1) satisfying conditions

\[
 u(0, y) = \phi(y), \quad y \in \mathbb{R}^N, \tag{3.1}
\]

and

\[
 \lim_{x \to +\infty} u(x, y) \quad \text{is bounded for almost every} \quad y \in \mathbb{R}^N, \tag{3.2}
\]

exists, it is unique and can be represented as

\[
 u(x, y) = \int_{\mathbb{R}^N} e^{-iy \cdot \xi} \hat{\phi}(\xi) E_{\alpha, 1+\beta, \frac{2\beta}{\alpha}} \left(-\sqrt{a(\xi)} x^{\alpha+\beta} \right) d\xi, \quad (x, y) \in \mathbb{R}_+ \times \mathbb{R}^N, \tag{3.3}
\]

where \(\hat{\phi}(\xi) = \frac{1}{(2\pi)^N} \int_{\mathbb{R}^N} e^{-i\xi \cdot s} \phi(s) ds \).
In addition, the solution u satisfies the following estimates:

$$\|u\|_{C([0,\infty) \times L^2(\mathbb{R}^N))} \leq \|\phi\|_{L^2(\mathbb{R}^N)},$$

$$\sup_{x \in (0, \infty)} \|x^{-2\beta} D_x^{2\alpha} u (x, \cdot)\|_{L^2(\mathbb{R}^N)} \leq \|\phi\|_{H^L(\mathbb{R}^N)},$$

and

$$\sup_{x \in (0, \infty)} \|L u (x, \cdot)\|_{L^2(\mathbb{R}^N)} \leq \|\phi\|_{H^L(\mathbb{R}^N)}.$$

3.1. Particular cases

We now specify Theorem 3.2 to several concrete cases.

3.1.1. Laplace equation in the half-space

Our first example will focus on the Laplace equation.

Let $\alpha = 1$, $\beta = 0$ and $L = -\Delta = \sum_{j=1}^{N} \partial^2_{y_j^2}$. Then the equation (1.1) coincides with the classical Laplace equation on the half-space

$$u_{xx}(x, y) + \Delta_y u(x, y) = 0, \; (x, y) \in \mathbb{R}_+ \times \mathbb{R}^N. \tag{3.4}$$

It is known that the unique solution to problem (3.4), (3.1), (3.2) is represented by the Poisson integral ([25])

$$u(x, y) = \frac{\Gamma((N + 1)/2)}{\pi^{(N+1)/2}} \int_{\mathbb{R}^N} \frac{x \phi(s)}{|y - s|^2 + x^2(N+1)/2} ds.$$

3.1.2. Multidimensional degenerate elliptic equations

Let $\alpha = 1$, $\beta > -2$ and $L = -\Delta_y$.

- If $\beta = 1$, then the equation (1.1) coincides with the multidimensional Tricomi equation

$$u_{xx}(x, y) + x \Delta_y u(x, y) = 0, \; x > 0, \; y \in \mathbb{R}^N, \tag{3.5}$$

and the solution to problem (3.5), (3.1), (3.2) can be written as ([1])

$$u(x, y) = \frac{3^{n+1/2} \Gamma(2/3) \Gamma(N/2 + 1/3)}{21/3 \pi^{N/2+1}} \int_{\mathbb{R}^N} \frac{x \phi(s)}{(9|y - s|^2 + 4x^3)^{N/2+1/3}} ds.$$

- If $\beta = m > -2$ then the equation (1.1) coincides with the multidimensional Gellerstedt equation

$$u_{xx}(x, y) + x^m \Delta_y u(x, y) = 0, \; x > 0, \; y \in \mathbb{R}^N, \tag{3.6}$$

and the unique solution to problem (3.6), (3.1), (3.2) can be written as ([1])

$$u(x, y) = \frac{(m + 2)^{n+1/2} \Gamma \left(\frac{N}{2} + \frac{1}{m+2} \right)}{2^{N} \pi^{N/2} \Gamma \left(\frac{1}{m+2} \right)} \int_{\mathbb{R}^N} \frac{x \phi(s)}{\left(x^{m+2} + \left(\frac{m+2}{2} \right)^2 |y - s|^2 \right)^{N/2+1/2}} ds.$$
3.1.3. **Fractional Laplace equation.** Let $\beta = 0$ and

$$L v = (-\Delta)^s v = C_{N,s} P.V. \int_{\mathbb{R}^N} \frac{(v(y) - v(s))}{|x-y|^{N+2s}} \, dy,$$

where $s \in (0,1)$ and $C_{N,s}$ is a normalizing constant (whose value is not important here). Then the equation (1.1) coincides with the equation

$$D_x^{2a} u(x,y) + (-\Delta)^s_y u(x,y) = 0, \ x > 0, \ y \in \mathbb{R}^N. \tag{3.7}$$

From Theorem 3.2 we have the unique solution of the problem (3.7), (3.1), (3.2) in the form

$$u(x,y) = \int e^{-iy \xi} \phi(\xi) E_{\alpha,1} (-|\xi|^a x^\alpha) \, d\xi, \ (x,y) \in \mathbb{R}_+ \times \mathbb{R}^N.$$

Rearranging the order of integration in the last representation, according to Fubini’s Theorem, we have

$$u(x,y) = \pi^{-\frac{N}{2}} \int_{\mathbb{R}^N} \phi(s) \int_{\mathbb{R}^N} e^{-iy(y-s)} E_{\alpha,1} (-|\xi|^a x^\alpha) \, d\xi \, ds, \ (x,y) \in \mathbb{R}_+ \times \mathbb{R}^N.$$

Using the calculation of the Fourier transform of Mittag-Leffler functions from [12], we have

$$u(x,y) = \pi^{-\frac{N}{2}} \int_{\mathbb{R}^N} \phi(s) H_{12}^{32} \left(\frac{2^s x^\alpha}{|y-s|^s}, (0,1), (0,s/2) \right) \, ds.$$

Here $H^{m,n}_{pq}(\cdot)$ is the Fox H-function defined via a Mellin-Barnes type integral as

$$H_{pq}^{m,n}(z) \left(\frac{(a_1^1, a_1^2, \ldots, a_1^p)}{(b_1^1, b_1^2, \ldots, b_1^q)} \right) = \frac{1}{2\pi i} \int_I H_{pq}^{m,n}(\tau) z^{-\tau} d\tau,$$

where $(a_1^1, a_1^2, \ldots, a_1^p) = ((a_1^1, a_1^2), (a_2^1, a_2^2, \ldots), (a_p^1, a_p^2))$ and

$$H_{pq}^{m,n}(\tau) = \prod_{j=1}^p \Gamma(b_j^1 + b_j^2 \tau) \prod_{i=1}^n \Gamma(1 - a_i^1 - a_i^2 \tau) \prod_{i=n+1}^m \Gamma(1 - b_i^1 - b_i^2 \tau) \prod_{j=m+1}^{n+1} \Gamma(1 - b_j^1 - b_j^2 \tau).$$

3.2. **Proof of Theorem 3.2.**

3.2.1. **Existence of solution.** Applying the Fourier transform \mathcal{F} to problem (1.1), (3.1)–(3.2) with respect to space variable y yields

$$D_x^{2a} \hat{u}(x,\xi) - a(\xi) x^{2\beta} \hat{u}(x,\xi) = 0, \ x > 0, \ \xi \in \mathbb{R}^N, \tag{3.8}$$

$$\hat{u}(0,\xi) = \hat{\phi}(\xi), \ \hat{u}(\infty,\xi) \text{ is bounded for } \xi \in \mathbb{R}^N, \tag{3.9}$$

thank to $\mathcal{F}\{L u(x,y)\} = a(\xi) \hat{u}(x,\xi)$. Then the solution of problem (3.8)-(3.9) can be represented as

$$\hat{u}(x,\xi) = \hat{\phi}(\xi) E_{\alpha,1+\frac{\beta}{\alpha}} \left(-\sqrt{a(\xi)} x^{\alpha+\beta} \right). \tag{3.10}$$
By applying the inverse Fourier transform \mathcal{F}^{-1} we have (3.3), i.e.

$$u(x, y) = \int_{\mathbb{R}^N} e^{iy\xi} \hat{\phi}(\xi) E_{\alpha, 1 + \frac{\beta}{\alpha}, \frac{\beta}{\alpha}} \left(-\sqrt{a(\xi)} x^{\alpha + \beta} \right) d\xi, (x, y) \in \mathbb{R}_+ \times \mathbb{R}^N.$$

3.2.2. Convergence of solution

Now we prove the convergence of the obtained solution. Applying estimate (1.12) and Plancherel theorem we have

$$\sup_{x \in [0, \infty)} \int_{\mathbb{R}^N} |u(x, y)|^2 dy = \sup_{x \in [0, \infty)} \int_{\mathbb{R}^N} |\hat{u}(x, \xi)|^2 d\xi \leq \sup_{x \in [0, \infty)} \int_{\mathbb{R}^N} |\hat{\phi}(\xi)|^2 \left| E_{\alpha, 1 + \frac{\beta}{\alpha}, \frac{\beta}{\alpha}} \left(-\sqrt{a(\xi)} x^{\alpha + \beta} \right) \right|^2 d\xi \leq \int_{\mathbb{R}^N} |\hat{\phi}(\xi)|^2 d\xi = ||\hat{\phi}||_{L^2(\mathbb{R}^N)}^2 < \infty.$$

Let us calculate $D_{x}^{2\alpha} u$:

$$D_{x}^{2\alpha} u(x, y) = \int_{\mathbb{R}^N} e^{iy\xi} \hat{\phi}(\xi) D_{x}^{2\alpha} E_{\alpha, 1 + \frac{\beta}{\alpha}, \frac{\beta}{\alpha}} \left(-\sqrt{a(\xi)} x^{\alpha + \beta} \right) d\xi = x^{2\beta} \int_{\mathbb{R}^N} e^{iy\xi} \hat{\phi}(\xi) a(\xi) E_{\alpha, 1 + \frac{\beta}{\alpha}, \frac{\beta}{\alpha}} \left(-\sqrt{a(\xi)} x^{\alpha + \beta} \right) d\xi, (x, y) \in \mathbb{R}_+ \times \mathbb{R}^N.$$

Hence

$$\sup_{x \in (0, \infty)} \left\| x^{-2\beta} D_{x}^{2\alpha} u(x, \cdot) \right\|_{L^2(\mathbb{R}^N)}^2 \leq \sup_{x \in (0, \infty)} \int_{\mathbb{R}^N} a^2(\xi) |\hat{\phi}(\xi)|^2 \left| E_{\alpha, 1 + \frac{\beta}{\alpha}, \frac{\beta}{\alpha}} \left(-\sqrt{a(\xi)} x^{\alpha + \beta} \right) \right|^2 d\xi \leq \int_{\mathbb{R}^N} |a(\xi) \hat{\phi}(\xi)|^2 d\xi = ||\phi||_{H^\infty(\mathbb{R}^N)}^2 < \infty.$$

Similarly, for Lu we have

$$\sup_{x \in (0, \infty)} \left\| Lu(x, \cdot) \right\|_{L^2(\mathbb{R}^N)}^2 \leq \sup_{x \in (0, \infty)} \int_{\mathbb{R}^N} a^2(\xi) |\hat{\phi}(\xi)|^2 \left| E_{\alpha, 1 + \frac{\beta}{\alpha}, \frac{\beta}{\alpha}} \left(-\sqrt{a(\xi)} x^{\alpha + \beta} \right) \right|^2 d\xi \leq ||\phi||_{H^\infty(\mathbb{R}^N)}^2 < \infty.$$

3.2.3. Uniqueness of solution

Suppose that there are two solutions $u_1(x, y)$ and $u_2(x, y)$ of problem (1.1), (3.1)–(3.2). Let $u(x, y) = u_1(x, y) - u_2(x, y)$. Then $u(x, y)$ satisfies the equation (1.1) and homogeneous conditions (3.1)–(3.2).

Let us consider the function

$$\hat{u}(x, \xi) = \int_{\mathbb{R}^N} e^{-iy\xi} u(x, y) dy, x \geq 0, \xi \in \mathbb{R}^N.$$

(3.11)
As u is bounded continuous in x function, applying $\mathcal{D}_x^{2\alpha}$ to the function (3.11) by (1.1) we have

$$
\mathcal{D}_x^{2\alpha} \hat{u}(x, \xi) = \int_{\mathbb{R}^N} e^{-iy\xi} \mathcal{D}_x^{2\alpha} u(x, y) dy
$$

$$
= x^{2\beta} \int_{\mathbb{R}^N} e^{-iy\xi} \mathcal{L}u(x, y) dy
$$

$$
= x^{2\beta} \mathcal{F} \left[\mathcal{F}^{-1}(a(\xi) \hat{u}(x, y)) \right]
$$

$$
= x^{2\beta} a(\xi) \hat{u}(x, \xi), \ x \geq 0, \xi \in \mathbb{R}^N.
$$

Also from (3.1) and (3.2) we have $\hat{u}(0, \xi) = 0, \hat{u}(\infty, \xi)$ is bounded. Then from (3.10) we conclude that $\hat{u}(x, \xi) = 0, x \geq 0, \xi \in \mathbb{R}^N$. Applying the inverse Fourier transform we have $u(x, y) \equiv 0, (x, y) \in [0, \infty) \times \mathbb{R}^N$. The proof is complete.

References

Michael Ruzhansky

DEPARTMENT OF MATHEMATICS: ANALYSIS, LOGIC AND DISCRETE MATHEMATICS

GHENT UNIVERSITY, KRIJGSLAAN 281, GHENT, BELGIUM

AND

SCHOOL OF MATHEMATICAL SCIENCES

QUEEN MARY UNIVERSITY OF LONDON, UNITED KINGDOM

E-mail address: michael.ruzhansky@ugent.be

Berikbol T. Torebek

DEPARTMENT OF MATHEMATICS: ANALYSIS, LOGIC AND DISCRETE MATHEMATICS

GHENT UNIVERSITY, KRIJGSLAAN 281, GHENT, BELGIUM

AND

AL–FARABI KAZAKH NATIONAL UNIVERSITY

AL–FARABI AVE. 71, 050040, ALMATY, KAZAKHSTAN

AND

INSTITUTE OF MATHEMATICS AND MATHEMATICAL MODELING

125 PUSHKIN STR., 050010 ALMATY, KAZAKHSTAN

E-mail address: berikbol.torebek@ugent.be

Batirkhan Kh. Turmetov

DEPARTMENT OF MATHEMATICS, AKHMET YASAWI UNIVERSITY,

29 B.SATTARKHANOV STR., 161200 TURKISTAN, KAZAKHSTAN

E-mail address: turmetovbh@mail.ru