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FRÖBERG’S THEOREM, VERTEX SPLITTABILITY AND HIGHER
INDEPENDENCE COMPLEXES

PRIYAVRAT DESHPANDE, AMIT ROY, ANURAG SINGH, AND ADAM VAN TUYL

Abstract. A celebrated theorem of Fröberg gives a complete combinatorial classification of
quadratic square-free monomial ideals with a linear resolution. A generalization of this theorem
to higher degree square-free monomial ideals is an active area of research. The existence of
a linear resolution of such ideals often depends on the field over which the polynomial ring
is defined. Hence, it is too much to expect that in the higher degree case a linear resolution
can be identified purely using a combinatorial feature of an associated combinatorial structure.
However, some classes of ideals having linear resolutions have been identified using combinatorial
structures. In the present paper, we use the notion of r-independence to construct an r-uniform
hypergraph from the given graph. We then show that when the underlying graph is co-chordal, the
corresponding edge ideal is vertex splittable, a condition stronger than having a linear resolution.
We use this result to explicitly compute graded Betti numbers for various graph classes. Finally,
we give a different proof for the existence of a linear resolution using the topological notion of
r-collapsibility.

1. Introduction

Let G be a finite simple graph with V (G) = {x1, . . . ,xn} as its vertex set and E(G) be its
edge set. The independence complex of G, denoted by Ind(G), is the simplicial complex whose
simplices are independent subsets of vertices in G. The complex Ind(G) is an important object in
combinatorics which lies at the crossroads of various fields of mathematics and computer science.
For example, via edge ideals, a concept introduced by Villarreal [17], the independence complex
appears in commutative algebra. In particular, let R = K[x1, . . . ,xn] be the polynomial ring in
n variables over a field K. Then the edge ideal I(G) of G is the quadratic square-free monomial
ideal ⟨xixj | {xi,xj} ∈ E(G)⟩ of R. The ideal I(G) is also the Stanley-Reisner ideal of Ind(G).
Determining algebraic and homological properties of the ideal I(G) in terms of the combinatorial
properties of Ind(G) is an active area of research in commutative algebra.

In 2018 Paolini and Salvetti [16] considered a generalisation of the independence complex in the
context of braid groups, called the r-independence complex Indr(G) of G, for any positive integer r.
A subset A ⊆ V (G) is called r-independent if each connected component of the induced subgraph
G[A] has at most r vertices. The collection of all r-independent sets forms the simplicial complex
Indr(G). Note that Ind1(G) is the independence complex of G.

The main focus of Paolini and Salvetti [16] was to understand twisted (co)homology groups
of the classical braid groups via relating them to that of r-independence complexes of certain
graphs. Their results indicated that these complexes are interesting in their own right. Later,
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it was proved in [4] that the r-independence complexes of cycle graphs and perfect m-ary trees
are homotopy equivalent to a wedge of spheres. Extending a result of Meshulam [14], it was also
proved in [5] that the (homological) connectivity of r-independence complexes of graphs gives an
upper bound for the distance r-domination number of graphs. In the same paper the authors
proved that the r-independence complexes of chordal graphs are homotopy equivalent to a wedge
of spheres for all r ≥ 1. From the perspective of the Cohen-Macaulay property, it was shown in
[1] that the r-independence complexes of trees are shellable. Moreover, it was also proved, using
commutative algebra techniques, that the r-independence complexes of caterpillar graphs are vertex
decomposable, a property that implies the Cohen-Macaulay property.

In this article we focus on developing the algebraic properties of the r-independence complexes.
In particular, we focus on various algebraic and homological invariants of the Stanley-Reisner ideal
Ir(G) of Indr(G). The ideal Ir(G) can also be viewed as the hyperedge ideal of a hypergraph
associated to certain subgraphs of G. Specifically, let Conr(G) denote the hypergraph with the
vertex set V (G) and the hyperedges are those r + 1-subsets W such that the induced subgraph
G[W ] is connected. Then the Stanley-Reisner ideal of Indr(G) is same as the edge ideal of Conr(G).
Note that Con1(G) = G. Thus I1(G) is nothing but the usual edge ideal of G. Moreover, if G = Kn,
the complete graph, or if G = Kn1,...,nt , the complete multipartite graph, then Conr(G) matches
with the complete hypergraph Kr+1

n and a (r + 1)-complete multipartite hypergraph Kr+1
n1,...,nt

defined by Emtander in [6].
In 1988 Fröberg [7] showed that the complement of a graph is chordal if and only if the Stanley-

Reisner ideal of its independence complex has a linear free resolution. We are interested in
determining whether or not the Stanley-Reisner ideal of the r-independence complex of a graph
has a linear free resolution, given that the complement of the graph is chordal. We show that this
is indeed true, thus giving a partial generalization of Fröberg’s result:
Theorem 1.1. If G is a graph whose complement is chordal, then Ir(G) has a (r + 1)-linear
resolution.
In fact, we give two different proofs. One proof is by using the notion of vertex splittable ideals
from commutative algebra (see Corollary 3.14) and another one is by showing that the complex is
r-collapsible, which is a key concept in topological combinatorics (see Theorem 5.2). Note that the
converse of Theorem 1.1 does not hold for r ≥ 2; for more, see Corollary 5.5.

One of the most useful ways to study the structure of a module is by analyzing the minimal free
resolution of the module. Important numerical invariants of the free resolution are its graded Betti
numbers. Using the fact that vertex splittable ideals admit a recursive formula for the graded Betti
numbers, we are able to provide explicit formulas for the N-graded Betti numbers of Ir(G) for
various families of graphs.

This paper is organised as follows. In Section 2 we recall the relevant graph theory and Stanley-
Reisner theory. In Section 3, we use the notion of vertex splittable ideals to give our first proof of
Theorem 1.1. In Section 4 we deduce results about the graded Betti numbers of Ir(G) for some
families of graphs G. In Section 5 we provide an alternative proof to Theorem 1.1 that uses tools
from topological combinatorics. Finally, in Section 6 we outline some questions for future research.
Acknowledgements. The authors would like to thank the referee for a quick and careful reading
and for some helpful suggestions; especially for suggesting to use the Hilbert series for computations
of Betti numbers in Section 4 of the paper. Priyavrat Deshpande and Amit Roy are partially
supported by a grant from the Infosys Foundation. Anurag Singh is partially supported by the

Submitted to Journal of Commutative Algebra - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

2

7 Mar 2024 08:37:53 PST
240216-Deshpande Version 2 - Submitted to J. Comm. Alg.



Start-up Research Grant SRG/2022/000314 from SERB, DST, India. Van Tuyl’s research is
partially supported by NSERC Discovery Grant 2019-05412.

2. Stanley-Reisner ideals of higher independence complexes

In this section we recall some relevant results from graph theory and Stanley-Reisner theory.
In particular, we state some basic properties of Stanley-Reisner ideals of higher independence
complexes. For more on Stanley-Reisner theory and monomial ideals, see [9, 18].

2.1. Graph terminology. Throughout this paper, G = (V (G),E(G)) denotes a finite simple
graph on the vertex set V (G) = {x1, . . . ,xn} and the set E(G) of edges which is a collection of
2-element subsets of V (G). If x is a vertex of G, then |{y ∈ V (G) | {x,y} ∈ E(G)}| is called the
degree of x in G, and is denoted by deg(x). If deg(x) = 1, then x is called a leaf of G. For x ∈ V (G),
G\x denotes the graph with vertex set V (G)\{x} and edge set {{u,v} ∈ E(G) | x /∈ {u,v}}. The
complement Gc of G is a graph with vertex set V (Gc) = V (G) and E(Gc) = {{x,y} | {x,y} /∈ E(G)}.
The neighbourhood of x in G is defined as NG(x) := {y ∈ V (G) | {x,y} ∈ E(G)}. The set NG(x)∪{x}
is called the closed neighbourhood of x in G, and is denoted by NG[x]. A connected component of
G is a (maximal) subgraph of G such that for every pair of vertices in the subgraph, there is a
path within the subgraph that connects these vertices. If G is disconnected and C1,C2, . . . ,Ck are
the connected components of G, then for each i, V (Ci) denotes the vertex set of the connected
component Ci.

If G = (V (G),E(G)) is a graph and A ⊆ V (G), then the induced subgraph of G on A, denoted
G[A], is the graph with vertex set V (G[A]) = A and edge set E(G[A]) = {e ∈ E(G) | e ⊆ A}. Let
A = {xi1 , . . . ,xik

} ⊆ V (G) be such that G[A] ∼= Ck, a cycle of length k. If E(G[A]) = {{xij ,xij+1} |
1 ≤ j ≤ k −1}∪{xik

,xi1}, then we simply write the cycle G[A] as xi1 · · ·xik
.

A subset W ⊆ V (G) is called an r-independent set of G if each connected component of G[W ]
has at most r vertices. Note that a 1-independent set is the usual independent set in a graph G.
We call an r-independent set W a maximal r-independent set if W is maximal with respect to
inclusion among all r-independent sets.

2.2. Simplicial Complexes. Fix a set of vertices V = {x1, . . . ,xn}. A simplicial complex ∆ on
V is a subset of 2V , that satisfies the properties that {xi} ∈ ∆ for all i = 1, . . . ,n and if F ∈ ∆ and
G ⊆ F , then G ∈ ∆. If ∆ = 2V , then ∆ is called a simplex (or (n−1)-simplex if we want to highlight
the number of vertices). An element F ∈ ∆ is called a face of the simplicial complex ∆. A face in
∆ that is maximal with respect to inclusion is called a facet. If {F1, . . . ,Fs} is a complete list of the
facets of ∆, then we sometimes write ∆ = ⟨F1, . . . ,Fs⟩ and say that ∆ is generated by F1, . . . ,Fs.
The dimension of a face F is dimF = |F | − 1, while the dimension of a simplicial complex ∆ is
dim∆ = max{dimF | F ∈ ∆}. A simplicial complex is said to be pure if dimF = dim∆ for all
facets of ∆. If a simplex has dimension d, then it is called a d-simplex. For k ≤ d, the k-skeleton of
the d-simplex ∆ on the vertex set Y = {x1, . . . ,xd+1} is the collection of all subsets of Y which
have cardinality at most k +1.

Given a simplicial complex ∆ on the vertex set V = {x1, . . . ,xn} we can associate it with a
square-free monomial ideal I∆ in the polynomial ring R = K[x1, . . . ,xn] over the field K in the
following way. For A ⊆ V , we write

xA =
∏

xi∈A

xi,
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to denote the monomial obtain by multiplying together all the variables corresponding to the
vertices in A. Then the ideal

I∆ = ⟨xA | A ⊆ V and A ̸∈ ∆⟩
is called the Stanley-Reisner ideal of ∆. The ideal I∆ and the ring R/I∆ (sometimes called
the Stanley-Reisner ring) captures invariants of the simplicial complex. For example, the Krull
dimension of R/I∆ satisfies
(1) K-dim(R/I∆) = dim∆+1
Expanding this dictionary between the algebraic invariants of R/I∆ and ∆ when ∆ is a simplicial
complex constructed from a graph is the focus for the remainder of the paper.

2.3. Stanley-Reisner ideals of higher independence complexes. We now formally intro-
duce the higher independence complexes of a graph G, the main object of study in this paper.

Definition 2.1. Let G = (V (G),E(G)) be a finite simple graph with V (G) = {x1, . . . ,xn}, and
let r be any positive integer. Then the r-independence complex of G, denoted by Indr(G), is the
simplicial complex

Indr(G) = {W ⊆ V (G) | W is an r-independent set}
on the vertex set V (G).

When r = 1, Ind1(G) is the independence complex of G. If r ≥ n, then Indr(G) = ⟨{x1,x2, . . . ,xn}⟩
since V (G) is the r-independent set. For r = n − 1, if G is disconnected then Indn−1(G) is the
(n−1)-simplex ⟨{x1,x2, . . . ,xn}⟩ and if G is connected then Indn−1(G) is the (n−2)-skeleton of
the simplex ⟨{x1,x2, . . . ,xn}⟩.

We now describe the Stanley-Reisner ideal of Indr(G).

Theorem 2.2. Let G = (V (G),E(G)) be a finite simple graph with V (G) = {x1, . . . ,xn}. Then the
Stanley-Reisner ideal of Indr(G) in R = K[x1, . . . ,xn] is

IIndr(G) = ⟨xA | A ⊆ V (G) with |A| = r +1 and G[A] connected ⟩.

Proof. Let J = ⟨xA | A ⊆ V (G) with |A| = r +1 and G[A] connected ⟩. Suppose that A ⊆ V with
|A| = r + 1 and G[A] connected. Then A is not an r-independent set, i.e., A ̸∈ Indr(G), and
consequently, xA is in IIndr(G). So J ⊆ IIndr(G) since all of its generators are in IIndr(G).

Consider any square-free monomial xi1 · · ·xit ∈ IIndr(G). So W = {xi1 , . . . ,xit} ⊆ V (G) is not in
Indr(G). This means that G[W ] has a connected component with at least r + 1 vertices. Thus, we
can find a subset A ⊆ W with |A| = r + 1 such that G[A] is connected. So xA ∈ J , and xA divides
xi1 · · ·xit . Since both IIndr(G) and J are square-free monomial ideals we have IIndr(G) ⊆ J . □

Remark 2.3. The ideal IIndr(G) is sometimes denoted by Ir(G). When r = 1 in the previous
Theorem, I1(G) = IInd1(G) = ⟨xixj | {xi,xj} ∈ E(G)⟩ is the well-known edge ideal I(G) of G. Also
observe that when G is a connected graph on n vertices, then In−1(G) = ⟨x1x2 · · ·xn⟩. If G is
disconnected and |V (G)| = n, then Ir(G) = ⟨0⟩, for r ≥ n−1.

When r = 1, i.e., when working with edge ideals, specifying two adjacent vertices is equivalent
to specifying an edge. However, when considering r > 1, the ideal may not necessarily specify the
induced subgraphs on r +1 vertices; it merely specifies whether or not they are connected. It is
well known that graphs and square-free monomial ideals generated in degree 2 are in one-to-one
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correspondence. However, for r > 1, non-isomorphic graphs may have the same r-independence
complex (and hence have the same Stanley-Reisner ideals). A trivial example is that any two
connected graphs on n vertices will have the same (n − 1)-independence complex. A less trivial
example is given below.

Example 2.4. Let G be the complete graph K5 on five vertices X = {x1, . . . ,x5}. Let r > 1
and H be the graph obtained from K5 by removing the edge {x1,x2}. Note that the facets of
Indr(G) are all F ⊆ {x1, . . . ,x5} such that |F | = r. Now suppose F ′ ⊆ X is a facet of Indr(H). By
definition |F ′| ≥ r. If {x1,x2} ⊈ F ′, then for each xi,xj ∈ F ′, {xi,xj} ∈ E(H). Hence |F ′| ≤ r. If
{x1,x2} ⊆ F ′, then for any i /∈ {1,2}, H[x1,x2,xi] is a connected subgraph of H. Thus |F ′| ≤ r.
Consequently, |F ′| = r. Hence Indr(G) = Indr(H). The graphs G and H are non-isomorphic graphs
since every vertex in G has degree four whereas the vertex x1 in H has degree three.

The previous example is just a special case of a more general phenomena.

Proposition 2.5. Let Kn be the complete graph on n vertices. Suppose V (Kn) = ⊔k
i=1Wi with

maxk
i=1{|Wi|} = s. If H is the graph obtained from Kn by deleting some edges (maybe all or none)

from each Kn[Wi], then for all r ≥ s, Indr(Kn) = Indr(H).

Proof. The statement is true for all r ≥ n by the discussion after Definition 2.1. So, we can assume
s ≤ r < n. It is enough to show that if F ⊆ V (Kn) is such that s ≤ |F | = r, then F is a facet of
Indr(H) and these are all the facets of Indr(H). Now suppose F is a facet of Indr(H), then |F | ≥ r.
If Wi ⊈ F for all i, then the induced subgraph H[F ] is connected and hence |F | ≤ r. Now suppose
Wi ⊆ F for some i. In that case for all x ∈ F , with x /∈ Wi, H[Wi ∪{x}] is a connected subgraph
of H. Note that |Wi| ≤ r since maxk

i=1{|Wi|} = s ≤ r. Therefore, F = Wi, if |Wi| = r and H[F ] is
connected if r > |Wi|. Consequently, |F | = r and hence Indr(Kn) = Indr(H). □

3. Fröberg’s theorem via vertex splittable ideals

In this section, we show that one direction of Fröberg’s theorem extends very naturally to the
Stanley-Reisner ideals of higher independence complexes. On the other hand, the natural converse
of this theorem does not hold.

We first recall the definition of a (linear) resolution. Given any homogeneous ideal I ⊆ R =
K[x1, . . . ,xn], the graded minimal free resolution of I is the long exact sequence

0 →
⊕
j∈N

R(−j)βp,j(I) →
⊕
j∈N

R(−j)βp−1,j(I) → ·· · →
⊕
j∈N

R(−j)β0,j(I) → I → 0,

where R(−j) denotes the polynomial ring with the grading twisted by j and p ≤ n. The numbers
βi,j(I) are called the (i, j)-th graded Betti numbers of I. See [18] for more on the graded resolution.

Definition 3.1. Let I ⊆ R be a homogeneous ideal, and suppose that all the generators of I have
degree d. Then I has a linear resolution if βi,j(I) = 0 for all j ̸= i+d.

Remark 3.2. The regularity of an ideal I is defined to be reg(I) = max{j − i | βi,j(I) ̸= 0}. If I is
a homogeneous ideal generated in degree d, then I has a linear resolution if and only if reg(I) = d.

Definition 3.3. A simple graph G is called chordal if there are no induced cycles of length four or
more. The complement of a chordal graph is called co-chordal.

Fröberg [7] classified which quadratic square-free monomial ideals have a linear resolution.
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Theorem 3.4 (Fröberg’s Theorem). Let G be a finite simple graph. Then the edge ideal I(G) =
IInd1(G) has a linear resolution (equivalently regularity is 2) if and only if G is co-chordal.

We will prove the “if” direction of Fröberg’s theorem in the context of higher independence
complexes; i.e., the Stanley-Reisner ideal of Indr(G) has a linear free resolution whenever G is the
complement of a chordal graph.

Let I be a square-free monomial ideal in a polynomial ring R = K[x1, . . . ,xn] and let G(I) denote
the unique set of minimal generators of the ideal I. We require the notion of a vertex splittable
ideal, first introduced by Moradi and Khosh-Ahang [15].

Definition 3.5. We say that a monomial ideal I is vertex splittable if I can be obtained by the
following recursive procedure:

(i) If either I = ⟨m⟩ where m is a monomial, or I = ⟨0⟩, or I = R.
(ii) If there exists a variable xi and two vertex splittable ideals I1 and I2 of the polynomial

ring K[x1, . . . , x̂i, . . . ,xn] such that I = xiI1 + I2 with I2 ⊆ I1 and the minimal generators of
I is the disjoint union of the minimal generators of xiI1 and I2.

Lemma 3.6. Let I be an ideal of R such that I is generated by variables. Then I is vertex
splittable.

Proof. This follows by applying induction on the number of generators of I. □

Lemma 3.7. Let I be a vertex splittable ideal of R. Then the ideal xn+1I ⊆ R[xn+1] is also vertex
splittable.

Proof. We prove this by induction on n. If n = 1, then I = ⟨0⟩, or ⟨1⟩, or ⟨x1⟩. Hence x2I is a
vertex splittable ideal.

Let us assume that n ≥ 2. If I = ⟨0⟩, or ⟨1⟩, or ⟨m⟩, where m is a monomial, then we can see
that xn+1I is a vertex splittable ideal. Now, suppose that

I = xiI1 + I2,

where I1 and I2 are vertex splittable ideals of K[x1, . . . , x̂i, . . . ,xn] with G(I) = G(xiI1) ⊔G(I2) and
I2 ⊆ I1. Then

xn+1I = xi(xn+1I1)+xn+1I2.

By induction xn+1I1 and xn+1I2 are vertex splittable ideals of K[x1, . . . , x̂i, . . . ,xn,xn+1] with
G(xn+1I) = G(xixn+1I1)⊔G(xn+1I2) and xn+1I2 ⊆ xn+1I1. Therefore, xn+1I is a vertex splittable
ideal. □

There is another characterization of chordal graphs that we will use frequently. A vertex v of
a graph is called a simplicial vertex if the induced subgraph on v and its neighbours NG(v) is a
clique. A graph G is chordal if and only if there is a subset of vertices {v1, . . . ,vn} such that vi is
simplicial in the graph induced on V (G)\{v1, . . . ,vi−1} for i = 1, . . . ,n.

Moradi and Khosh-Ahang in [15] showed that the edge ideal of a co-chordal graph G, i.e., the
Stanley-Reisner ideal of the 1-independence complex of G is a vertex splittable ideal.

Theorem 3.8. [15, Theorem 3.6] If G is a co-chordal graph on the vertex set V (G), then I1(G) =
IInd1(G) is a vertex splittable ideal of R.
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Our goal is to extend the above theorem to IIndr(G) for r > 1. In order to do this, we construct
a new graph G̃ from the given co-chordal graph G with x1 the simplical vertex of Gc as follows:

V (G̃) = V (G)\{x1};

E(G̃) = E(G\x1)∪{{xi,xj} | {xi,xj} ∈ E(Gc \x1) and NGc(x1)∩{xi,xj} = ∅}.

Note that if NGc(x1) = Y , then the induced subgraph of Gc on the vertex set {x1}∪Y is a clique
since x1 is a simplicial vertex of Gc. Thus we can rename the vertices of G as V (G) = V (Gc) =
{x1}∪Y ∪W such that {x1}∪Y is an independent set in G and, x1 is connected by an edge in G

to all the vertices in W . Informally, to construct G̃ from G we first remove the vertex x1 and all its
adjacent edges. Then we add edges to the remaining vertices of G according to the following rules.
Among the vertices in Y ⊔ W , if {wi,wj} /∈ E(G \ x1) for some wi,wj ∈ W , then we add it to G
since the induced subgraph on {x1,wi,wj} is connected in G. However, if {yi,wj} /∈ E(G\x1) for
some yi ∈ Y and wj ∈ W , then we don’t add it to G̃ since the induced subgraph on {x1,yi,wj} is
disconnected in G. Moreover, {yi,yj} /∈ E(G\x1) for each yi,yj ∈ Y , and we also don’t add it to
G̃ since {x1,yi,yj} is an independent set in G. Thus in G̃, the vertices in Y form an independent
set and the induced subgraph on W is a clique. In other words, G̃c is the graph on the vertex set
Y ⊔W such that the induced graph on Y forms a clique, whereas the set W forms an independent
set.

We illustrate the construction of G̃ using an example.

x1

w1 w3 w2

y1 y2

G

x1

y1

y2 w1 w2 w3

Gc

Figure 1. A co-chordal graph and its complement.

Example 3.9. Let G be the co-chordal graph in Figure 1. Then V (G) = {x1} ∪ Y ∪ W , where
Y = {y1,y2} and W = {w1,w2,w3}. We see that {x1,y1,y2} forms an independent set in G and
{x1,wi} ∈ E(G) for 1 ≤ i ≤ 3. The graph G̃ is constructed from G by first removing the vertex x1 and
its adjacent edges and then adding the edges {w1,w2} and {w2,w3}. Thus in G̃c, W = {w1,w2,w3}
forms an independent set and the induced subgraph on Y = {y1,y2} is a clique.

w1
w3

w2

y1 y2

G̃

y1

y2 w1 w2 w3

G̃c

Figure 2. The graph G̃ and its complement.
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Note that the graph G̃ in the example is again co-chordal. It is in fact true that for any co-chordal
graph G, the graph G̃ is co-chordal, which we now prove.

Proposition 3.10. Let G be a graph such that V (G) = W ⊔Y , where W forms an independent
set in G, and the induced subgraph G[Y ] is a clique. Then both G and Gc are chordal.

Proof. Note that, in Gc, Y forms an independent set and Gc[W ] is a clique. Thus it is enough
to show that G is a chordal graph. Suppose z1 · · ·zp is a minimal cycle in G of length at least
four. Let Z = {z1, . . . , zp}. If |Z ∩ Y | ≥ 3, then for any yi1 ,yi2 ,yi3 ∈ Z ∩ Y the induced subgraph
G[{yi1 ,yi2 ,yi3}] would be a smaller cycle, a contradiction. Thus |Z ∩Y | ≤ 2. In that case, as W
forms an independent set in G we must have p ≤ 4. Consequently, p = 4. If |Z ∩Y | = 2, then there
exists some yl1 ,yl2 ∈ Z ∩Y and wm1 ,wm2 ∈ Z ∩W such that G[Z] is the cycle yl1wm1yl2wm2 . Note
here that yl2wm2yl1 is a smaller cycle in G[Z], a contradiction. If |Z ∩ Y | ≤ 1, then |Z ∩ W | ≥ 3.
Hence there exists wj1 ,wj2 ∈ Z ∩W such that {wj1 ,wj2} ∈ E(G), again a contradiction. Thus G
contains induced cycles of length at most 3. This completes the proof. □

Lemma 3.11. Given a co-chordal graph G, let G̃ be the graph constructed above. Then G̃ is also
a co-chordal graph.

Proof. In G̃c, we have V (G̃c) = Y ⊔W such that the vertices in W form an independent set and
the induced subgraph on Y is a clique. Therefore, by Proposition 3.10, G̃c is a chordal graph. □

Now we are ready to prove the main theorem of this section.

Theorem 3.12. If G is co-chordal, then the ideal Ir(G) = IIndr(G) is vertex splittable for all r ≥ 1.

Proof. We prove this by induction on n and r. For a fixed r, if n ∈ {1,2, . . . , r} then Ir(G) = ⟨0⟩
and hence a vertex splittable ideal. If n = r + 1, then Ir(G) = ⟨0⟩ if G is a disconnected graph.
Otherwise, Ir(G) = ⟨x1 · · ·xr+1⟩. In both cases Ir(G) is a vertex splittable ideal. Also, for n ≥ 1,
the case r = 1 follows from Theorem 3.8. Now take any n ≥ 3. Since Gc is a chordal graph, without
loss of generality we can assume that x1 is a simplicial vertex of Gc. Then we can write

Ir(G) = x1J1 +J2,

where
J1 =

〈
r∏

s=1
xis | G[{x1,xi1 , . . . ,xir}] is a connected subgraph of G

〉
,

and the ideal

J2 =
〈

r+1∏
s=1

xjs | x1 /∈ {xj1 , . . . ,xjr+1} and G[{xj1 , . . . ,xjr+1}] is connected
〉

.

Now construct the graph G̃ from G as described above, i.e.,
V (G̃) = V (G)\{x1};

E(G̃) = E(G\x1)∪{{xi,xj} | {xi,xj} ∈ E(Gc \x1) and NGc(x1)∩{xi,xj} = ∅}.

Rename the vertices of G as before: V (G) = V (Gc) = {x1} ∪ Y ∪ W , where Y = NGc(x1) and
W = NG(x1). Then {x1}∪Y is an independent set in G. Moreover, x1 is connected by an edge in
G to all the vertices in W . In G̃ the vertices in Y forms an independent set and the the induced
subgraph on W is a clique. Thus in G̃c the vertices in Y forms a clique, whereas the vertices in W
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forms an independent set. By Lemma 3.11, G̃ is a co-chordal graph. Now our aim is to prove the
following.

(i) J2 = Ir(G\x1),
(ii) J2 ⊆ J1, and

(iii) J1 = Ir−1(G̃).

Proof of (i). If xS ∈ J2 is a minimal generator, then x1 /∈ S and G[S] is connected, where |S| = r+1.
Therefore, xS ∈ Ir(G \ x1). Similarly, if xS ∈ Ir(G \ x1) is a minimal generator, then x1 /∈ S and
hence xS ∈ J2. Thus J2 = Ir(G\x1). □

Proof of (ii). Let xS ∈ J2. Then x1 /∈ S and G[S] is connected, where |S| = r + 1. If Y ∩ S = ∅,
then for any w ∈ W ∩ S, the induced subgraph on {x1} ∪ (S \ {w}) is a connected subgraph of
G since NG(x1) = W . Note here that |S \ {w}| = r and xS\{w} ∈ J1. Since xS\{w}|xS , we have
xS ∈ J1. If Y ∩S ≠ ∅, then for any y ∈ Y , the induced subgraph on {x1}∪ (S \{y}) is a connected
subgraph of G. Indeed, if z ∈ (S \ {y}) ∩ W , then z is adjacent to x1. If y′ ∈ (S \ {y}) ∩ Y , then
there is w ∈ W such that {y′,w} ∈ E(G) since y′ is connected to some element of S, but it cannot
be y since the set Y is an independent set. But because {w,x1} ∈ E(G), there is a path for all
vertices (S \{y}) to x1. Consequenty, xS\{y} ∈ J1, where |S \{y}| = r. Hence xS ∈ J1. Thus we
have J2 ⊆ J1. □

Proof of (iii). Let xS ∈ J1. Then |S| = r and G[S ∪ {x1}] is a connected subgraph of G. Since
{x1}∪Y forms an independent set in G, we have S ∩W ≠ ∅. Moreover, for each y ∈ Y ∩S, there
exists some w ∈ S ∩W such that {y,w} ∈ E(G). Therefore, G̃[S] is connected as W forms a clique
in G̃. Thus xS ∈ Ir−1(G̃) and hence J1 ⊆ Ir−1(G̃). Now let xS ∈ Ir−1(G̃). Then |S| = r and G̃[S]
is connected. Since Y forms an independent set in G̃, we see that for each y ∈ Y ∩S, there exists
some w ∈ S ∩W such that {y,w} ∈ E(G̃). Now x1 is connected by an edge in G to all the vertices
in W . Hence G[S ∪{x1}] is connected and consequently, Ir−1(G̃) ⊆ J1. This completes the proof
of (iii). □

Now by induction on n, J2 is a vertex splittable ideal since G\x1 is co-chordal on fewer vertices.
Also, since J1 = Ir−1(G̃) and G̃ is a co-chordal graph (by Lemma 3.11), we see that J1 is a vertex
splittable ideal by induction on r. If J2 = ⟨0⟩, then by Lemma 3.7, Ir(G) = x1J1 is a vertex
splittable ideal. Otherwise, by Definition 3.5, we see that Ir(G) = x1J1 +J2 is a vertex splittable
ideal. □

A claw is a graph on four vertices {x,y1,y2,y3} with edge set {{x,y1},{x,y2},{x,y3}}. We say
that a graph is claw free if it does not contain any claw as an induced subgraph. A graph G is said
to be gap free if Gc does not contain C4 as an induced subgraph.

Corollary 3.13. Let G be a gap free and claw free graph such that it contains a leaf. Then both
Ir(G) and Ir(Gc) are vertex splittable ideals for any integer r ≥ 1.

Proof. Let x ∈ V (G) be a leaf of G and let NG(x) = {y}. If NG(y) = {x}, then for any u,v ∈
V (G) \ {y,x}, {u,v} /∈ E(G). Because if {u,v} ∈ E(G), then {y,x,u,v} forms a cycle of length
four in Gc, a contradiction. Thus V (G) \ {x,y} forms an independent set in G. Therefore, by
Proposition 3.10, both G and Gc are chordal. Hence by Theorem 3.12, Ir(G) and Ir(Gc) are vertex
splittable ideals for r ≥ 1.
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Now let NG(y) = {x,y1, . . . ,yt} for some t ≥ 1. For i ̸= j, if {yi,yj} /∈ E(G) then {x,y,yi,yj}
forms a claw in G, which is not possible. Hence {y,y1, . . . ,yt} forms a clique in G. Now let
a,b ∈ V (G)\NG[y]. If {a,b} ∈ E(G), then {a,b,x,y} forms a cycle of length 4 in Gc, a contradiction.
Hence V (G)\NG[y] forms an independent set in G. Consequently, {x}∪ (V (G)\NG[y]) forms an
independent set in G. Let Y = NG[y]\{x} and W = {x}∪ (V (G)\NG[y]). Then V (G) = Y ⊔W
such that G[Y ] is a clique and W forms an independent set in G. Therefore, by Proposition 3.10,
both Ir(G) and Ir(Gc) are vertex splittable ideals for r ≥ 1. □

A vertex splittable ideal has a linear resolution (by [15, Theorem 2.4]). Thus, as an application of
Theorem 3.12, we see that one direction of Fröberg’s theorem is true in the context of Stanley-Reisner
ideals of r-independence complexes of graphs:

Corollary 3.14. If G is a co-chordal graph, then Ir(G) has a (r +1)-linear resolution.

Remark 3.15. The converse of Corollary 3.14 is not true in general. For example, if r ≥ |V (G)|
and G is any graph, then the ideal IIndr(G) is the zero ideal and hence has a linear resolution.
Moreover, if r = |V (G)|−1 then IIndr(G) is the zero ideal if G is not connected and is generated by
the monomial ∏xi∈V (G) xi if G is connected. Thus in both cases IIndr(G) has a linear resolution.

For another example, let Cn = x1x2 · · ·xn be a cycle of length n. Consider the graph H =
Cn ∗ {xn+1}, the graph formed by adding a new vertex xn+1 and joining this vertex by an edge
to all vertices in the cycle. Then H is not chordal but for n ≥ 5, IIndn−1(G) = ⟨x1x2 · · ·xn⟩ has a
linear resolution, where G = Hc. In general, if G is any graph such that its connected components
have cardinality at most s, then for each r ≥ s, IIndr(G) is the zero ideal and hence has a linear
resolution. Moreover, if C1, . . . ,Ck are connected components of G such that |V (Ci)| = s for some i
and |V (Cj)| < s for each j ̸= i, then IInds−1(G) = ⟨

∏
xi∈V (Ci) xi⟩ and hence has a linear resolution.

4. The graded Betti numbers

The vertex splittability property of a square-free monomial ideal gives important information about
the graded Betti numbers. Namely, the Betti numbers of the ideal can be expressed as a sum of the
Betti numbers of some ‘smaller’ ideals. More precisely, we have the following theorem by Moradi
and Khosh-Ahang.

Theorem 4.1. [15, Theorem 2.8] Let I = xJ1 +J2 ⊆ R be a vertex splitting for the monomial ideal
I. Then the graded Betti numbers of R/I can be computed by the following recursive formula:

βi,j(R/I) = βi,j−1(R/J1)+βi,j(R/J2)+βi−1,j−1(R/J2) for all i, j ≥ 0.

Using Theorem 4.1, we can compute all the graded Betti numbers of Stanley-Reisner ideals of
higher independence complexes of some well-known families of graphs, namely, the complete graphs,
star graphs and the complement of path graphs. But before proceeding to derive the formulas we
first make the following remark.

Remark 4.2. In the calculations below, we make extensive use of Pascal’s identity:(
n

r

)
+
(

n

r −1

)
=
(

n+1
r

)
.

The following theorem is well-known using the properties of complete intersections.
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Theorem 4.3. Let I = ⟨xi1 , . . . ,xik
⟩ ⊂ R be a monomial ideal generated by k variables. Then the

N-graded Betti numbers of R/I are given by the following formula: βi,j(R/I) = 0 if i ̸= j, and

βi,i(R/I) =


(k

i

)
for 0 ≤ i ≤ k

0 otherwise.

We now give explicit formulas for all the Betti numbers of the r-independence complexes of
complete graphs. Note that the formula is well-known in the case of r = 1 and it was first derived
in the thesis of Jacques [11, Theorem 5.1.1]. We provide two different proofs; one using the formula
in Theorem 4.1 and another using the Hilbert series of the ideal.

Theorem 4.4. Let Ir(Kn) denote the Stanley-Reisner ideal of the r-independence complex of Kn for
r ≥ 1. Then the N-graded Betti numbers of R/Ir(Kn) can be expressed as follows: βi,j(R/Ir(Kn)) =
0 if j ̸= i+ r, and

βi,i+r(R/Ir(Kn)) =


(i+r−1

r

)( n
i+r

)
for 1 ≤ i ≤ n− r

0 otherwise.

Proof. We prove this by induction on n and r. For a fixed r, if n ∈ {1,2, . . . , r} then Ir(Kn) = ⟨0⟩.
Hence we have the above formula. Now fix an n. We first prove the above formula for r = 1. By
Theorem 3.8 we have

I1(Kn) = x1J1 +J2,

where J1 = ⟨x2, . . . ,xn⟩ and J2 = I1(Kn \ {x1}). Note that Kn \ {x1} = Kn−1. Therefore, using
Theorem 4.1 and by the induction on n, we have, for 1 ≤ i ≤ n−1,

βi,i+1(R/I1(Kn)) =βi,i(R/J1)+βi,i+1(R/I1(Kn−1))+βi−1,i(R/I1(Kn−1))

=
(

n−1
i

)
+ i

(
n−1
i+1

)
+(i−1)

(
n−1

i

)
(by Theorem 4.3)

=
(

i

1

)(
n

i+1

)
.

Now we take any r ≥ 2. Then by the construction in Theorem 3.12,

Ir(Kn) = x1J1 +J2,

where J1 = Ir−1(K̃n) and J2 = Ir(Kn−1). Observe that K̃n = Kn−1. Hence using Theorem 4.1 and
by the induction on n and r, we have, for 1 ≤ i ≤ n− r,

βi,i+r(R/Ir(Kn))
= βi,i+r−1(R/Ir−1(Kn−1))+βi,i+r(R/Ir(Kn−1))+βi−1,i+r−1(R/Ir(Kn−1))

=
(

i+ r −2
r −1

)(
n−1

i+ r −1

)
+
(

i+ r −1
r

)(
n−1
i+ r

)
+
(

i+ r −2
r

)(
n−1

i+ r −1

)

=
(

i+ r −1
r

)(
n

i+ r

)
□
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Remark 4.5. The ideal Ir(Kn) is same as the edge ideal of the (r +1)-complete hypergraph Kr+1
n

defined by Emtander [6]. Thus Theorem 4.4 shows that the edge ideal of the complete hypergraph
Kr+1

n is vertex splittable.

Example 4.6. Let G = K7 and r = 3. Then the Betti table of R/I3(K7) computed using Theorem
4.4 as follows.

x1 x2

x3

x4

x5

x6

x7

0 1 2 3 4

0 :

1 :

2 :

1 · · · ·

· · · · ·

· · · · ·

3 : · 35 84 70 20

Figure 3. The graph K7 and the Betti table of R/I3(K7)

Recall that, if M is an N-graded R module, then the Hilbert series HM (t) measures the K-vector
space dimensions of the graded pieces Mi of M . More specifically, if each graded piece Mi has
finite K-vector space dimension, then HM (t) is the formal power series

HM (t) =
∑
i∈N

dimK(Mi)ti.

The following result is well-known. See, for example, [9, Section 6.1.3].

Lemma 4.7. Let R be the polynomial ring K[x1, . . . ,xn], and consider a finitely generated N-graded
R-module M . Then

HM (t) = RM (t)
(1− t)n

,

where RM (t) =∑
i(−1)i∑

j βi,j(M)tj.

Note that, if M is the Stanley–Reisner ring of a simplicial complex ∆, then the Hilbert series of
M can be calculated from combinatorial data of ∆. In particular, we have the following formula
(see [17, Chapter 6]):

HR/I∆ = 1
(1− t)n

l∑
s=0

fs−1ts(1− t)n−s,

where fs equals the number of s-dimensional faces of ∆ and l = dim∆+1.
If R/I∆ has a linear minimal free resolution, then the Betti numbers of R/I∆ can be easily

deduced from the Hilbert series. Let G be a co-chordal graph, then R/Ir(G) has a linear minimal
free resolution (by Corollary 3.14). Thus by [6, Lemma 3.11] we get the following formula.
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Lemma 4.8. If Gc is a chordal graph, then the Betti numbers βi,i+r(R/Ir(G)) are given by the
formula

βi,i+r(R/Ir(G)) =
l∑

s=0
(−1)r−sfs−1

(
n− s

i+ r − s

)
,(2)

where fs equals the number of s-dimensional faces of Indr(G) and l = dimIndr(G)+1.

Lemma 4.8, like Theorem 4.1, provides us with a tool to compute the graded Betti numbers of
R/Ir(G) when G is co-chordal. By playing the two results off each other, we may be able to derive
some combinatorial identities.

As a specific example, if we take G = Kn, then fs(Indr(Kn)) =
( n
s+1
)

and l = r. Thus

βi,i+r(R/Ir(G)) =
r∑

s=0
(−1)r−s

(
n

s

)(
n− s

i+ r − s

)
.

We also computed these graded Betti numbers in Theorem 4.4 by using Theorem 4.1. Thus, since
these two expressions are equal, we can derive the combinatorial identity:(

i+ r −1
r

)(
n

i+ r

)
=

r∑
s=0

(−1)r−s

(
n

s

)(
n− s

i+ r − s

)
.

See also [6, Section 3.3] for a combinatorial proof.
If G = Kn1,...,ns , the complete multipartite graph on Ns :=∑s

t=1 nt number of vertices, then the
ideal Ir(G) is same as the edge ideal of the (r +1)-complete multipartite hypergraph Kr+1

n1,...,ns
as

defined by Emtander [6, Section 3.1]. Hence, by Corollary 3.14 we see that the edge ideal of the
(r +1)-complete multipartite hypergraph Kr+1

n1,...,ns
is vertex splittable. Also, we have the formula

for the Betti numbers of Ir(Kn1,...,ns).

Theorem 4.9. [6, cf. Theorem 3.5] Let G = Kn1,n2,...,ns denote the complete multipartite graph on
Ns number of vertices. Then for all positive integers r, the N-graded Betti numbers of the ideal
Ir(G) can be expressed as follows:

βi,i+d(RG/Ir(G)) =

{∑s
t=1
(

nt
i+r

)(
i+r−1

r

)
−
∑

J(r,s)

[∏s
t=1
(

nt
jt

)]∑s
t=1
(

jt−1
r

)
for d = r,

0 otherwise.

For brevity we let J(r,s) denote all those tuples (j1, j2, . . . , js) ∈ Ns such that
∑s

t=1 jt = i+ r.

Let P c
n denote the complement of path graph on n vertices. We now proceed to give formulas for

the Betti numbers of R/Ir(P c
n) using the vertex splittability of the ideal Ir(P c

n). Note that if r = 1
then I1(P c

n) is the edge ideal of P c
n. To the best of our knowledge, the formula for βi,j(R/I1(P c

n))
in Theorem 4.12 is new.

In order to find the Betti numbers of R/Ir(P c
n), we first analyze the graph Kx

n defined as follows:

V (Kx
n) = {x,x1,x2, . . . ,xn}

E(Kx
n) = {{{xi,xj} | 1 ≤ i < j ≤ n}∪{{x,xi} | i ∈ [n−1]}.

Note that the graph Kx
n is the graph Kn+1 on the vertex set {x,x1, . . . ,xn} with the edge {x,xn}

removed. For r ≥ 1, consider the ideal Ir(Kx
n) in the polynomial ring Rx = K[x,x1,x2, . . . ,xn].
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Lemma 4.10. The N-graded Betti numbers of Rx/Ir(Kx
n) can be expressed as follows:

βi,i+r(Rx/Ir(Kx
n)) =


i
(n+1

i+1
)
−
(n−1

i−1
)
, for r = 1 and 1 ≤ i ≤ n,(i+r−1

r

)(n+1
i+r

)
, for r ≥ 2 and 1 ≤ i ≤ n− r +1,

0, otherwise.

Proof. Note that Kx
n is a co-chordal graph with x as a simplicial vertex of the complement of Kx

n .
Thus by Theorem 3.12, Ir(Kx

n) is a vertex splittable ideal. Let r = 1. Then

I1(Kx
n) = xJ1 +J2,

where J1 = ⟨x1, . . . ,xn−1⟩ and J2 = I1(Kx
n \{x}). Note that Kx

n \{x} = Kn. Therefore, by Theorem
4.1,

βi,i+1(Rx/I1(Kx
n)) = βi,i(Rx/J1)+βi,i+1(Rx/I1(Kn))+βi−1,i(Rx/I1(Kn))

=
(

n−1
i

)
+ i

(
n

i+1

)
+(i−1)

(
n

i

)

= i

(
n+1
i+1

)
−
(

n−1
i−1

)
.

Now let r ≥ 2. Then by the construction in Theorem 3.12,

Ir(Kx
n) = xJ1 +J2,

where J1 = Ir−1(K̃x
n) and J2 = Ir(Kx

n \ {x}). Note that K̃x
n = Kx

n \ {x} = Kn. Therefore, by
Theorem 4.1,

βi,i+r(Rx/Ir(Kx
n))

= βi,i+r−1(Rx/Ir−1(Kn))+βi,i+r(Rx/Ir(Kn))+βi−1,i+r−1(Rx/Ir(Kn))

=
(

i+ r −2
r −1

)(
n

i+ r −1

)
+
(

i+ r −1
r

)(
n

i+ r

)
+
(

i+ r −2
r

)(
n

i+ r −1

)

=
(

i+ r −1
r

)(
n+1
i+ r

)
.

□

Remark 4.11. Note that βi,i+r(Rx/Ir(Kx
n)) = βi,i+r(R/Ir(Kn+1)) for r ≥ 2.

Now we are ready to give explicit formulas for the Betti numbers βi,i+r(R/Ir(P c
n)).

Theorem 4.12. Let Ir(P c
n) denote the Stanley-Reisner ideal of the r-independence complex of the

complement of the path graph Pn on n vertices {x1, . . . ,xn}. Then the N-graded Betti numbers of
R/Ir(P c

n) can be expressed as follows: βi,j(R/Ir(P c
n)) = 0 if j ̸= i+ r, and

βi,i+r(R/Ir(P c
n)) =


i
(n−1

i+1
)
, for r = 1 and 1 ≤ i ≤ n−2,(i+1

2
)( n

i+2
)
− i
(n−2

i

)
, for r = 2 and 1 ≤ i ≤ n−2,(i+r−1

r

)( n
i+r

)
, for r ≥ 3 and 1 ≤ i ≤ n− r,

0, otherwise.
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Proof. The graph P c
n is a co-chordal graph with x1 as a simplicial vertex of Pn. We first consider

the case r = 1. By Theorem 3.8,
I1(P c

n) = x1J1 +J2,

where J1 = ⟨x3,x4, . . . ,xn⟩ and J2 = I1(P c
n \{x1}). Thus J2 = I1(P c

n−1) since P c
n \{x1} = P c

n−1. We
now proceed to prove the formula by induction on n. For n = 1,2, I1(P c

n) = ⟨0⟩ and thus we have
the above formula. For n = 3, I1(P c

n) = ⟨x1x3⟩ = I1(K2) and hence using Theorem 4.4 we have our
desired formula. Now let n ≥ 4. Then by Theorem 4.1 and using the induction hypothesis we have,

βi,i+1(R/Ir(P c
n)) = βi,i(R/J1)+βi,i+1(R/I1(P c

n−1))+βi−1,i(R/I1(P c
n−1))

=
(

n−2
i

)
+ i

(
n−2
i+1

)
+(i−1)

(
n−2

i

)

= i

(
n−1
i+1

)
.

Now we consider the case r = 2. By Theorem 3.12 we have,

I2(P c
n) = x1J1 +J2,

where J1 = I1(P̃ c
n) and J2 = I2(P c

n−1). Note that P̃ c
n

∼= Kx
n−2. Now, for n = 1,2,3, we have

I1(P̃ c
n) = I2(P c

n−1) = ⟨0⟩. For n = 4, we have J1 = I1(Kx
2 ) and J2 = I2(P c

3 ) = ⟨0⟩. Therefore, by
Theorem 4.1 and Lemma 4.10,

βi.i+2(R/I2(P c
4 )) = βi,i+1(R/I1(Kx

2 ))+βi,i+1(R/I2(P c
3 ))+βi−1,i(R/I2(P c

3 ))

= i

(
3

i+1

)
−
(

1
i−1

)
.

It is not difficult to see that for all non-negative integers i, i
( 3
i+1
)
−
( 1
i−1
)

=
(i+1

2
)( 4

i+2
)
− i
(2

i

)
. Thus

we have βi,i+2(R/I2(P c
4 )) =

(i+1
2
)( 4

i+2
)
− i
(2

i

)
. Now let n ≥ 5. Then by Theorem 4.1 and by the

induction hypothesis,

βi,i+2(R/I2(P c
n))

= βi,i+1(R/I1(Kx
n−2))+βi,i+1(R/I2(P c

n−1))+βi−1,i(R/I2(P c
n−1))

= i

(
n−1
i+1

)
−
(

n−3
i−1

)
+
(

i+1
2

)(
n−1
i+2

)
− i

(
n−3

i

)
+
(

i

2

)(
n−1
i+1

)
− (i−1)

(
n−3
i−1

)

=
(

i+1
2

)(
n

i+2

)
− i

(
n−2

i

)
.

We now take r ≥ 3 and prove the formula by induction on n and r. By Theorem 3.12,

Ir(P c
n) = x1J1 +J2,

where J1 = Ir−1(Kx
n−2) and J2 = Ir(P c

n−1). Note that for a fixed r, Ir(P c
n) = ⟨0⟩ for n = 1,2, . . . , r.

If n = r +1, then Ir(P c
n) = ⟨

∏r+1
i=1 xi⟩. Hence βi,i+r(R/Ir(P c

n)) =
(i+r−1

r

)(r+1
i+r

)
since(

i+ r −1
r

)(
r +1
i+ r

)
=

1 if i = 1
0 otherwise.
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Now let n ≥ r +2. Then by Theorem 4.1, Lemma 4.10 and by the induction on n and r,

βi,i+r(R/Ir(P c
n))

= βi,i+r−1(R/Ir−1(Kx
n−2))+βi,i+r(R/Ir(P c

n−1))+βi−1,i+r−1(R/Ir(P c
n−1))

=
(

i+ r −2
r −1

)(
n−1

i+ r −1

)
+
(

i+ r −1
r

)(
n−1
i+ r

)
+
(

i+ r −2
r

)(
n−1

i+ r −1

)

=
(

i+ r −1
r

)(
n

i+ r

)
.

□

Example 4.13. Let G = P c
7 . Then the Betti tables of R/I2(P c

7 ) and R/I3(P c
7 ) computed using

Theorem 4.4 are given as in Figure 4.

0 1 2 3 4 5

0 :

1 :

2 :

1 · · · · ·

· · · · · ·

· 30 85 96 50 10

0 1 2 3 4

0 :

1 :

2 :

1 · · · ·

· · · · ·

· · · · ·

3 : · 35 84 70 20

Figure 4. Betti table of R/I2(P c
7 ) and R/I3(P c

7 ), respectively

Remark 4.14. Note that if we compare the formulas for the graphs P c
n, Kn and K1,n, for r ≥ 3,

we have βi,i+r(R/Ir(P c
n)) = βi,i+r(R/Ir(Kn)) = βi,i+r+1(R/Ir(K1,n)) for all i ≥ 0.

Remark 4.15. Note that for r ≥ 3, Ir(P c
n) = Ir(Kn). However, for 1 ≤ r < 3 they are not the same

ideal. Thus for r = 1,2, we can calculate the Betti numbers βi,i+r(R/Ir(P c
n)) using Equation (2)

and obtain the following two combinatorial identities.

i

(
n−1
i+1

)
= n

(
n−1

i

)
−
(

n

i+1

)
− (n−1)

(
n−2
i−1

)
(

i+1
2

)(
n

i+2

)
− i

(
n−2

i

)
=
(

n

i+2

)
−n

(
n−1
i+1

)
+
(

n

2

)(
n−2

i

)
− (n−2)

(
n−3
i−1

)
.

5. Fröberg’s theorem via collapsibility

In this section we use the concept of d-collapsibility from topological combinatorics to give an
alternative proof of Theorem 1.1. The notion of d-collapsibility was introduced by Wegner in [19].

Definition 5.1. Let ∆ be a simplicial complex. A face σ ∈ ∆ is called d-collapsible if there is
only one facet τ = τ(σ) in ∆ containing σ (possibly τ = σ), and moreover dim(σ) ≤ d−1. In this
case (σ,τ) is called a free pair and we say that the complex ∆ elementary d-collapses onto the
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subcomplex ∆′ = ∆\{γ ∈ ∆ : σ ⊆ γ}. We denote this collapsing by ∆ ↘ ∆′. Complex ∆ is called
d-collapsible if there is a sequence

∆ ↘ ∆1 ↘ ∆2 ↘ ·· · ↘ ∅,

of elementary d-collapses ending with the empty complex. Note that if a complex ∆ is d-collapsible
for some integer d ≥ 1, then it is r-collapsible for any integer r ≥ d.

A simplicial complex ∆ is called d-Leray if H̃i(Y ;Z) = 0 for all induced subcomplexes Y ⊆ ∆
and for all i ≥ d. The Leray number of ∆, denoted L(∆), is the minimal d such that ∆ is d-Leray.
From Hochster’s formula [10], we know that
(3) reg(I∆) = L(∆)+1.

We know that the ideal Ir(G) has a linear resolution if and only if reg(Ir(G)) = r +1 [21, Lemma
49]). Thus, to prove Theorem 1.1, it is enough to show that reg(Ir(G)) = r + 1. We do this by
showing that the complex Indr(G) is r-Leray (recall that Ir(G) = IIndr(G)) for any r ≥ 1 and for any
co-chordal graph G, which along with Equation (3), will prove Theorem 1.1. For more discussion
on the Leray number of a complex ∆ and the regularity of its Stanley-Reisner ideal I∆, the reader
is referred to [12].

Wegner [19] proved that every d-collapsible complex is d-Leray. However, the converse is not
true (see [13] for examples). Hence, the following result along with the discussion above gives an
alternate proof of Theorem 1.1.

Theorem 5.2. Let G be a finite simple graph and let r ≥ 1 be an integer. If G is the complement of
a chordal graph, then Indr(G) is r-collapsible. In particular, Ir(G) has a (r +1)-linear resolution.

Proof. It is known [19] that the complex Ind1(G) is 1-collapsible for any co-chordal graph G and
hence Ind1(G) is r-collapsible for any r ≥ 1. Therefore, we may assume that r ≥ 2.

Let ∆ = Indr(G) and F be a face of ∆. By definition, each connected component of the induced
subgraph G[F ] has at most r vertices. Let C1 and C2 be two connected components of G[F ]. We first
show that either |V (C1)| = 1 or |V (C2)| = 1. On the contrary, let v1,v2 ∈ V (C1) and v3,v4 ∈ V (C2)
such that {v1,v2} and {v3,v4} are edges in the graph G. In that case, v1v4v2v3v1 becomes an
induced cycle of length four in the chordal graph Gc, which is a contradiction. Hence, if F is a face
of ∆ such that |F | ≥ r, then F = F ′ ⊔F ′′, where both F ′ and F ′′ are faces of ∆ such that |F ′| ≤ r,
the induced subgraph G[F ′] is connected and the induced subgraph G[F ′′] consists of only isolated
vertices. Moreover, no vertex in F ′ is connected to any vertex in F ′′ by an edge. Now we proceed
to show that ∆ is r-collapsible.

It is easy to see that Ind1(G) ⊆ ∆. Here, we show that the complex ∆ can be collapsed onto
Ind1(G) using elementary r-collapses. We know that if F is a face of ∆ such that |F | ≥ r, then
the induced subgraph G[F ] has at most one connected component of cardinality more than one
(and at most r). To collapse ∆ onto Ind1(G), it is enough to collapse all the faces in which the
cardinality of the connected component is more than one. We do these collapses in the decreasing
order of cardinality of the connected components, that is, we first collapse those faces in which the
connected component has vertex cardinality r.

Let F be a face of ∆ such that G[F ] is connected and |F | = r > 1. To show that F is r-collapsible,
it is enough to show that F is contained in a unique facet. On the contrary, let F1 and F2 be two
facets of ∆ such that F ⊆ F1 ∩ F2. In that case if F ′

1 = F1 \ F and F ′
2 = F2 \ F then the induced

subgraphs G[F ′
1] and G[F ′

2] consists of only isolated vertices. Since F1 and F2 are different facets,
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F ′
2 \F ′

1 ≠ ∅ and F ′
1 \F ′

2 ̸= ∅. If there is no edge in the induced subgraph G[F ′
1 ∪F ′

2], then F1 ∪F2 is
a face of ∆ which contradicts the fact that F1 and F2 are facets. Therefore, let v ∈ F ′

2 \F ′
1 such

that v is connected to some w ∈ F ′
1. Then vu1wu2v forms an induced cycle of length 4 in the

graph Gc, where u1,u2 ∈ F such that {u1,u2} ∈ E(G). Note that such an edge exists since G[F ]
is a connected graph on at least two vertices. This gives us a contradiction since Gc is assumed
to be chordal. Thus if F ∈ ∆ such that |F | = r and G[F ] is connected, then F is contained in a
unique facet. Moreover, note that if F,F ′ are two different faces in ∆ with |F | = |F ′| = r and the
induced subgraphs G[F ] and G[F ′] are both connected such that F1 and F ′

1, are the unique facets
in ∆ containing F and F ′, respectively, then F1 ̸= F ′

1. Indeed, if F1 = F ′
1 then either G[F ∪F ′] is

contained in a connected component C of G[F1], or there exists two connected components C1 and
C2 of G[F1] such that C1 and C2 contains G[F ] and G[F ′], respectively. In the first case we have a
contradiction since |F ∪F ′| > r. In the second case, G[F1] has at least two connected components
of vertex cardinality more than one, again a contradiction.

After collapsing all the faces F ∈ ∆ such that G[F ] is connected and |F | = r, we do the same
with faces F ′ ∈ ∆ such that |F ′| = r −1 > 1 and G[F ′] is connected. Continuing this way, let ∆i

be the simplicial complex obtained from ∆ by collapsing all F ∈ ∆ such that |F | > i and G[F ] are
connected. Note that if σ ∈ ∆i, then σ is also a face of ∆ and hence σ = σ′ ⊔ σ′′, where both σ′

and σ′′ are faces of ∆i, |σ′| ≤ i where the induced subgraph G[σ′] is connected and the induced
subgraph G[σ′′] consists of only isolated vertices. Moreover, no vertex in σ′ is connected to any
vertex in σ′′ by an edge. Proceeding as above we see that if σ is a face of ∆i such that G[σ] is
connected and |σ| = i > 1, then σ is contained in a unique facet of ∆i. Moreover, if σ,σ′ ∈ ∆i with
|σ| = |σ′| = i and the induced subgraphs G[σ] and G[σ′] are both connected such that σ1 and σ′

1
are the unique facets containing σ and σ′, respectively, then σ1 ̸= σ′

1. Thus each face of ∆i of
cardinality i whose corresponding induced subgraph is connected, is r-collapsible. We continue
these collapses till we collapse every face σ ∈ ∆ such that |σ| > 1 and G[σ] are connected. These
collapses are done in the decreasing order of the cardinality of σ. Observe that the remaining
complex is Ind1(G) which is 1-collapsible. This completes the proof of Theorem 5.2. □

The r-independence complexes (r ≥ 1) of graphs we encountered in Corollary 3.13 are r-collapsible
as we now show.

Corollary 5.3. Let G be a gap-free and claw-free graph such that it contains a leaf. Then Indr(G)
and Indr(Gc) are r-collapsible for any integer r ≥ 1.

Proof. Proceeding as in Corollary 3.13, we have both G and Gc chordal. Therefore, by the proof
of Theorem 5.2, both Indr(G) and Indr(Gc) are r-collapsible. □

We know that if G = Cc
n, where n ≥ 4, then IInd1(G) does not have a linear resolution by Fröberg’s

theorem, since Gc = Cn is not a chordal graph for n ≥ 4. However, in what follows we show that
IIndr(Cc

n) has a linear resolution for each r ≥ 2. Consequently, the converse of Theorem 1.1 cannot
hold. We prove that IIndr(G) has a linear resolution as a corollary of the following result.

Proposition 5.4. Let G be a graph so that Gc does not have an induced cycle of length 4. If
dimInd1(G) ≤ r −1, then IIndr(G) has a (r +1)-linear resolution.

Proof. Following the proof of Theorem 5.2 we see that if Gc does not have an induced 4-cycle then
for each r ≥ 2, Indr(G) is r-collapsible to Ind1(G). Since dimInd1(G) ≤ r −1 we see that Indr(G)
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is r-collapsible to the empty complex. Therefore, Indr(G) is r-Leray. Consequently, IIndr(G) has a
linear resolution. □

Corollary 5.5. For n ≥ 4, the ideal IIndr(Cc
n) has a linear resolution for each r ≥ 2.

Proof. For n ≤ 4, IIndr(Cc
n) is the zero ideal when r ≥ 2 and hence has a linear resolution. For n ≥ 5,

note that dimInd1(Cc
n) = 1 and hence the result follows from Proposition 5.4. □

6. Concluding Remarks

As stated in the Introduction, determining a combinatorial description of higher degree square-free
monomial ideals that have a linear resolution over all fields is an active area of research. A
prominent setting to undertake such a study is that of hypergraphs, since they generalize graphs
and the edge ideal of a hypergraph is a square-free monomial ideal. Inspired by Fröberg’s theorem,
there were attempts to generalize the notion of chordality to hypergraphs and then prove that the
edge ideal of the complement hypergraph has a linear resolution. A recent approach is by Bigdeli,
Yazdan Pour and Zaare-Nahandi [3]. The authors first introduce the notion of chordal hypergraphs
(by generalizing the perfect elimination order of chordal graphs) and then show that the edge ideal
associated with the complement hypergraph has a linear resolution over any field. They further
show that this particular class of chordal hypergraphs contains several, previously defined classes of
chordal hypergraphs. More recently, Bigdeli and Faridi [2] have extended this notion of chordality
to the realm of simplicial complexes.

Let H be an (r +1)-uniform hypergraph (i.e., every edge is of cardinality r +1) on the vertex
set V . A subset W ⊂ V is called a simplical maximal subcircuit if |W | = r, it is contained in
an edge, and its neighborhood is a clique (see [3, Definition 1.2] for details). Now a chordal
hypergraph is recursively defined as the (r + 1)-uniform hypergraph H which is either empty or
contains a simplicial maximal subcircuit W such that the deletion H \W is also chordal. Further,
a hypergraph is co-chordal if its complement is chordal. We have already seen in the Introduction
that the notion of r-independence lets us define a hypergraph, which we denote by Conr(G). Based
on our calculations we propose the following conjecture:

Conjecture 6.1. For all r ≥ 1, Conr(G) is a co-chordal hypergraph if G is a co-chordal graph.

The reader should note that our work allows us to directly show that Ir(G) has a linear resolution
without first checking if Conr(G) is chordal or not. Moving on, because of Corollary 5.5 the following
question is worth answering:

Question 6.2. Are there examples of (non-co-chordal) graphs G such that Ir(G) has a linear
resolution but the hypergraph Conr(G) is not a co-chordal hypergraph?
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