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Abstract. A module over a ring is called distributive if for every submodules A,
B and C, the equality A ∩ (B + C) = A ∩ B + A ∩ C holds true. In this paper,
we give all distributive modules, up to isomorphism, over the rings of formal power
series and polynomials, both with coefficients in a field.

1. Introduction

A module over a ring is called distributive if for every submodules A, B and C, the
equality A∩ (B +C) = A∩B +A∩C holds true. The study of distributive modules
was motivated by Stephenson [16], where he obtained some comprehensive general
results about these modules. After that, many authors have studied and developed the
theory and many interesting results about distributive modules over commutative and
noncommutative rings have been published (see, for example, [2, 4, 9, 10, 12, 16, 17, 18]
and the references there in). We refer the reader to two of the most recent articles
[7, 8] on the subject.

The first key result of this paper is the following theorem which gives us all dis-
tributive modules, up to isomorphism, over the ring of formal power series.

Theorem A. Let k be a field and R = k[[x1, . . . , xn]] be the ring of formal power
series in n variables over the field k. Then every nonzero distributive R-module is
isomorphic to one of the following

(1) R-module R/(x1 − S1(xi), . . . , xn − Sn(xi)),

(2) R-module R/(x1 − S1(xi), . . . , xn − Sn(xi), x
m
i ),

(3) R-module k[[xi]](S1(xi),...,Sn(xi)),

(4) R-module k((xi))(S1(xi),...,Sn(xi)),

where 1 ≤ i ≤ n, S1(xi), . . . , Sn(xi) ∈ k[[xi]] with S1(0) = · · · = Sn(0) = 0 and
Si(xi) = xi, and m ≥ 1.
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2 E. ENOCHS ET AL.

Our second key result, which is a byproduct of the first one, is the following the-
orem which gives us all distributive modules, up to isomorphism, over the ring of
polynomials.

Theorem B. Let k be an algebraically closed field and R = k[x1, . . . , xn] be the ring
of polynomials in n variables over the field k. Then every nonzero distributive (unis-
erial) R-module is isomorphic to one of the following

(1) R-module (k[(xi − ai)
−1])(S1(xi−ai),...,Sn(xi−ai)),

(2) R-module (k[(xi − ai)
−1]/((xi − ai)

m))(S1(xi−ai),...,Sn(xi−ai)),

where 1 ≤ i ≤ n, (a1, . . . , an) ∈ kn, S1(xi), . . . , Sn(xi) ∈ k[[xi]] with S1(0) = · · · =
Sn(0) = 0 and Si(xi) = xi, and m ≥ 1.

Although, the above two theorems are our key results, two other major results
arise when we give the proofs (see Theorems 3.2 and 4.2). The rest of the paper is
organized as follows. In Section 2, we provide some background material. In Section
3, we characterize all ideals which their residue rings are discrete valuation rings.
In Section 4, we show that when the modules appear in the preceding section are
isomorphic. Finally, in Sections 5 and 6, we give the proofs of Theorems A and B.

2. Background materials

In this section, we provide some necessary background material. Let us restate the
three major results of [8] in the following propositions. These are needed for later
use. Indeed, the skeleton of our proofs are based on these propositions. Note that in
the following propositions, ER(−) refers to the injective envelope of an R-module −,
which is the smallest injective R-module containing −. By a theorem of Eckmann–
Schopf in 1953 (see [1, Theorem 18.10] as a more accessible reference), every module
over commutative Noetherian rings has an injective envelope and all such envelopes
are isomorphic.

Proposition 2.1 (Theorem 3.5, [8]). Let R be a commutative Noetherian ring and let
M be an R-module. Then M is distributive if and only if there exist a family (pi)i∈I
of pairwise comaximal prime ideals of R and a family (Mi | Mi ⊆ ER(R/pi))i∈I of
distributive R-modules with M =

⊕
i∈I Mi

The following proposition gives us a characterization of the distributive modules
over commutative Noetherian complete local rings. Its third part is crucial in our
work, where D refers to the Matlis dual. We recall that M is said to be uniserial if
its submodules are totally ordered by inclusion (see [5, 6] for some interesting results
about uniserial modules).

Proposition 2.2 (Proposition 4.3, [8]). Let R be a commutative Noetherian complete
local ring with maximal ideal m and let k = R/m. Then for a submodule M of ER(k)
the following statements are equivalent:

(1) M is distributive.
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DISTRIBUTIVE MODULES 3

(2) M is uniserial.

(3) M ∼= D(R/I), where I ⊆ m is an ideal of R such that R/I is a discrete valu-
ation ring.

(4) M ∼= ER/I(k), where I is as in (3).

(5) dimk(M ∩ En)/(M ∩ En−1) ≤ 1 for every n ≥ 1.

Furthermore, in cases (3) and (4), R/I is either an Artinian discrete valuation ring
or a complete discrete valuation domain. Also, in case (5), if for some m ≥ 1,
dimk(M ∩ Em)/(M ∩ Em−1) = 1 holds true, then for every 1 ≤ n ≤ m, we have
dimk(M ∩ En)/(M ∩ En−1) = 1.

We now combine the above two propositions with [8, Theorem 4.5] to obtain the
following characterization of the distributive modules over commutative Noetherian
rings.

Proposition 2.3 (Main Theorem, [8]). Let R be a commutative Noetherian ring and
M be an R-module. Then M is distributive if and only if there exist a family (pi)i∈I
of pairwise comaximal prime ideals of R and a family (Mi | Mi ⊆ ER(R/pi))i∈I of
R-modules with M =

⊕
i∈I Mi and satisfying the following conditions:

(a) when pi is maximal, then Mi meets one of the following equivalent statements:

(1) Mi is distributive.

(2) Mi is uniserial.

(3) Mi
∼= DR̂pi

(R̂pi/I), where I is an ideal of R̂pi, which is contained in its

maximal ideal, and R̂pi/I is a discrete valuation ring.

(4) Mi
∼= ER̂/I(R/pi), where I is as in (3).

(5) dimR/pi(Mi ∩ En)/(Mi ∩ En−1) ≤ 1 for every n ≥ 1.

(b) when pi is not maximal, then Mi ⊆ K, where K is the field of fractions of
R/pi, and R/pi is a Dedekind domain.

2.1. The idea behind the main results. Let k be a field and R = k[[x1, . . . , xn]]
be the ring of formal power series in n variables over the field k. It is well known that
R is a complete local ring. Thus, by using Propositions 2.3 and 2.2, we see that to
find all the distributive R-modules, we need to find all the ideals I of R such that R/I
is a discrete valuation ring and all prime ideals p of R such that R/p is a Dedekind
domain. But R is local, and thus, any such R/p is local and therefore if it is Dedekind,
then it is also a discrete valuation domain. Thus, our problem then is to find all the
ideals I of R such that R/I is a discrete valuation ring and then identify those such I
that are also prime ideals. In this direction, let R/I be a discrete valuation ring with
maximal ideal (π). If πm = 0 for some m ≥ 1, then R/I is not a domain (and is, in
fact, Artinian). If πm ̸= 0 for every m ≥ 1, then by Serre [15, Proposition 2], R/I is
an integral domain, and so, it is a discrete valuation domain. Thus, in this case, I is
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4 E. ENOCHS ET AL.

a prime ideal. If m/I = (π), by Serre [15, §2], R/I is an integral domain if and only if
πm ̸= 0 for every m ≥ 1. We note that if πm = 0 for some m ≥ 1, then R/I has finite
length. We also note that finding all such I as above is equivalent to the problem of
finding all finitely generated uniserial modules.

Remark 2.4. At this point, we note that our terminology differs from that of Serre’s.
What Serre calls a discrete valuation ring is an integral domain (so our discrete valua-
tion domain). This change allows us to avoid the somewhat cumbersome terminology
“local principal ideal ring”.

Based on the observations described just before the above remark, the following
result is in order.

Proposition 2.5. Let k be a field and R = k[[x1, . . . , xn]] be the ring of formal power
series in n variables over the field k. Then an R-module M is a finitely generated
uniserial module if and only if M ∼= R/I, where I ⊆ R is an ideal such that R/I is a
discrete valuation ring.

Proof. (⇒): Let M be a finitely generated uniserial R-module. Then with m =
(x1, . . . , xn), M/mM is also uniserial over R and over k ∼= R/m. Hence, its dimension
over k is at most one. Thus, M/mM is a cyclic R-module. Therefore, by Nakayama’s
lemma, M is cyclic. Let M ∼= R/I. Then we argue that (m/I)/(m/I)2 has dimension
at most one over k, and so, m/I is cyclic, i.e., is a principal ideal. Hence, R/I is a
discrete valuation ring.

(⇐): This implication is trivial. □

The following observation is useful in classifying the finitely generated uniserial
modules.

Lemma 2.6. Let k be a field and R = k[[x1, . . . , xn]] be the ring of formal power
series in n variables over the field k. Also, let M and N be two finitely generated
uniserial R-modules. Then M ∼= N if and only if annR(M) = annR(N).

Proof. (⇒): This implication is trivial.

(⇐): Given M,N , let M ∼= R/I and N ∼= R/J . Since annR(M) = I and
annR(N) = J , the assumption implies that I = J . Thus, M ∼= R/I and N ∼= R/I.
This means that M ∼= N , as required. □

As usual, let k be a field and R = k[[x1, . . . , xn]] be the ring of formal power series
in n variables over the field k. For every i with 1 ≤ i ≤ n, we can think of R as
k[[x1, . . . , xi−1, xi+1, . . . , xn]][[xi]], i.e., as the ring of formal power series in xi with
coefficients in k[[x1, . . . , xi−1, xi+1, . . . , xn]]. This observation is useful when we make
use of the algebraic Weierstrass preparation theorem. Let us now recall the statement
of this theorem.
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DISTRIBUTIVE MODULES 5

2.2. The algebraic Weierstrass preparation theorem. Let R be a complete local
ring with maximal ideal m. A polynomial p(x) ∈ R[x] of degree n ≥ 0 is called
distinguished if p(x) = xn + an−1x

n−1 + · · · + a0, where ai ∈ m for 0 ≤ i ≤ n − 1.
Then we have the following so-called algebraic Weierstrass preparation theorem (see
[11] for a short and elegant proof of this theorem based on the Banach contraction
mapping theorem).

Theorem 2.7 (Weierstrass). Let R be a complete local ring with maximal ideal m.
Let f(x) =

∑∞
i=0 bixi ∈ R[[x]] be such that bi /∈ m for at least one i, and let n be the

least such i. Then there exists a unique unit u ∈ R[[x]] and a unique distinguished
polynomial p(x) ∈ R[x] of degree n such that uf(x) = p(x).

Note that, in the above theorem, for such an f(x) and p(x), we have (f(x)) =
(p(x)) for these two principal ideals of R[[x]]. The n in the theorem is called the
Weierstrass degree of f(x) in x. Thus, for example, consider k[[x, y]]. We have
k[[x, y]] = k[[x]][[y]] = k[[y]][[x]]. Hence, for f ∈ k[[x, y]], we can consider the (possi-
ble) Weierstrass degrees of f in x or in y.

3. Ideals with discrete valuation residue rings

Let k be a field and R = k[[x1, . . . , xn]] be the ring of formal power series in n
variables over the field k. Our aim is to find the ideals I of R such that R/I is a
discrete valuation ring and then identify those I such that I is a prime ideal. Here,
and in several other pages of this paper, we let n = 3 and write R = k[[x, y, z]]. Each
time we do this, it will be clear how to generalize our results to k[[x1, . . . , xn]] for
arbitrary n ≥ 1.

Thus, let R = k[[x, y, z]], where k is a field, and let I be an ideal of R such that
R/I is a discrete valuation ring. We are interested in the case that R/I ̸= 0. This
means that I ⊆ m = (x, y, z). Note that we cannot have I ⊆ m2; because otherwise
R/I has R/m2 as a quotient, but R/m2 is not a discrete valuation ring while R/I is
assumed to be such. Thus, we can find f ∈ I ⊆ m with f /∈ m2. Now, f ∈ m implies
that f(0, 0, 0) = 0, and since f /∈ m2, we have

f = αx+ βy + γz + terms of degree ≥ 2,

where at least one of α, β, γ ∈ k is nonzero. Assume that γ ̸= 0. Then f ∈ k[[x, y]][[z]]
has Weierstrass degree one in z. Therefore, by Theorem 2.7, we have a unit u ∈ R
and a distinguished polynomial p ∈ k[[x, y]][[z]] of degree one, where

uf = z − T (x, y)

with T (x, y) ∈ k[[x, y]] and T (0, 0) = 0. (Note that the minus in the above equality is
just for convenience.) Therefore, the equalities (f) = (uf) = (z − T (x, y)) holds true
for these principal ideals. Hence, if we can compute R/(z−T (x, y)), it will help us to
compute R/I, since this quotient ring is a quotient ring of R/(z − T (x, y)) = R/(f).
But the quotient ring R/(z − T (x, y)) is isomorphic to k[[x, y]]. In order to see
this, consider the continuous surjective k-homomorphism φ : R → k[[x, y]], where
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6 E. ENOCHS ET AL.

φ(x) = x, φ(y) = y, and φ(z) = T (x, y). Thus, by using this isomorphism, we see
that k[[x, y]] can be considered as an R-module, where the scalar multiplication by x
and y is as expected, and the multiplication by z agrees with the multiplication by
T (x, y), i.e., for g ∈ k[[x, y]], we have zg = T (x, y)g. In this situation and in other
similar situations below, we have the obvious action by α ∈ k.

Thus, now we have k[[x, y]] as a ring and as an R-module. In R/(z − T (x, y)) we
have the ideal I/(z − T (x, y)). We call this ideal J . Using the isomorphism above
we can think of I as an ideal of k[[x, y]]. Since k[[x, y]] is not a principal ideal ring
and also it is nonzero, we can find g(x, y) ∈ J with g(0, 0) = 0, i.e., g ∈ (x, y) while
g /∈ (x, y)2. Thus, as with f , we can argue that g has Weierstrass degree one in x or
in y. For convenience, suppose it is in y. Then, again by Theorem 2.7, there exists a
unit v ∈ k[[x, y]] such that we have vg = y−S(x), where S(x) ∈ k[[x]]. Hence, we see
that k[[x, y]]/(g) ∼= k[[x]], where k[[x]] is a k[[x, y]]-module with y acting like S(x).
But k[[x]] as such is a quotient module of the R-module k[[x, y]] with z action being
multiplication by T (x, y). Since the y action on k[[x]] is multiplication by S(x), we
see that the z action on k[[x]] is multiplication by T (x, S(x)). Therefore, we have the
ideal

(y − S(x), z − T (x, y)) = (y − S(x), z − T (x, S(x))) ⊆ I

such that

R/(y − S(x), z − T (x, S(x))) ∼= k[[x]]

as a ring. But k[[x]] is a discrete valuation domain with ideals (xm), m ≥ 0, and zero.
Thus, we have found I if I = (y − S(x), z − T (x, S(x))). If this is not the case, we

need to add one more generator to (y − S(x), z − T (x, S(x))) to get I. Thus, again
identifying this just means adding some xm, m ≥ 1. Then we get the quotient ring
k[[x]]/(xm). If we can describe k[[x]] as R-module, then we can easily find the module
structure on k[[x]]/(xm).
We will now concentrate on describing such a k[[x]] as an R-module. To this end,

we only need to describe the scalar action by y and z on k[[x]]. But y acts like S(x),
i.e., yf = S(x)f and z like T (x, S(x)), i.e., zf = T (x, S(x))f , for f ∈ k[[x]]. Also,
note that x acts like x on k[[x]]. With the proper choices, we see that S(x) and
T (x, S(x)) can be arbitrary elements of k[[x]] contained in (x). This means that they
have zero as their constant terms. In what follows we can think of T (x, S(x)) as just
some such element of k[[x]]. Thus, we simplify and call it T (x).

Notations and Remarks 3.1. Given R = k[[x, y, z]], where k is a field, if we regard
k[[x]] as an R-module, where y acts like S(x) and z acts like T (x), S(x), T (x) ∈ k[[x]]
with S(0) = T (0) = 0, we let k[[x]](x,S(x),T (x)) denote this module. Also, its quotient
by (xm) for some m ≥ 1 is denoted by (k[[x]]/(xm))(x,S(x),T (x)). Note that the x in
(x, S(x), T (x)) may seem superfluous, but in the future results it will be useful.

Note that the submodules of k[[x]](x,S(x),T (x)) as an R-module are precisely the
submodules of k[[x]] as a k[[x]]-module. In a similar manner, we get the uniserial
R-module k[[y]], where x acts like U(y) and z like V (y), where U(0) = V (0) = 0.
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DISTRIBUTIVE MODULES 7

Thus, we have k[[y]](U(y),y,V (y)). Likewise we get the R-modules k[[z]](S(z),T (z),z), and
then, also the uniserial k[[x]]/(xm), k[[y]]/(ym), and k[[z]]/(zm) for m ≥ 1 with the
appropriate R-module structure.

By generalizing the above arguments to the ring of formal power series in n variables
for arbitrary n ≥ 1, we obtain one of our main results.

Theorem 3.2. Let k be a field and R = k[[x1, . . . , xn]] be the ring of formal power
series in n variables over the field k. Also, let I be an ideal of R such that R/I is
a nonzero discrete valuation ring. Then there exists 1 ≤ i ≤ n such that for some
S1(xi), . . . , Sn(xi) ∈ k[[xi]] with S1(0) = · · · = Sn(0) = 0 and Si(xi) = xi, one of the
following cases occur:

(1) I = (x1 − S1(xi), . . . , xn − Sn(xi)),

(2) I = (x1 − S1(xi), . . . , xn − Sn(xi), x
m
i ) for some m ≥ 1.

Moreover, R/I when I is as (1) or (2), respectively is isomorphic to either

k[[xi]](S1(xi),...,Sn(xi)) or

(
k[[xi]]

(xm
i )

)
(S1(xi),...,Sn(xi))

as an R-module. Note that, the ideal I in (1) is a prime ideal while in (2) is not,
unless m = 1.

4. Isomorphic distributive modules

Clearly it is of interest to classify the distributive modules. Thus, we would like to
know when two of these distributive (here, in fact, uniserial) modules are isomorphic.
We first note that no k[[xi]] (with some given action) is isomorphic to a k[[xj]]/(x

m
j ),

m ≥ 1 (again with an action), since the first of these modules is of infinite length and
the second is of length m. Hence, we first consider the problem of when for some i, j
and for some (S1(xi), . . . , Sn(xi)) and (T1(xj), . . . , Tn(xj)) as above we have

k[[xi]](S1(xi),...,Sn(xi))
∼= k[[xj]](T1(xj),...,Tn(xj)).

To simplify the notation, we write S for (S1(xi), . . . , Sn(xi)) and likewise for T . We
first consider the case where i = j.

Proposition 4.1. Keep the above notations and let k be a field. Then k[[xi]]S ∼=
k[[xi]]T if and only if Sj = Tj for every 1 ≤ j ≤ n.

Proof. If these conditions are satisfied, then we have the identity isomorphism. For
the converse, we again consider the case n = 3 and write R = k[[x, y, z]]. Thus, our
question is when do we have an isomorphism k[[x]]S → k[[x]]T .

To this end, we recall that S1(x) = T1(x) = x. Thus, S1 = T1. We see that the
annihilator of k[[x]]S is the ideal I = (y − S2(x), z − S3(x)). This follows from the
isomorphism k[[x]] ∼= R/I. Then the annihilator of k[[x]]T is (y − T2(x), z − T3(x)).
This gives that these two ideals are equal, and so, y − S2(x) ∈ (y − T2(x), z − T3(x)).
Let

y − S2(x) = f(x, y)(y − T2(x)) + g(x, y)(z − T3(x)).
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8 E. ENOCHS ET AL.

Substituting T3(x) for z on both sides we get

y − S2(x) = f(x, y)(y − T2(x)).

Let x = 0 on both sides. Then y − 0 = f(0, y)(y − 0). Hence, f(0, y) = 1, and
thus, f(0, 0) = 1. Therefore, f(x, y) is a unit. Note that y − S2(x) and y − T2(x) are
distinguished polynomials for k[[x]][y]. Thus, by Theorem 2.7, we see that f(x, y) = 1
and that y − S2(x) = y − T2(x). Thus, S2(x) = T2(x). Similarly, we get S3(x) =
T3(x). □

Before we consider the next kind of isomorphisms, we recall some facts about power
series S, T ∈ R[[x]], where R is any commutative ring. If S = a0 + a1x+ · · · , we say
S has order n if a0 = 0, . . . , an−1 = 0, but an ̸= 0. We then write ω(S) = n. If there
is no such n, then S = 0 and we write ω(S) = ∞. An S has a multiplicative inverse
in R[[x]] if and only if ω(S) = 0 and S(0) = a0 has an inverse in R, i.e., a0 is a unit
of R. If S, T ∈ R[[x]] and if ω(T ) ≥ 1, we can define S ◦ T in the obvious fashion. If
T (x) = x, then S ◦ T = S. We say S has an inverse for this operation if there exists
a T with ω(T ) ≥ 1 such that S ◦ T (x) = T ◦ S(x) = x. We then write T = S(−1). For
a given S with ω(S) ≥ 1, S(−1) exists if and only if S = a1x+ a2x

2 + · · · , where a1 is
a unit of R. In this case, T is unique and is denoted by S(−1). The usual argument
then gives that S(−1) has an inverse and that its inverse is T . We also note that when
ω(S), ω(T ) ≥ 1 and when S(T (x)) = x, then T (S(x)) = x and T = S(−1).
Hence, we now try to answer the question of when k[[x]]S and k[[y]]T are isomorphic.

The annihilator of k[[x]]S is (y−S2(x), z−S3(x)) and that of k[[y]]T is (x−T1(y), z−
T3(y)). Thus, if these two modules are isomorphic, then we have

(y − S2(x), z − S3(x)) = (x− T1(y), z − T3(y)).

Thus, then this means we can write

y − S2(x) = f(x, y, z)(x− T1(y)) + g(x, y, z)(z − T3(y)).

We substitute T3(y) for z in the above equation and get that

y − S2(x) = f(x, y, T3(y))(x− T1(y)).

Considering the orders of both sides of this equation, we see that f(x, y, T3(y)) has
order zero, and so, it is a unit of k[[x, y, z]]. Now, we substitute T1(y) for x and get

y − S2(T1(y)) = 0. Thus, y = S2(T1(y)). This gives that S
(−1)
2 (y) = T1(y), and so,

also that T
(−1)
1 (y) = S2(y).

We again use the equality of the ideals

(y − S2(x), z − S3(x)) = (x− T1(y), z − T3(y))

and write

z − S3(x) = f · (x− T1(y)) + g · (z − T3(y)).

Substituting T1(y) for x we get

z − S3(T1(y)) = g(T1(y), y, z)(z − T3(y)),
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where g(T1(y), y, z) is a unit. Since the two polynomials z − S3(T1(y)) and z − T3(y)
are distinguished polynomials in k[[x, y]][[z]], the uniqueness part of Theorem 2.7
gives that z − S3(T1(y)) = z − T3(y). Thus, we have that if k[[x]]S ∼= k[[y]]T , then

S1(x) has an inverse S(−1)(x) and, in fact, S
(−1)
1 (y) = T1(y). Then also we have

S3(T1(y)) = T3(y). Hence, all together, we see that if

k[[x]](S1,S2,S3)
∼= k[[y]](T1,T2,T3)

with
(S1(x), S2(x), S3(x)) = (x, S2(x), S3(x))

and
(T1(y), T2(y), T3(y)) = (T1(y), y, T3(y)),

then S1(x) has an inverse S(−1)(x) and S
(−1)
1 (x) = T2(x). Thus, we get (T1(y), y, T3(y))

from (x, S2(x), S3(x)) by substituting T1(y) for x in (x, S2(x), S3(x)), or equivalently,

(T1(y), T2(y), T3(y)) = (S1(T1(y)), S2(T1(y)), S3(T1(y))).

Now, conversely, we want to argue that when we have these equalities (where T2 and
S1 have inverses and S(−1)(x) = T (x)), the modules k[[x]](S1,S2,S3) and k[[y]](T1,T2,T3)

are isomorphic, i.e.,
k[[x]](S1,S2,S3)

∼= k[[y]](T1,T2,T3).

The equality above gives us a hint that our isomorphism φ : k[[x]] → k[[y]] might be
such that φ(f(x)) = f(T1(y)). We do have a k-homomorphism φ which is continuous
and such that φ(x) = T1(y). Clearly, φ is a k-linear. We want it to be k[[x, y, z]]-linear.
For f ∈ k[[x]], we consider φ(xf) and xφ(f). We have

φ(xf) = T1(y)f(T1(y)) = T1(y)φ(f).

But k[[y]] = k[[y]](T1(y),T2(y),T3(y)), and so, T1(y)φ(f) = xφ(f). The arguments that

φ(yf) = yφ(f) and φ(zf) = zφ(f) are given below. Since T (−1)(y) = S2(y), we have

φ(yf) = φ(S2(x)f(x)) = S2(T1(y))f(T1(y)) = yφ(f).

Hence, φ(yf) = yφ(f). We have

φ(zf) = φ(S3(x)f(x)) = S3(T1(y))φ(f).

But S3(T1(y)) = T3(y) and T3(y)φ(f) = zφ(f). Thus,

φ : k[[x]](S1,S2,S3) → k[[y]](T1,T2,T3)

is k[[x, y, z]]-linear. It is an isomorphism and φ−1 : k[[y]] → k[[x]] is as φ but where

φ−1(y) = S2(x) = T
(−1)
1 (x). Hence, generalizing to k[[x1, . . . , xn]] and using our

customary notations we have the following result:

Theorem 4.2. Keep the above notations and let k be a field. Then the isomorphism

k[[xi]](S1(xi),...,Sn(xi))
∼= k[[xj]](T1(xj),...,Tn(xj))

holds true if and only if one of the following cases occur:
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(a) i = j and S1 = T1, . . . , Sn = Tn,

(b) i ̸= j and Sj(xi) and Ti(xj) have inverses such that S
(−1)
j (xi) = Ti(xj), and

we can get (T1(xj), . . . , Tn(xj)) from (S1(xi), . . . , Sn(xi)) by substituting Ti(xj)
for xi, i.e.,

S1(Ti(xj)) = T1(xj),

...

Sn(Ti(xj)) = Tn(xj).

There is a version of the above theorem for the modules (k[[xi]]/(x
m
i ))S, where

m ≥ 1. First, note that this module is of length m. Therefore, if (k[[xi]]/(x
m
i ))S

∼=
(k[[xj]]/(x

m′
j ))T , then m = m′ by comparing the lengths of both sides. Thus, our

question will be when do we have isomorphism

(k[[xi]]/(x
m
i ))S

∼= (k[[xj]]/(x
m
j ))T ?

To have these modules isomorphic, we would have conditions analogous to (a) and
(b) where, for example, (a) would be replaced by “i = j and S1

∼= T1 (mod m), . . .”.
Here, S ∼= T (mod m) for formal power series means that S and T have the same
terms of degree i for 0 ≤ i ≤ m− 1.

5. The proof of Theorem A

We recall that, by Lemma 2.6, if M and N are two finitely generated uniserial
R-modules with R = k[[x1, . . . , xn]], then M ∼= N if and only if annR(M) = annR(N).
Thus, for example, if M = k[[xi]](S1,...,Sn), then we have

k[[xi]](S1,...,Sn) = R/(x1 − S1(xi), . . . , xn − Sn(xi)).

Thus, annR(M) = (x1 − S1(xi), . . . , xn − Sn(xi)). We have analogous description of
annR(M) for the other finitely generated uniserial modules.

We now claim that we know all the distributive (i.e., uniserial since our rings are
local) modules. Note that since R = k[[x1, . . . , xn]] is local, there are no pairwise
comaximal prime ideals of R. Therefore, the sum M =

⊕
i∈I Mi in Proposition 2.1

only has (at most) one summand. Then, by this proposition and also Proposition 2.2,
the distributive R-modules are the D(R/I), where R/I is a discrete valuation ring
and the submodules M ⊆ K, where K is the field of fractions of R/I when R/I is
also a domain.

When R/I is a domain, we found that as a module it is k[[xi]]S for some 1 ≤ i ≤ n
and for our usual S = (S1, . . . , Sn). Thus, as a domain, it is k[[xi]]. Its field of
fractions is k((xi)), i.e., the field of Laurent series in xi with coefficients in k. As an
R-module, k[[xi]] is annihilated by each xj−Sj(xi), and so, these annihilate k((xi)) as
an R-module. This just means that multiplication by xj is the same as multiplication
by Sj(xi). Thus, we call this module k((xi))S. Note that its submodules as an R- or as
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an k[[xi]]-module are (xm
i ), m ∈ Z, k((xi)), and zero. Therefore, up to isomorphism,

we only have two nonzero M ⊆ k((xi))S, i.e., k[[xi]]S and k((xi))S.
Now, what remains is to describe the Matlis dual D(R/I), where R/I is a discrete

valuation ring. In order to do this, we recall Northcott’s description of ER(k) with
k = k[[x1, . . . , xn]]/(x1, . . . , xn) (see [[14]]). We consider the set k[x−1

1 , . . . , x−1
n ] of

inverse polynomials in x−1
1 , . . . , x−1

n with coefficients in k. This set with the obvious
addition is made into a k[[x1, . . . , xn]]-module using the following rules:

(a) xjx
−m
i = 0 for all i ̸= j and all m ≥ 0 (note that m = 0 gives xj1 = 0),

(b) xix
−m−1
i = x−m

i for all i and all m ≥ 1.

Theorem 5.1 (Northcott). Keep the above notations. Then ER(k) ∼= k[x−1
1 , . . . , x−1

n ].

This description of ER(k) helps us to describe our dual D(R/I). It is at this point
that our description of R/I as an R-module will be useful. We give one example.
This example suggests what the dual is in general. Then using Matlis duality we will
argue that this suggestion is correct.

Example 5.2. Let n = 2 and R = k[[x, y]], where k is a field. We want to find
the Matlis dual of the R-module k[[x]](x,x2). Thus, I = (y − x2) ⊆ k[[x, y]] in this
situation. Recall that for any I ⊆ R,

D(R/I) = HomR(R/I,E) ∼= E ′,

where E ′ = {z ∈ E | Iz = 0}. Therefore, in our example, we want to find all
z = f(x−1, y−1) ∈ k[x−1, y−1] with (y−x2)f(x−1, y−1) = 0. With a little work, we see
that the set of such f ’s is generated as a vector space over k by

1, x−1, x−2 + y−1, x−3 + x−1y−1, x−4 + x−2y−1 + y−2, . . . .

This gives an awkward presentation of the dual. As a vector space, we have an
isomorphism between this dual and k[x−1] with

1 → 1, x−1 → x−1, x−2 → x−2 + y−1, x−3 → x−3 + x−1y−1, . . . ,

where the isomorphism is k[x−1] → D(R/I). If we translate the k[[x, y]]-module
structure to k[x−1], we see that x acts as x and y as x2. Thus, we get k[x−1](x,x2),
where we are using of the obvious notion.

At this point a caution is necessary. We have the module k[x−1](x,x2) and the
submodule k[x−1] ⊆ k[x−1, y−1]. Note that y acts like x2 in the first module and like
zero in the second module, and so, there is no possible isomorphism between these
two modules.

Since R = k[[x1, . . . , xn]] is a complete local ring, we can use the full force of Matlis
duality. Hence, this means the correspondence M → D(M) gives us a bijective corre-
spondence between isomorphism classes of finitely generated distributive (so uniserial)
modules and Artinian distributive modules. Thus, with R = k[[x1, . . . , xn]], our list
of all the finitely generated uniserial (i.e., distributive) modules is the R/I, where

I = (x1 − S1(xi), . . . , xn − Sn(xi)) or
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I = (x1 − S1(xi), . . . , xn − Sn(xi), x
m
i ),

1 ≤ i ≤ n, S1, . . . , Sn as usual, and m ≥ 1. For two such, e.g., R/I and R/I ′, we have
R/I ∼= R/I ′ as R-modules if and only if I = I ′. By Matlis duality, then the Artinian
uniserial (i.e., distributive) R-modules will be the Matlis duals D(R/I) for such I.

Note that since any such R/I is reflexive then annR(R/I) = annR(D(R/I)). Also,
D(R/I) ∼= D(R/I ′) if and only if R/I ∼= R/I ′ (as modules). Thus, the Artinian unise-
rial modules A are classified by their annihilators annR(A) and every such annR(A) is
one of our I’s. This means that if for each I as above we can find an Artinian uniserial
R-module A with annR(A) = I, then we will have found all the Artinian uniserial
R-modules. Also, by Matlis duality, we get a criterion for two such to be isomorphic.
Hence, we revert to our k[x−1

i ](S1,...,Sn). Note that, k[x−1
i ] is Artinian as an k[[xi]]-

module, and so, as an R = k[[x1, . . . , xn]]-module (i.e., R-module k[x−1
i ](S1,...,Sn)) is

Artinian. With a little work, we see that

annR

(
k[x−1

i ](S1,...,Sn)

)
= (x1 − S1(xi), . . . , xn − Sn(xi)).

Now we consider the Artinian R-module k[x−1
1 ](S1,...,Sn). The set of k + kx−1

i + · · · +
kx−m+1

i ’s for m ≥ 1 is a submodule. A convenient way to denote this module is as
k[x−1

i ]/(x−m
i ) (here, thinking of k[x−1

i ] as a ring). Thus, we can think

k[x−1
i ]/(x−m

i ) = k + kx−1
i + · · ·+ kx−m+1

i ,

and then we get the R = k[[x1, . . . , xn]]-module which we will denote as(
k[x−1

i ]/
(
x
−(m+1)
i

))
(S1,...,Sn)

.

Note that, its annihilator is the ideal I = (x1−S1(xi), . . . , xn−Sn(xi), x
m), and so, we

have a concrete description of all our D(R/I) (see Proposition 2.2). This completes
the proof of Theorem A.

Remark 5.3. Let R = k[[x1, . . . , xn]], where k is a field. Using Proposition 2.3, we
have that for the complete local ring R, the uniserial R-modules, up to isomorphism,
are D(R/I)’s, where R/I is a discrete valuation ring, R/I, and its field of fractions
K when R/I is a discrete valuation domain. We note that when R/I is a discrete
valuation ring, it is also uniserial. Therefore, R/I, up to isomorphism, should occur in
our list. If R/I is a domain, then it does. If R/I is not a domain, then we must have
R/I ∼= D(R/J) for some J , where R/J is a principal ideal ring. But recalling that
annR(R/I) = I and that annR(D(R/J)) = J , we see I = J , i.e., that R/I ∼= D(R/I).
Thus, R/I is not only isomorphic to its bidual, but also it is isomorphic to its dual.
Thus, we might call such an R/I self-reflexive. These R/I’s are precisely the uniserial
modules A of finite length.

Besides the D(R/I) (R/I a principal ideal ring), our list of uniserial modules in-
cludes the submodules of K, where K is the field of fractions of R/I, where R/I is
a discrete valuation domain. Up to isomorphism, the only submodules are zero, R/I
and K itself (if m/I = (π), then 0, K and the (πm)’s, m ∈ Z, are the submodules).
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Clearly, 0 and R/I are reflexive, but so is K. For according to Bourbaki ([3, exer-
cises, §8, 2]) if 0 → M ′ → M → M ′′ → 0 is a short exact sequence of modules over
a complete local ring with M ′ finitely generated and M ′′ Artinian, then M is Matlis
reflexive. We have such a sequence 0 → R/I → K → K/(R/I) → 0 with R/I and
K as above. Recall that R/I ∼= k[xi]S for some S, and so, K ∼= k((xi))S. Our short
exact sequence is then

0 → k[[xi]] → k((xi)) → k[x−1
i ] → 0

and we see that k((xi))S is reflexive. Then its dual is also uniserial and must occur
in our list of uniserial modules. The only possibility is k((xi))S itself. Therefore,
D(k((xi))S) ∼= k((xi))S. This can also be proved by taking the dual of the exact
sequence above.

6. The proof of Theorem B

In this section, we use the results of the previous sections to describe the distributive
and uniserial modules over R = k[x1, . . . , xn], where k is an algebraically closed field.
We then also give these modules over R/I, where I is an ideal of R. We first appeal
to Proposition 2.3. From that proposition, we see that we need to find all uniserial
R-modules M , where M ⊆ ER(R/m) and m ⊆ R is a maximal ideal.

We begin with m = (x1, . . . , xn). In this case, we have R/m ∼= k (with xik = 0 for
each i) and

ER(k) = ERm(k) = ER̂m
(k),

where the notion of a submodule of this module is the same for all three rings. Here,

we have R̂m = k[[x1, . . . , xn]]. Note that, we know all uniserial R̂m-modules M , where
M ⊆ ER̂m

(k). These are described in Theorem A. Indeed, they are the k[x−1
i ](S1,...,Sn)’s

and the
(
k[x−1

i ]/(xm
i )

)
(S1,...Sn)

’s with m ≥ 1. These modules are uniserial, and so, dis-

tributive as k[[x1, . . . , xn]]-modules, and thus, as k[x1, . . . , xn]-modules. Note that
we do not need to require that the S1(xi), . . . , Sn(xi) be polynomials in the R sit-
uation. Thus, we know, up to isomorphism, all the uniserial M ⊆ ER(R/m) with
m = (x1, . . . , xn).

To find the all uniserial R-modules M ⊆ ER(R/n) for other maximal ideals n,
we note that since k is algebraically closed, every such ideal is of the form n =
(x1 − a1, . . . , xn − an) for a unique (a1, . . . , an) ∈ kn. Note that we have the equality

k[x1, . . . , xn] = k[x1 − a1, . . . , xn − an].

Thus, we can let yi = xi−ai, 1 ≤ i ≤ n, which implies that y1, . . . , yn are algebraically
independent over k and n = (y1, . . . , yn). Thus, we are (essentially) in the previous
situation. Therefore, we use the obvious notations of k[[x1 − a1, . . . , xn − an]] and
k[(x1 − a1)

−1, . . . , (xn − an)
−1] and get the uniserial k[(xi − ai)

−1](S1(xi−ai),...,Sn(xi−ai))

and then these “modulo (xi−ai)
−m” for m ≥ 1. We note that the annihilators of any

such module is n = (x1 − a1, . . . , xn − an).
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Using the mentioned fact and Theorem 4.2 we can give necessary and sufficient
conditions for two such uniserial modules to be isomorphic. Using Proposition 2.3
we now see that to find all the distributive R-modules, we also need to find all the
prime ideals p ⊆ R such that R/p is a Dedekind domain. Thus, we need to find
all nonsingular algebraic curves in kn. Then the M ’s that we are considering are the
submodules of the R-moduleK, whereK is the field of fractions of D. If moreover, for
such anM ̸= 0, we wantM to be uniserial, then R/p (as isomorphic to a submodule of
M) would be uniserial, and so, a discrete valuation domain. But this would correspond
to a curve as above with only one point. There is no such curve and consequently no
such prime ideal p ⊆ R.

We note that, if n ⊆ R is a maximal ideal, then n and p as above are comaximal
if and only if the point corresponding to n is not on the curve corresponding to p.
Two such p1 and p2 are comaximal if and only if the corresponding curves share no
points. Thus, with all this information we can use Proposition 2.3 to describe all
our distributive and uniserial R-modules and even up to isomorphism. We note that
over R = k[x1, . . . , xn], the uniserial modules are precisely the Artinian distributive
modules. This completes the proof of Theorem B.

Furthermore, given an ideal I ⊆ R, it is easy to describe the distributive and unis-
erial modules M over R/I. Note that any such M is a distributive (or uniserial)
module over R. As an R-module, we have IM = 0. Conversely, if IM = 0 for a
distributive (uniserial) R-module, then M is a distributive (uniserial) R/I-module. It
is easy to pick out such distributive (uniserial) R-modules.

Finally, we close this paper by making some remarks.

Remarks 6.1. (1) Perhaps the logical next step in considering distributive modules
is to define and study distributive sheaves of modules on a scheme Σ. A starting point
might be the scheme Pn(k), where k is an algebraically closed field and n ≥ 1. Thus,
for example, in P2(k), we have Bézout’s theorem (see [13, Corollary 7.8, page 54]),
and so, there avoid the situation of having nonintersecting curves.

(2) Another interesting problem is that of finding the distributive (so uniserial)
modules over Zp[[α]], where Zp is the ring of p-adic integer. This problem seems to
have connections with the theory of local fields and with number theory.
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