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Abstract. For sufficiently nice families of semigroups and monoids, the structure
theorem for sets of length states that the length set of any sufficiently large element
is an arithmetic sequence with some values omitted near the ends. In this paper,
we prove a specialized version of the structure theorem that holds for any numerical
semigroup S. Our description utilizes two other numerical semigroups SM and Sm,
derived from the generators of S: for sufficiently large n ∈ S, the Apéry sets of SM

and Sm specify precisely which lengths appear in the length set of n, and their gaps
specify which lengths are “missing”. We also provide an explicit bound on which
elements satisfy the structure theorem.

1. Introduction

Throughout this document, we let S denote a numerical semigroup (that is, an
additively closed subset of Z≥0), and denote by n1, . . . , nk a generating set of S, i.e.,

S = ⟨n1, . . . , nk⟩ = {q1n1 + q2n2 + · · ·+ qknk | q1, . . . , qk ∈ Z≥0}.
It is known that a numerical semigroup S is cofinite in Z≥0 if and only if gcd(S) = 1,
and it is common practice to assume this holds. It is also common practice to assume
n1, . . . , nk comprise the unique minimal generating set of S. However, in this paper,
we do not make either of these assumptions.

A factorization of n ∈ S is an expression

n = q1n1 + · · ·+ qknk

of n as a sum of generators of S, and the length of a factorization is the sum q1+· · ·+qk.
The length set of n is the set

LS(n) = {q1 + · · ·+ qk : q1, . . . , qk ∈ Z≥0 with n = q1n1 + · · ·+ qknk}
of all possible factorization lengths of n. Define

MS(n) = max LS(n) and mS(n) = min LS(n).

When there can be no confusion, we often omit the subscripts and simply write L(n),
M(n), and m(n), respectively.

The structure theorem for sets of length [21], a cornerstone of the factorization
theory of atomic rings and semigroups, states that for any sufficiently large element n,
the length set of n will be an almost arithmetical progression (that is, an arithmetic
sequence with a few elements missing towards the beginning and end of the sequence).
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2 MOSKOWITZ AND O’NEILL

The scope of the structure theorem goes well beyond that of numerical semigroups;
it is known to hold for a broad family of semigroups and monoids, including finitely
presented monoids, large families of Krull monoids, and others; see the monograph [23]
for a thorough overview. In fact, one of the central themes in factorization theory is
determining for which families of semigroups the structure theorem holds; see [22] for
a detailed account.

We now state the structure theorem in the current context of numerical semigroups.

Structure Theorem for Sets of Lengths. There exist integers t, t′ and d such that
for sufficiently large n ∈ S, there exist A ⊆ [1, t] and A′ ⊆ [1, t′] with the property that

L(n) = {m(n),m(n) + d, . . . ,M(n)− d,M(n)} \
(
(dA′ +m(n)) ∪ (−dA+M(n))

)
.

In recent years, there has been an effort to specialize the structure theorem for semi-
groups of sufficiently high interest, stemming in part from its connections to open prob-
lems in additive combinatorics, such as the long-standing Narkiewicz conjecture [30];
see [14, 38] for recent progress and some related problems. These specializations gen-
erally concern which length sets are possible [2, 25, 27, 37], while others focus on
refinements of the structure theorem, such as the unions of all sets of length [40], or a
description of the “missing lengths”, both locally for elements [9, 26] and globally for
the semigroup as a whole [11, 24].

The main result of the present paper is Theorem 4.2, a refined structure theorem for
sets of length for numerical semigroups, wherein we characterize the values d, t and t′

in the theorem, and identify bijections between the sets A ⊆ [1, t] and A′ ⊆ [1, t′] of
missing factorization lengths and sets of gaps in the semigroups

SM = ⟨n2 − n1, n3 − n1, . . . , nk − n1⟩ and Sm = ⟨nk − n1, nk − n2, . . . , nk − nk−1⟩
respectively. This is best illustrated with an example.

Example 1.1. Let S = ⟨5, 9, 12⟩. Figure 1(b) depicts the “top” of the length sets
L(100), . . ., L(104), with filled black boxes indicating the “missing” lengths (the “A”
sets in the structure theorem). Figure 1(a) depicts the elements of the semigroup

SM = ⟨9− 5, 12− 5⟩ = ⟨4, 7⟩
with filled black boxes indicating the gap set Z≥0 \SM. Notice the identical positioning
of the filled black boxes in each depiction; this relationship is the heart of Theorem 4.2.
Figures 1(c) and 1(d) depicts a similar phenomenon (after a reflection) for the sets A′

in the structure theorem for the numerical semigroup S ′ = ⟨4, 6, 9⟩.
Our result comes as part of a recently flurry of papers examining the factorization

properties of large numerical semigroup elements, many of which turn out to be eventu-
ally periodic or quasipolynomial [5, 6, 7, 32]; see the survey [33] for details and [17, 18]
for computational applications. The primary strength of our result is that it charac-
terizes the missing lengths in terms of gap sets [1, 36, 34], which have been a central
focus in the study of numerical semigroups since their inception [39].
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(a) Elements of SM = ⟨4, 7⟩ below 25,
arranged by equivalence class mod 5.

100 101 102 103 104

20 20
19 19

18 18 18
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(b) Tops of the length sets of the el-
ements 100, . . . , 104 ∈ S = ⟨5, 9, 12⟩.
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9 10 11 12 13 14 15 16 17

(c) Elements of S′
m = ⟨3, 5⟩ below 18,

arranged by equivalence class mod 9.

91 92 93 94 95 96 97 98 99

11 11 11 11 11
12 12 12 12 12 12 12 12 12

(d) Bottoms of the length sets of the
elements 91, . . . , 99 ∈ S′ = ⟨4, 6, 9⟩.

Figure 1

The paper is organized as follows. After introducing a generalization of the Apéry
set in Section 2, we prove in Section 3 that for sufficiently large n, the set A from
the structure theorem is identical for L(n) and L(n + n1), and the set A′ is identical
for L(n) and L(n + nk) (Theorems 3.3 and 3.4, respectively). In Section 4, we prove
Theorem 4.2, characterizing the sets A and A′ in terms of the gaps of the semigroups
SM and Sm, respectively, as well as obtain an explicit bound on the n ∈ S for which the
structure theorem holds (Theorem 4.7). We also draw conclusions about realization
questions akin to those considered in [9, 11, 24, 26] for other families of semigroups
and monoids; see the discsussion in Remark 4.5.

2. A generalization of the Apéry set

The Apéry set of a numerical semigroup T is central to both theoretical [35] and
computational [29] aspects of numerical semigroups; see [3] for a thorough overview.
Usually defined with respect to an element n ∈ T , the Apéry set

Ap(T ;n) = {m ∈ T : m− n /∈ T}

can be shown to consist of the first element of T in each equivalence class modulo n.
In this section, we define a generalization of the Apéry set that allows n ∈ Z≥0 and
gcd(T ) > 1. Other generalizations of the Apéry set have been studied, and while some
are similar to our definition [12], most allow Ap(T ;n) to contain more than one element
of each equivalence class modulo n if n /∈ T [13, 15, 16, 19]. Moreover, none that the
authors were able to find allowed gcd(T ) > 1. After verifying some basic properties
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4 MOSKOWITZ AND O’NEILL

of Ap(T ;n), we introduce a collection of sets that partition T , with Ap(T ;n) as its
foundation, that will play a key role in subsequent sections.

Notation 2.1. Throughout this section, let S ⊆ Z≥0 denote a cofinite numerical
semigroup, let d ∈ Z≥1, and T = dS ⊆ Z≥0.

Definition 2.2. Fix n ∈ Z≥1. For each i ∈ {0, 1, . . . , n− 1}, let

ai =

{
0 if T ∩ {i, i+ n, i+ 2n, . . .} = ∅;
min(T ∩ {i, i+ n, i+ 2n, . . .}) otherwise.

The Apéry set of T with respect to n as

Ap(T ;n) = {ai | i = 0, 1, . . . , n− 1}.
Note that if T has finite complement and n ∈ T , then Ap(T ;n) coincides with the usual
definition of the Apéry set [3].

We briefly verify that under mild hypotheses, Ap(T ;n) has some familiar properties.

Proposition 2.3. For any n ∈ Z≥1, the elements of Ap(T ;n) are distinct modulo n.
Moreover, if gcd(d, n) = 1, then |Ap(T ;n)| = n and Ap(T ; dn) = Ap(T ;n).

Proof. The first claim follows from the definition of Ap(T ;n) since a0 = 0 and each
nonzero ai satisfies ai ≡ i mod n. Next, fixing z ∈ Z so that z + dZ≥0 ⊆ T , we see
y = nz + d satisfies y ∈ T and y ≡ d mod n. This means if gcd(d, n) = 1, then taking
integer multiples of y reaches each equivalence class modulo n, so Ap(T ;n) contains an
element from each equivalence class modulo n, and thus |Ap(T ;n)| = n. For the final
claim, it suffices to observe Ap(T ;n) ⊆ Ap(T ; dn) (since a− dn ≡ a−n mod n for each
a ∈ Ap(T ;n)) and |Ap(T ; dn)| ≤ n (since each a ∈ Ap(T ; dn) satisfies d | a). □

Definition 2.4. Fix n ∈ Z≥1 and j ≥ 1. The j-th Apéry set of T with respect to
n is the set Apj(T ;n) consisting of the j-th element of {a, a + n, . . .} ∩ T for each
a ∈ Ap(T ;n). In particular,

Apj(T ;n) = {a+ kn ∈ T : a ∈ Ap(T ;n) and |{a, a+ n, . . . , a+ kn} ∩ T | = j},
where for each a ∈ Ap(T ;n), there is a unique k ∈ Z≥0 such that a+ kn ∈ Apj(T ;n).

Example 2.5. Let T = ⟨4, 7⟩, whose first few elements are

T = {0, 4, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, . . .}.
Under Definition 2.2, we have

Ap(T ; 5) = {0, 11, 7, 8, 4},
and under Definition 2.4, we have Ap1(T ; 5) = Ap(T ; 5),

Ap2(T ; 5) = {15, 16, 12, 18, 14}, and Ap3(T ; 5) = {20, 21, 22, 23, 19}.
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THE STRUCTURE THEOREM FOR SETS OF LENGTH FOR NUMERICAL SEMIGROUPS 5

These comprise the first, second, and third integers in each column in Figure 1(a),
respectively. For each j ≥ 3, we see that Apj+1(T ; 5) = Apj(T ; 5) + 5 since Z≥19 ⊆ T
and minAp3(T ; 5) = 19.

Lemma 2.6. For each n ∈ Z≥1, Ap1(T ;n) = Ap(T ;n), and

T =
⋃
j≥1

Apj(T ;n),

where the right hand side in the above equality is a disjoint union. If n ∈ T , then

Apj(T ;n) = Ap(T ;n) + (j − 1)n = {a+ (j − 1)n : a ∈ Ap(T ;n)}.

Proof. All claims follow from induction on j and the fact that for each a ∈ Apj(T ;n),
choosing k ∈ Z≥1 minimal so that a+ kn ∈ T ensures a+ kn ∈ Apj+1(T ;n). □

We close this section with one final definition and lemma we will use in Section 4.

Definition 2.7. The Frobenius number of T is

Frob(T ) = d(maxAp(S;n1)− n1).

where n1 is the smallest generator of S. When d = 1, we obtain

Frob(S) = max
(
Ap(S;n1)

)
− n1

which coincides with the traditional definition of the Frobenius number.

Lemma 2.8. Suppose T = ⟨n1, . . . , nk⟩. If n ∈ T , then

1
nk
n ≤ m(n) ≤ 1

nk
n+ (nk − n1) and M(n) ≤ 1

n1
n.

Proof. The first and last inequalities above follow from the fact that

(q1 + · · ·+ qk)n1 ≤ q1n1 + · · ·+ qknk ≤ (q1 + · · ·+ qk)nk

for any factorization n = q1n1 + · · ·+ qknk.

To prove the remaining inequality, first suppose d = 1, so that S = T . We consider
two cases. If n ≤ n1nk, then

1

n1

n− 1

nk

n =
n(nk − n1)

n1nk

≤ nk − n1,

so every ℓ ∈ L(n) satisfies the desired inequality. Next, suppose n ≥ n1nk, and write
n = n1nk + qnk − r with q, r ∈ Z≥0 and 0 ≤ r < nk by the division algorithm. We have
n1nk − r ≥ Frob(S) by [34, Theorem 3.1.1], so since M(n1nk − r) ≤ nk, there exists a
factorization of n of length ℓ ≤ nk + q. As such,

ℓ ≤ nk + q = n1 + q + (nk − n1) =
1
nk
(n+ r) + (nk − n1) <

1
nk
n+ 1 + (nk − n1),

and since ℓ ∈ Z, we have ℓ ≤ 1
nk
n+ (nk − n1).

19 Jun 2024 10:55:44 PDT
231116-ONeill Version 2 - Submitted to J. Comm. Alg.



6 MOSKOWITZ AND O’NEILL

Lastly, if d > 1, then applying the above argument to S = 1
d
T , there exists a

factorization of 1
d
n ∈ S of length at most

1
nk
n+ 1

d
(nk − n1) ≤ 1

nk
n+ (nk − n1),

so there must also exist a factorization of this length for n ∈ T . □

3. Properties of maximum and minimum factorization length

The main results of this section are Theorems 3.3 and 3.4, wherein we classify the
j-th maximum and minimum factorization lengths, respectively (Definition 3.2) for
sufficiently large n ∈ S. These form the crux of our proof of Theorem 4.2, which makes
explicit the phenomenon discussed in Example 1.1 and depicted in Figure 1. Although
there is symmetry between the proofs of these two results, we include a proof for each,
as there are some subtle differences in the arguments.

Notation 3.1. For the remainder of this paper, unless otherwise stated, fix a numerical
semigroup S = ⟨n1, n2, . . . , nk⟩ that is cofinite in Z≥0. Write

SM = ⟨n2 − n1, n3 − n1, . . . , nk − n1⟩ and Apj(SM;n1) = {b0j, b1j, . . .}
where each bij ≡ i mod n1. Analogously, write

Sm = ⟨nk − n1, nk − n2, . . . , nk − nk−1⟩ and Apj(Sm;nk) = {c0j, c1j, . . .}
where each cij+ i ≡ 0 mod nk. Lastly, let d = gcd(SM) = gcd(Sm), which can be shown
to be equal by an elementary number theory argument.

Definition 3.2. Fix j ∈ Z≥1, and suppose n ∈ S with |L(n)| ≥ j. Define Mj(n)
and mj(n) as the j-th largest and j-th smallest factorization lengths of n, respectively.
In particular, M1(n) = M(n) and m1(n) = m(n).

Theorem 3.3. If j ≥ 1, then for all sufficiently large n ∈ S with n ≡ i mod n1,

Mj(n) =
n− bij
n1

.

Proof. Fix n ∈ S, and write n = pn1 + i for p, i ∈ Z with 0 ≤ i < n1. Consider a
factorization

n = q1n1 + q2n2 + · · ·+ qknk

of n, whose length is ℓ = q1 + q2 + · · ·+ qk. Letting

(3.1) b = (p− ℓ)n1 + i = n− ℓn1 = q2(n2 − n1) + · · ·+ qk(nk − n1),

we see b ∈ SM and b ≡ i mod n1, so b = bij for some j ≥ 1 by Lemma 2.6. Note i and
j only depend on n and ℓ, and not on the specific values of q1, . . . , qk. In particular,
we have obtained a map

f : L(n) → {bij : j ≥ 1} given by ℓ 7→ n− ℓn1,

which this associates, to each length ℓ ∈ L(n), an element bij ∈ SM.
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THE STRUCTURE THEOREM FOR SETS OF LENGTH FOR NUMERICAL SEMIGROUPS 7

Now, write L(n) = {ℓ1 > ℓ2 > · · · }. We claim that, for each fixed h ≥ 1, if n is
sufficiently large the map f induces a bijection

(3.2) {ℓ1, . . . , ℓh}⇝ {bi1, . . . , bih}.
Indeed, fix j ≤ h. For any factorization

bij = Q2(n2 − n1) + · · ·+Qk(nk − n1)

of bij in SM, we have

z = bij + (Q2 + · · ·+Qk)n1 = Q2n2 + · · ·+Qknk ∈ S.

As such, choosing ℓ so that n− ℓn1 = bij, if n ∈ n1Z≥0 + z, then

n = bij + ℓn1 = (ℓ−Q2 + · · ·+Qk)n1 +Q2n2 + · · ·+Qknk

is a factorization of length ℓ ∈ L(n), and f(ℓ) = bij. In particular, this proves (3.2)
is a bijection when n is sufficiently large. As a final step, choosing ℓ = Mj(n) and
solving (3.1) for ℓ then yields the desired equality. □

Theorem 3.4. If j ≥ 1, then for all sufficiently large n ∈ S with n ≡ i′ mod nk,

mj(n) =
n+ ci′j

nk

.

Proof. Fix n ∈ S, and write n = pnk + i′ for p, i′ ∈ Z with 0 ≤ i′ < nk. If

n = q1n1 + q2n2 + · · ·+ qknk

is a factorization of n with length ℓ = q1 + q2 + · · ·+ qk, then letting

(3.3) c = (ℓ− p)nk − i′ = ℓnk − n = q1(nk − n1) + · · ·+ qk−1(nk − nk−1),

we see c ∈ Sm and c + i′ ≡ 0 mod nk, so c = ci′j for some j ≥ 1 by Lemma 2.6. This
yields a map

f : L(n) → {ci′j : j ≥ 1} given by ℓ 7→ ℓnk − n,

which this associates, to each length ℓ ∈ L(n), an element ci′j ∈ Sm. Now, writing
L(n) = {ℓ1 < ℓ2 < · · · }, we can show by a similar argument to the proof of Theorem 3.3
that for each fixed h ≥ 1, if n is sufficiently large the map f induces a bijection

{ℓ1, . . . , ℓh}⇝ {ci′1, . . . , ci′h}.
Solving (3.3) for ℓ = mj(n) completes the proof. □

Remark 3.5. It was proven in [5, Theorems 4.2 and 4.3] that

M(n+ n1) = M(n) + 1 and m(n+ nk) = m(n) + 1

for sufficiently large n ∈ S. Corollary 3.6 (below) is a generalization of this result.
Another way to state this result is that there exist n1- and nk-periodic functions

fS(n) and gS(n), respectively, such that for all sufficiently large n ∈ S,

M(n) = 1
n1
n+ fS(n) and m(n) = 1

nk
n+ gS(n).
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The question was posed in [8, Project 3] to characterize the functions fS and gS in
terms of the generators of S. Theorems 3.3 and 3.4 answer this question, expressing
f and g in terms of the elements of Ap(SM;n1) and Ap(Sm;nk), respectively. It was
also asked in [8] whether it is possible fS = fS′ and gS = gS′ for distinct numerical
semigroups S and S ′; in addition to identfying when this occurs in terms of Apéry sets,
our results provide a rubric for constructing examples. For instance, consider

S = ⟨10, 16, 44, 49, 51⟩ and S ′ = ⟨10, 16, 38, 44, 49, 51⟩.
It is not hard to check Sm = S ′

m = ⟨2, 7⟩, so Ap(Sm; 51) = Ap(Sm; 51) and thus gS = gS′ .
However, S ′

M \ SM = {28, 56, 67}, even though

Ap(SM; 10) = Ap(S ′
M; 10) = {0, 41, 12, 53, 24, 45, 6, 47, 18, 39}

and thus fS = fS′ .

Corollary 3.6. Fix j ≥ 1. For all sufficiently large n ∈ S, we have

Mj(n+ n1) = Mj(n) + 1 and mj(n+ nk) = mj(n) + 1.

Proof. Apply Theorems 3.3 and 3.4. □

4. The refined structure theorem for numerical semigroups

In this section, we prove our main result: a refinement of the structure theorem for
sets of length for numerical semigroups (Theorem 4.2). We also give an explicit bound
on when the structure theorem holds (Theorem 4.7) and discuss the ramifications of
this bound (Remark 4.9).

Notation 4.1. For each i ∈ {0, 1, . . . , n1 − 1}, let
Ai = {r ∈ Z≥1 : bi1 + rdn1 /∈ SM}

and for each i′ ∈ {0, 1, . . . , nk − 1}, let
A′

i′ = {r′ ∈ Z≥1 : ci′1 + r′dnk /∈ Sm}.
Theorem 4.2. For all sufficiently large n ∈ S with n ≡ i mod n1 and n ≡ i′ mod nk,

L(n) = {m(n),m(n) + d, . . . ,M(n)− d,M(n)} \
(
(dA′

i′ +m(n)) ∪ (−dAi +M(n))
)

Proof. By the structure theorem for sets of length and [6, Proposition 2.9], there exist
t, t′ ∈ Z≥1 such that for all sufficiently large n ∈ S,

(m(n) + dZ) ∩ [m(n) + t′d,M(n)− td] ⊆ L(n)

Fix n ∈ S with n ≡ i mod n1 and n ≡ i′ mod nk large enough that (i) the above holds,
(ii) Theorem 3.3 holds for j ≤ t, and (iii) Theorem 3.4 holds for j ≤ t′.

First, suppose ℓ = M(n)− rd for some r ≤ t, and let b = bi1 + rdn1. If r /∈ Ai, then
b ∈ SM, meaning b = bij for some j, and thus

ℓ = M(n)− rd =
n− bi1 − rdn1

n1

=
n− bij
n1

= Mj(n) ∈ L(n)
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by Theorem 3.3. Conversely, if ℓ ∈ L(n), then since r ≤ t, Theorem 3.3 implies

ℓ = Mj(n) =
n− bij
n1

for some j. Rearranging, we find

bij = n− ℓn1 = n− (M(n)− rd)n1 = n− (n− bi1) + rdn1 = bi1 + rdn1 = b

which means b ∈ SM and thus r /∈ Ai.
Now, by an analogous argument, if ℓ = m(n)+dr′ for some r′ ≤ t′, then Theorem 3.4

implies ℓ ∈ L(n) if and only if r′ /∈ A′
i′ . This completes the proof. □

Remark 4.3. It was shown in [31, Corollary 5.5] that

|L(n+ n1nk)| = |L(n)|+ 1
d
(nk − n1)

for sufficient large n ∈ S. This also an immediate consequence of Theorem 4.2.

In the remainder of this section, we identify an explicit bound on the “sufficiently
large n ∈ S” in the statement of Theorem 4.2. First, we obtain the constants t and t′

in the (unrefined) structure theorem for sets of length.

Proposition 4.4. For each i and i′, we have Ai ⊆ A0 and A′
i′ ⊆ A′

0. In particular,

t = max(A0) and t′ = max(A′
0),

are the minimal values so that Ai ⊆ [1, t] and A′
i′ ⊆ [1, t′] for all i and i′, respectively.

Proof. If r ∈ Z≥1 \ A0, then

b = b01 + dn1r = dn1r ∈ SM.

This means, for any i, we have

b+ bi1 = bi1 + dn1r ∈ SM,

so r ∈ Z≥1 \ Ai. This proves Ai ⊆ A0. An analogous argument proves each A′
i′ ⊆ A′

0,
and the remaining claims follow from the fact that

t = max(A0) and t′ = max(A′
0),

and from applying Theorems 3.3 and 3.4. □

Remark 4.5. In addition to yielding upper bounds

t ≤ 1
dn1

Frob(SM) and t′ ≤ 1
dnk

Frob(Sm)

on t and t′ in the structure theorem, Proposition 4.4 has implications on questions
concerning of which combinations of “missing” lengths can occur, which have been
considered for other families of semigroups [9, 11, 24, 26]. Letting

AS = {Ai : 0 ≤ i ≤ n1 − 1} and A′
S = {A′

i′ : 0 ≤ i′ ≤ nk − 1},
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Proposition 4.4 implies
⋃

AS ∈ AS and
⋃
A′

S ∈ A′
S, the first known restrictions

on AS and A′
S for numerical semigroups. Additionally, under the mild assumption

gcd(n1, nk) = 1, there are infinitely many n ∈ S for which

L(n) = {m(n),m(n) + d, . . . ,M(n)− d,M(n)} \
(
(dA′ +m(n)) ∪ (−dA+M(n))

)
for each pair A ∈ AS and A′ ∈ A′

S. In particular, in order to classify the possible
combinations of “missing” lengths from the “top” and “bottom” of the length sets of
large n ∈ S, it suffices to classify AS and A′

S independently.

In view of Remark 4.5, we state the following question, posed by Geroldinger in
private communication with the second author and answered in the affirmative in [37]
for the family of Krull monoids with finite class group.

Question 4.6. Given d, t, t′ ∈ Z≥1, does there exist a numerical semigroup S such that
AS and A′

S equal the power sets of [1, t] and [1, t′], respectively, and d = gcd(SM)?

Theorem 4.7. Theorem 4.2 holds for all n ≥ n2
k − n2

1.

Proof. Suppose n ≥ n2
k − n2

1. Fix ℓ ∈ [ 1
nk
n, 1

n1
n] ∩ Z. First, suppose

ℓ ≥ n

(nk + n1)/2
=

2n

nk + n1

,

and let b = n − ℓn1. If b /∈ SM, then ℓ + q /∈ L(n + qn1) for all sufficiently large q by
Theorem 4.2, so ℓ /∈ L(n). If b ∈ SM, then applying Lemma 2.8 to SM, there exists a
factorization of b ∈ SM of length at most ℓ since

ℓ(nk − n1) ≥
2nnk

nk + n1

− ℓn1 = n− ℓn1 +
n(nk − n1)

nk + n1

≥ n− ℓn1 + (nk − n1)
2 ≥ n− ℓn1 + (nk − n1)(nk − n2)

implies

ℓ ≥ n− ℓn1

nk − n1

+ (nk − n2) =
b

nk − n1

+
(
(nk − n1)− (n2 − n1)

)
.

As such, we apply the correspondence in the proof of Theorem 3.3: if

b = q2(n2 − n1) + · · ·+ qk(nk − n1)

is a factorization of b ∈ SM of length at most ℓ, then

n = b+ ℓn1 = (ℓ− q2 − · · · − qk)n1 + q2n2 + · · ·+ qknk

is a factorization of n ∈ S of length exactly ℓ, so ℓ ∈ L(n).

Next, suppose

ℓ ≤ 2n

nk + n1

,
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and let c = ℓnk − n. If c /∈ Sm, then ℓ + q /∈ L(n + qnk) for all sufficiently large q by
Theorem 4.2, so ℓ /∈ L(n). If c ∈ Sm, then applying Lemma 2.8 to Sm, there exists a
factorization of c ∈ Sm of length at most ℓ since

ℓ(nk − n1) ≥ ℓnk −
2nn1

n1 + nk

= ℓnk − n+
n(nk − n1)

nk + n1

≥ ℓnk − n+ (nk − n1)
2 ≥ ℓnk − n+ (nk − n1)(nk − nk−1)

implies

ℓ ≥ ℓnk − n

nk − n1

+ (nk − nk−1) =
c

nk − n1

+ (nk − nk−1)

Thus, as before, ℓ ∈ L(n) by the correspondence in the proof of Theorem 3.4. □

Remark 4.8. If n ≥ n2
k − n2

1, the “top” and “bottom” of the length set (as described
in Proposition 4.4) do not overlap. Indeed, by Theorem 4.2, if ℓ ∈ [ 1

nk
n, 1

n1
n] ∩ Z with

ℓ /∈ L(n), then

ℓ ∈ [m(n),m(n) + 1
nk
Frob(Sm)] ∪ [M(n)− 1

n1
Frob(SM),M(n)],

from which we obtain
n

n1

− n

nk

= n
nk − n1

n1nk

≥ (n2nk − n1nk−1)
nk − n1

n1nk

=
(
nk(n2 − n1) + n1(nk − nk−1)

)nk − n1

n1nk

= 1
n1
(nk − n1)(n2 − n1) +

1
nk
(nk − n1)(nk − nk−1) ≥ 1

n1
Frob(SM) +

1
nk
Frob(Sm),

where the final inequality follows from [34, Theorem 3.1.1].

Remark 4.9. Given n ∈ S and writing L(n) = {ℓ1 < · · · < ℓr}, the delta set of n is

∆(n) = {ℓi − ℓi−1 : i ≤ r}.
It is known that ∆(n) = ∆(n + lcm(n1, nk)) for all n ≥ 2kn2n

2
k [10], and some effort

has been made to refine this bound [18] and to compute delta sets explicitly [4, 20].
Theorem 4.7, in addition to providing an explicit bound for Corollary 3.6, identifies a
bound on the start of periodicity for the delta set. Our bound appears to be better
on average than the one obtained in [18] (in a sample of 10000 randomly selected
numerical semigroups with k ≤ 10 and nk ≤ 10000, our bound was better in roughly
75% of cases), as well as more concise (the one in [18] takes the better part of a page
to write down).

Remark 4.10. If n2 − n1 = d, then SM has no gaps, and so Ai = ∅ for all i. Analo-
gously, if nk −nk−1 = d, then Sm has no gaps and thus A′

i′ = ∅ for all i′. In particular,
if both of these are satisfied, then, for n sufficiently large, every length set is an arith-
metic sequence with step size d. Note that the “sufficiently large n” is necessary even
in this special case. For example, if n = 26 ∈ S = ⟨5, 6, 13, 14⟩, then L(n) = {2, 5}.
This is an improvement on [28, Corollary 3.6], which relates the length sets of element
of a numerical semigroup generated by an arithmetic sequence to one in which “middle
generators” are omitted.
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[13] M. Delgado, J. Farrán, P. Garćıa-Sánchez, and D. Llena, On the weight hierarchy of codes
coming from semigroups with two generators, IEEE Trans. Inform. Theory 60 (2014),
no. 1, 282–295.

[14] Y. Fan and S. Tringali, Power monoids: a bridge between factorization theory and arith-
metic combinatorics, J. Algebra 512 (2018), 252–294.
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