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LOCAL COHOMOLOGY OF CERTAIN DETERMINANTAL THICKENINGS

HUNTER SIMPER

ABSTRACT. Let R = C[Xi j] be the ring of polynomial functions in mn variables where m > n. Set X to
be the m×n matrix in these variables and I := In(X) the ideal of maximal minors of X . We consider the
rings R/It ; for t� 0 the depth of R/It is equal to n2−1, and we show that each local cohomology module
Hn2−1
m (R/It) is a cyclic R-module and compute its annihilator thereby completely determining its R-module

structure. We also describe the modules Extmn−n2+1
R (R/It ,R) as submodules of Hmn

m (R).
In the case that X is a n× (n−1) matrix we can explicitly describe the maps ExtnR(R/It ,R)→ Hn

I (R)→
Hn(n−1)
m (R). This is done by analysing maps between the Koszul complex of the t-powers of the maximal

minors and a free resolution of R/It . With these maps we can give explicit descriptions of ExtnR(R/It ,R)
as submodules of the top local cohomology module Hn

I (R). This description allows for an alternate more
constructive proof of the description of the image of the embedding Extmn−n2+1

R (R/It ,R)→ Hn(n−1)
m (R) and

the annihilators of these modules.

1. Introduction

Let I be a homogeneous ideal in a polynomial ring R. Then I defines a projective variety and one may
consider its thickenings, i.e., the varieties defined by the ideals It . Understanding the ideals It is an
important component of understanding the singularities of the variety defined by I. For example, they
comprise the graded components of Rees algebras and also appear in the study of the functors H i

I(−). It
was shown in [1] that under certain conditions the graded components of the local cohomology modules
H i
m(R/It) stabilize for sufficiently large t. This recent work has brought renewed attention to thickenings

and created an interest in their homological properties and invariants.
In the case that I = Ir(X) and R = C[X ] where X is matrix of indeterminates, the modules H i

m(R/It),
ExtiR(R/It ,R) and H i

I(R) have been studied extensively and successfully using representation theoretic
techniques. In [2], [3] and [4] Raicu–Weyman–Witt, Raicu–Weyman and Raicu described the GL-
equivariant structure of ExtiR(R/It ,R) and H i

I(R). These results have been used by Kenkel and Li in [5]
and [6] to study the asymptotic length of H i

m(R/It) and find formulas for the higher epsilon multiplicity of
I. In a similar flavor, the regularity of It was described in [3] and [4] along with a classification of which
GL-invariant ideals satisfy the property that H i

I(R) =
⋃

t Exti(R/It ,R).
In this paper we focus on the case that I ⊆C[X ] is the ideal of maximal minors of a m×n generic matrix

X , with m > n and examine Hn2−1
m (R/It). For sufficiently large t, Hn2−1

m (R/It) is the first non-vanishing
local cohomology module of R/It and it was shown by Li that n2−1 is the only cohomological index to
yield a nonzero finite length module [6]. In Proposition 2.10, we will show that Hn2−1

m (R/It) is in fact
a cyclic R-module. This module has also been examined in the case that X is 2×3 matrix in [7] where
Kenkel explicitly describes a generator of [H3

m(R/It)]0 via the Čech complex on the variables of R.
The aforementioned results about H i

m(R/It) speak about the structure of its graded components, i.e.,
its structure as a graded C-vector space. Additionally, the description of ExtiR(R/It ,R) given in [2] is as
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a GL-representation and a priori does not speak on its structure as an R-module. In this paper we study
the R-module structure of these modules and explicitly describe this structure for certain Ext and local
cohomology modules.

We proceed by investigating the modules ExtiR(R/It ,R) via the natural map
ExtiR(R/It ,R)→ H i

I(R). In the case that I is the ideal of maximal minors of a generic matrix, the natural
map is an injection [2], hence describing ExtiR(R/It ,R) is equivalent to describing its image in H i

I(R). To
understand the map ExtiR(R/It ,R)→ H i

I(R) we first view H i
I(R) as Čech cohomology of the maximal

minors and compare this to the Koszul cohomology of the powers of maximal minors in the usual
way. We then examine the natural map from ExtiR(R/It ,R) to this Koszul cohomology. As the map
from Koszul cohomology to Čech cohomology is well understood, it remains to understand the map
ExtiR(R/It ,R)→ H i([dt

1 . . .d
t
k];R) where d1, · · · ,dk are the maximal minors of X . Thus, to explicitly

describe ExtiR(R/It ,R)→ H i([dt
1 . . .d

t
k];R) we need to describe a map of complexes ϕt such that

F• It 0

K•([dt
1 · · ·dt

k];R) (dt
1, . . . ,d

t
k) 0

ϕt

commutes, where F• is a free resolution of It . The utility of using this approach to study ExtiR(R/It ,R)
is in that the module structure of H i

I(R) may be quite familiar, cf. [8, Main Theorem]. For example, for
i = mn−n2 +1, the cohomological dimension of I, it has been shown that H i

I(R)∼= Hmn
m (R) [9], [10].

In the case that X is size n× (n−1) we are able to explicitly construct a map ϕt as above; this is the
content of Section 3. Using this lift, in Section 4, we give the following description of ExtnR(R/It ,R) as a
submodule of Hn

I (R).

Theorem (4.1). Let X be a n× (n−1) matrix of indeterminates and R = C[X ]. Set I = (d1, . . . ,dn)⊆ R
where d1, . . . ,dn are the maximal minors of X. For a tuple α = (α1, . . . ,αn) ∈ Zn

≥0 write dα = dα1
1 · · ·dαn

n .
Then ExtnR(R/It ,R) embeds into Hn

I (R) as the submodule generated by the classes{
1

∏
n
i=1 di

· 1
dα

}
|α|=t−n+1

.

This embedding can be realized as coming from differential operators and after identifying Hn
I (R) with

Hn(n−1)
m (R) we obtain the following key corollary.

Corollary (4.4). In the setting of the previous theorem, for f ∈ R, let f ∗ denote the polynomial differential
operator obtained from f by replacing xi with ∂i. Then for t ≥ n−1 we have that ExtnR(R/It ,R) embeds
in Hn(n−1)

m (R) as the R-submodule generated by the classes{
(dα)∗ • 1

x

}
|α|=t−n+1

,

where • denotes the application of an operator and 1
x := 1

∏xi j
∈ Hn(n−1)

m (R).

The Weyl algebra annihilator of the class 1
x ∈ Hn(n−1)

m (R) is well understood, see for example [11,
Exercise 17.27], and in the remainder of Section 4 we use Corollary 4.4 to compute the R-annihilator of
ExtnR(R/It ,R). By graded duality, the annihilator of ExtnR(R/It ,R) is the annihilator of H(n−1)2−1

m (R/It),

hence we obtain a complete description of H(n−1)2−1
m (R/It) when X is size n×(n−1) as a cyclic R-module

generated in degree zero, see Proposition 2.10.
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LOCAL COHOMOLOGY OF CERTAIN DETERMINANTAL THICKENINGS 3

In the general case of maximal minors of an m×n matrix with m > n+1 the map of complexes, ϕt ,
and with it the structure of the Ext modules, remains mysterious. However, by analyzing the GL-structure
of Hn2−1

m (R/It) we are able to compute its annihilator and obtain a general version of Proposition 4.4 as
follows:

Theorem (4.8, 5.1,5.2). Let X be a m×n matrix of indeterminates with m> n and set I = In(x)⊆R=C[X ].
If t < n then Hn2−1

m (R/It) = 0. If t ≥ n, then we have an isomorphism of graded R-modules:

Hn2−1
m (R/It)∼= R/Iλ ,

where Iλ is the GL-invariant ideal associated to the partition λ = (t−n+1), i.e., the ideal generated by
GLm×GLn orbit of xt−n+1

1,1 , i.e., the ideal of t−n+1 generalized permanents of X c.f. 2.2.
Additionally in this setting,

Extmn−n2+1
R (R/It ,R)∼= ∑

|α|=t−n
R · (dα)∗

1
x
⊂ Hmn

m (R),

where as before f ∗ denotes the polynomial differential operator obtained from f by replacing xi with ∂i
and 1

x := 1
∏xi j
∈ Hmn

m (R).

2. Background

Notation 2.1. Let R = C[xi j] be a polynomial ring and D = R[∂i j] be the ring of differential operators on
R. Fix f ∈ R and ψ ∈D .

• For a D-module M and an element h ∈M we write ψ •h for element obtained by acting on h by
ψ . In particular ψ • f ∈ R is the application of ψ to f .
• We write ψ f ∈D for the multiplication of ψ and f in D .
• We write f ∗ ∈D for f (∂ ), the “dual” operator to f obtained by replacing xi by ∂i.

Let G be a group acting on a set S. Fix g ∈ G and s ∈ S.

• We write g · s for the element obtained by acting on s with g.
• We write G · s for the orbit of s.

2.1. Dominant Weights, Partitions and Schur Functors. We begin by establishing some notation and
recalling some useful facts about Schur functors, for a complete treatment see [12] and [13]. A vector
λ = (λ1, . . . ,λn) ∈ Zn is called a dominant weight if λ1 ≥ λ2 ≥ ·· · ≥ λn. We write Zn

dom for the set of all
dominant weights in Zn and write |λ |= ∑

n
i=1 λi for the size of λ . Additionally, for c ∈ Z and 0≤ d ≤ n,

we write (cd) ∈ Zn
dom for the vector with d nonzero components all equal to c. A partition into n parts

is a dominant weight, λ ∈ Zn
dom, with λn ≥ 0, we write Pn ⊆ Zn

dom to be the set of all such weights. An
element λ ∈Pn may be realized as a Young diagram with λi boxes in row i, for example the diagram
associated to (4,3,1) ∈P3 is:

(1) .

If m≥ n, we can naturally identify an element of Pn with an element of Pm by adjoining zeroes, e.g.,
(2,2) ∈P2 is identified with (2,2,0,0) ∈P4. Generally we omit the trailing zeroes and would write
(2,2) ∈P4. For λ ∈Pn we can consider its transpose partition, λ ′, which is the partition associated
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LOCAL COHOMOLOGY OF CERTAIN DETERMINANTAL THICKENINGS 4

to the transpose of the Young diagram of λ . The transpose partition of (4,3,1) is (3,2,2,1) because the
transpose of (1) is:

(2) .

Let H be an n dimensional C-vector space. Then to each dominant weight λ ∈ Zn
dom we associate an

irreducible representation of GL(H), denoted Sλ H, called a Schur functor. Moreover every irreducible
representation of GL(H) can be realized in this manner. For some dominant weights, Schur functors are
quite familiar: there are GL(H)-equivariant isomorphisms:

S(1d)H ∼=
d∧

H

and
S(d)H ∼= Symd H.

For computational purposes, frequently it is sufficient to consider λ ∈Pn as we have the following
GL(H)-equivariant isomorphisms:

Sλ+(1n)H ∼= Sλ H
⊗ n∧

H

and
S(λ1,...,λn)H

∼= Hom(S(−λn,...,−λ1)H,C).

2.2. GL-invariant ideals. Let F = Cm and G = Cn where m≥ n. Then

R := Sym(F⊗G) = C[xi j] = C[X ]

is a polynomial ring admitting a
GL := GL(F)×GL(G)

action as follows: for (g1,g2) ∈ GL, g · (xi j) = (zi j) where [zi j] = g1Xg−1
2 . Cauchy’s formula describes

the decomposition of R into irreducible representations [13]:

(3) R =
⊕

λ∈Pn

Sλ F⊗Sλ G

where Sλ F⊗Sλ G lives in degree |λ |.
For a number 1≤ l ≤ n set detl := det(xi j)1≤i, j≤l , i.e., the l× l minor in the top left corner of X . Then

for a partition, λ ∈Pn, with n parts let λ ′ be the transpose partition and define

detλ :=
λ1

∏
i=1

detλ ′i .

The C-linear span of the GL orbit of detλ is equal to Sλ F⊗Sλ G. We set

Iλ := (GL · detλ )⊆ R,

the ideal generated by the GL orbit of detλ . This ideal is GL-invariant. We endow Pn with a partial
ordering: for µ,λ ∈Pn, we say that µ ≥ λ if µi ≥ λi for all i. It was shown in [14] that:

(4) Iλ =
⊕
µ≥λ

SµF⊗SµG.
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LOCAL COHOMOLOGY OF CERTAIN DETERMINANTAL THICKENINGS 5

By taking a collection of partitions χ ⊆Pn we can form the GL-invariant ideal Iχ = ∑λ∈χ Iλ . It was
proven in [14] that all GL-invariant ideals may be realized in this manner for some finite subset χ ⊆Pn
and so more generally GL-invariant ideals decompose as:

Iχ =
⊕
µ≥λ

λ∈χ

SµF⊗SµG.

Example 2.2. Let r, t be positive integers.

(1) I(1r) = Ir(X) the ideal of r× r-minors of X.
(2) Iχt = Ir(X)t where χt = {λ ∈Pn| |λ |= rt,λ1 ≤ t}.
(2′) I(tn) = In(X)t the t-th power of the ideal of maximal minors of X.
(3) I(t), the ideal of t× t generalized permanents of X, i.e., the ideal generated by the permanent of

all t× t matrices of the form [xαi,β j ] where αi ≤ αi+1 and β j ≤ β j+1.

Remark 2.3. Notice that Cauchy’s Formula, (3), says that every irreducible representation of GL con-
tained in R appears at most once. Combining this with the classification of GL-invariant ideals of
[14] stated above, we have that a GL-invariant ideal is uniquely determined by its structure as a GL-
representation.

2.3. A C-Linear GL-Equivariant Pairing. Let R be as above. Let R∗ = C[∂i j] and

(−)∗ : R→ R∗

be the map induced by xi j 7→ ∂i j. We can view R as the coordinate ring for the space of m×n complex
matrices and the GL action on R described above as being induced by the GL action on this space of
matrices. We now view R∗ as the coordinate ring for the space of n×m matrices and hence GL acts on it
as follows: for g = (g1,g2) ∈ GL, g · x∗i j = zi j where [zi j] = (g−1

1 )T X∗gT
2 .

The action of R∗ on R via differentiation induces a perfect pairing

〈 , 〉 : [R∗]k× [R]k→ C.

We will see below this pairing is GL-equivariant, where GL acts on R and R∗ as above and fixes C. A
more general statement about differential operators acting on representations is known, see [15, Section
2.2], however we include the following proof for completeness.

Lemma 2.4. The pairing, 〈 , 〉 : [R∗]r× [R]k→ [R]k−r is GL-equivariant.

By saying that the pairing is equivariant we mean that for all θ ∈ GL and f ,g ∈ R we have that
θ · 〈 f ∗,g〉= 〈θ · f ∗,θ ·g〉. In particular, since the action of GL on C= [R]0 is trivial, this means that if f
and g are homogeneous of the same degree then 〈θ · f ∗,θ ·g〉= 〈 f ∗,g〉.

Proof. First note that we can assume that r ≤ k since the GL-action is degree preserving and that by
linearity we may assume that f and g are monomials.

We note that the cases k = r = 0 and k = 1, r = 0 are clear so to establish the base case k = 1 we need
to show k = r = 1.

Let θ = (θ1,θ2) ∈ GL, it is sufficient to prove the statement for θ = (θ1, ID) and θ = (ID,θ2), where
ID denotes the identity. The arguments in each case are analogous so we assume that θ = (ID,θ2).

Thus, θ · xi j = ∑
n
h=1 xih[θ

−1
2 ]h j and θ · x∗i j = ∑

n
h=1 x∗ih[θ

T
2 ]h j = ∑

n
h=1 x∗ih[θ2] jh.

Since k = 1 we set f = xab, g = xcd . Then 〈 f ∗,g〉 is 1 if (a,b) = (c,d) and 0 otherwise. Now consider,
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LOCAL COHOMOLOGY OF CERTAIN DETERMINANTAL THICKENINGS 6

〈θ · f ∗,θ ·g〉= (
n

∑
h=1

x∗ah[θ2]bh)• (
n

∑
h=1

xch[θ
−1
2 ]hd)

=
n

∑
k=1

n

∑
l=1

[θ2]bh[θ
−1
2 ]ld(x∗ah • xcl)

=

{
0 a 6= c

∑
n
h=1[θ2]bh[θ

−1
2 ]hd else

=

{
0 a 6= c
IDb,d else

=

{
1 (a,b) = (c,d)
0 else

.

Now assuming k > 1 we may write f = xab f ′ and g = xcdg′, then :

(θ · f ∗)• (θ ·g) = (θ · f ′∗)• (θ · x∗ab • (θ ·g′)(θ · xcd))(5)

= (θ · f ′∗)• ((θ · xcd)(θ · x∗ab • (θ ·g′))+(θ ·g′)(θ · x∗ab • (θ · xcd)))(6)

= (θ · f ′∗)• ((θ · xcd)(θ · (x∗ab •g′))+(θ ·g′)(θ · (x∗ab • xcd))(7)

= (θ · f ′∗)• (θ · (xcd(x∗ab •g′))+θ · (g′ · (x∗ab • xcd)))(8)

= (θ · f ′∗)• (θ · (xcd(x∗ab •g′)+g′ · (x∗ab • xcd)))(9)

= θ · ( f ′∗ • ((xcd(x∗ab •g′)+g′ · (x∗ab • xcd))))(10)

= θ · ( f ′∗ • (x∗ab • (xcdg′)))(11)

= θ · ( f ∗ •g),(12)

where (5) to (6) is by the product rule since θ · x∗ab is a linear operator. From (6) to (7) is by induction.
From (7) to (8) and (8) to (9) are by factoring. From (9) to (10) is by induction hypothesis. Finally (10) to
(11) is again by the product rule.

�

Now given an GL-invariant subspace of [R]k, e.g., a graded component of a GL-invariant ideal, we can
use this pairing to analyze which polynomial operators annihilate that subspace.

Lemma 2.5. Let N ⊆ [R]k be a GL-invariant subspace and suppose f ∈ [R] j such that f ∗ •N = 0. Then
the GL orbit of f ∗ also annihilates N.

Proof. Let h ∈ N and θ ∈ GL. Since N is GL-equivariant θ−1 ·h ∈ N and by assumption f ∗ •θ−1 ·h = 0.
Thus by Lemma 2.4,

0 = f ∗ •θ
−1 ·h = θ · ( f ∗ •θ

−1 ·h) = (θ · f ∗)• (θ · (θ−1 ·h)) = (θ · f ∗)•h

�

2.4. GL-equivariant description of certain Ext modules. Let R,F,G and GL be as defined above in
Section 2.2. Let I = I(1n) be the ideal generated by the maximal minors of X . In [2] the authors gave a
GL-equivariant description of H i

I(R) as a direct sum of irreducible GL-representations. They also prove a
number of results about the modules ExtiR(R/It ,R), we recall two of these results below.
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LOCAL COHOMOLOGY OF CERTAIN DETERMINANTAL THICKENINGS 7

Theorem 2.6. [2, Theorem 4.3] Let m > n and t ≥ n. If λ = (λ1, . . . ,λn) ∈ Zn we write

λ (s) = (λ1, . . . ,λn−s,−s, . . . ,−s︸ ︷︷ ︸
m−n

,λn−s+1 +(m−n), . . . ,λn +(m−n)) ∈ Zm.

Writing W (r;s) for the set of dominant weights λ ∈ Zn
dom with |λ |= r such that λ (s) is also dominant.

We have
[Exts(m−n)

R (It ,R)]r =
⊕

λ∈W (r;s)
λn≥−t−(m−n)

Sλ (s)F⊗Sλ G.

An analogous description of ExtiR(J,R) was computed in [4] for any GL-invariant ideal J not just
powers of maximal minors.

We will use Theorem 2.6 in Section 5 in conjunction with graded duality to compute the GL-structure
of Hmn−n2+1

m (R/It). To make use of this description it will be useful to understand how the modules
ExtiR(R/It ,R) sit inside H i

I(R).

Theorem 2.7. [2, Section 4] Let i∈Z≥0, for all t ≥ 1, the induced maps ExtiR(R/It ,R)→ ExtiR(R/It+1,R)
are injective.

This immediately gives us the following:

Corollary 2.8.
H i

I(R) =
⋃
t≥0

ExtiR(R/It ,R).

More generally, the pairs of GL-invariant ideals Iχ1 and Iχ2 for which

ExtiR(R/Iχ1 ,R)→ ExtiR(R/Iχ2 ,R)

is injective is classified in [3] and [4]. In particular, Theorem 2.7 and Corollary 2.8 fail for ideals of
non-maximal minors.

2.5. Other facts on local cohomology as related to determinantal ideals. Let R, I be as in Section 2.4
and let D = R[∂i j] be the Weyl algebra. The action of differentiation makes R a left D-module and
formal application of the quotient rule then gives Ra = R[1

a ] a D-modules structure for all a ∈ R. Thus
for any ideal J = (a1, . . . ,ak), the Čech complex, Č•(a1, . . . ,ak;R), is a complex of D-modules, hence
H i

J(R)∼= H i(Č•(a1, . . . ,ak;R)) carries the structure of a D-modules.

Theorem 2.9. [9, Theorem 1.2][10, Theorem 1.2, Theorem 3.1] There exists a degree preserving isomor-
phism of D-modules:

Hmn−r2+1
Ir(X) (R)∼= Hmn

m (R),

in particular,
Hmn−n2+1

I (R)∼= Hmn
m (R).

As these are cyclic D-modules, in order to describe an isomorphism as above, we just need to choose a
socle generator of Hmn−n2+1

I (R) and Hmn
m (R). Such a map will be constructed in section 4.1 in the case

where X is size n× (n−1).
In light of Corollary 2.8, Theorem 2.9 and local duality gives us an avenue to examine Hn2−1

m (R/It).
Some implications of this result to the asymptotic structure of the graded components of Hn2−1

m (R/It) has
been remarked on in [1] and [7]. We obtain the following result on the structure of Hn2−1

m (R/It) as an
R-module.
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LOCAL COHOMOLOGY OF CERTAIN DETERMINANTAL THICKENINGS 8

Proposition 2.10. Hn2−1
m (R/It) is a cyclic R-module generated in degree 0. In other words, there exists

J ⊆ R such that Hn2−1
m (R/It)∼= R/J.

Proof. First to show H(n−1)2−1
m (R/It) is cyclic, by graded duality it is sufficient to show that Extmn−n2+1

R (R/It ,R)
is finite length and has socle dimension at most 1. By Theorem 2.7 and Theorem 2.9 we have that
Extmn−n2+1

R (R/It ,R) ↪→ Hmn
m (R). Thus Extmn−n2+1

R (R/It ,R) is a finitely generated submodule of an Ar-
tinian module hence has finite length. Moreover, since Hmn

m (R) has socle dimension 1 we have that

Extmn−n2+1
R (R/It ,R) has socle dimension at most 1. That H(n−1)2−1

m (R/It) is generated in dimension 0 fol-
lows by graded duality since Soc(Extmn−n2+1

R (R/It ,R)) = Soc(Hmn
m (R)) is generated in degree −mn. �

3. A Map Between Complexes

Let A be a set, we write #A for the cardinality of A. Let X be a n× (n−1) matrix of indeterminates. For
A⊆ {1, . . . ,n} and H ⊆ {1, . . . ,n−1} with #A = #H, we write XA,H for the determinant of the submatrix
of X coming with rows in A and columns in H. We will make use of the Hilbert-Burch theorem so it
is convenient for this section to use signed minors: set ∆i = (−1)iX{i}c, /0c , that is to say (−1)i times the
maximal minor of X obtained by deleting the ith row.

Let K be a field and R =K[X ], set I = In(X) = (∆1, . . . ,∆n)⊆ R the ideal of maximal minors of X . In
this case the Rees algebra of I,

R(I) :=
⊕
i≥0

Iit i ⊆ R[t],

is linear type [16], i.e.,

R(I)∼= S/(F1, . . . ,Fn−1)

where S = R[T1, . . . ,Tn] and Fj = ∑
n
i=1 xi jTi. Moreover R(I) is a complete intersection so the Koszul

complex of [F1 · · ·Fn−1] : Sn−1→ S is a resolution. In this section we will compare the linear strands of
this Koszul complex to the Koszul complexes of [∆t

1 · · ·∆t
n] : Rn→ R.

More precisely, we will describe maps of complexes, ϕr, for each r making the following diagram
commute.

(13)

[K•([F1 · · ·Fn−1];S)]t [R(I)]t 0

K≥1([∆
t
1 . . .∆

t
n];R)[1] (∆t

1, . . . ,∆
t
n) 0.

ϕt

Where [K•([F1 · · ·Fn−1];S)]t denotes the t-th linear strand of K•([F1 · · ·Fn−1];S) and K≥1([∆
t
1 . . .∆

t
n];R)[1]

denotes the Koszul complex with shifted homological degree and K0([∆
t
1 · · ·∆t

n];R) removed. For more on
linear strands, we refer the reader to [17, Chapter 7].

First we need to establish some notation and prove a small lemma that will be helpful later.

Notation 3.1.
(1) Let A = {a1, . . . ,ar} ⊆ Z≥1 with a1 < a2 < .. . < ar. Then set

eA := ea1 ∧ ea2 ∧ . . .∧ ear

and

∆A := ∏
a∈A

∆a.
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LOCAL COHOMOLOGY OF CERTAIN DETERMINANTAL THICKENINGS 9

(2) Let A,B be ordered sets of integers then

ρ(A,B) :=

{
0 if A∩B 6= /0
(−1)ν(A,B) else

where ν(A,B) = #{(a,b)⊆ A×B| a > b}.
(3) Let A⊆ {1, . . . ,n} and H ⊆ {1, . . . ,n−1} with #A = r and #H = r−2. Then set

YA,H,i := det
[

ri,Hc

Z

]
,

where ri,Hc is the entries of the i-th row of X with columns in Hc and Z is the submatrix of X with
rows in Ac and columns in Hc.

(4) For A an ordered sets of integers set (−1)A := (−1)∑a∈A a.

The function ρ(−,−) describes sign appearing in higher order determinantal expansions, see [18,
Chapter 3, Section 8] for a complete treatment. Additionally, the Koszul differential can be written using
ρ(−,−): the differential of a Koszul complex K•([ f1 . . . fl];S) is given by eA 7→ ρ(α,A\{α}) fαeA\{α}.

Lemma 3.2.
(1)

YA,H,i = ∑
α∈Hc

ρ({α},Hc \{α})xiαXAc(H∪α)c .

(2) Let A⊆ {1, . . . ,m} and α ∈ A. Then,

ρ({α},A\α)ρ({α},Ac) = (−1)α−1.

Proof.
(1) This is an expansion of the determinant along the first row.
(2) ρ({α},A\α)ρ({α},Ac) = (−1)ν({α},A\α)+ν({α},Ac). Now,

ν({α},A\α)+ν({α},Ac) = #{b ∈ A\{α}|α > b}+#{b ∈ Ac|α > b}.

Since A\{α} and Ac are disjoint we have that

ν({α},A\α)+ν({α},Ac) = #{b ∈ {1 . . .m}\{α}|α > b}= α−1.

�

Our strategy will be to consider each commutative square of Diagram (13) and induct on t. Theorem
3.3 and Corollary 3.5 will constitute the base case of this induction with Theorem 3.3 addressing the first
t for which a every module in a square is non-zero.

Theorem 3.3. Consider the following diagram for n≥ r ≥ 2.[∧r−1 Sn−1
]

0

[∧r−2 Sn−1
]

1

∧r Rn ∧r−1 Rn,

δ

∂

ϕ
r−1
r−1 ϕ

r−2
r−1

where δ is the map on the (r− 1)-st linear strand of K•([F1 . . .Fn−1];S) and the bottom map, ∂ , is the
differential of K([∆r−1

1 . . .∆r−1
n ];R).

Let ( f j)
n−1
j=1 denote the standard S-basis of Sn−1 and (ei)

n
i=1 denote the standard R-basis for Rn. Define

the vertical maps as follows: let A,B⊆ {1, . . . ,n} with #A = r and #B = r−1, set
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LOCAL COHOMOLOGY OF CERTAIN DETERMINANTAL THICKENINGS 10

ϕ
r−1
r−1 (eA) := (−1)r−1

∆
r−2
A ∑

K⊆{1...n−1}
#K=r−1

(−1)A+KXAcKc fK

ϕ
r−2
r−1 (eB) := (−1)r

∆
r−3
B ∑

K⊆{1...n−1}
#K=r−2

(−1)B+KXBcKc fK ∑
b∈B

∆B
Tb

∆b

= (−1)r
∆

r−2
B ∑

b∈B

Tb

∆b
∑

K⊆{1...n−1}
#K=r−2

(−1)B+KXBcKc fK

Then the diagram above commutes. (Note that for r = 2, ϕ
r−2
r−1 is the map that takes ei→ Ti).

Before we begin the proof we first give an example.

Example 3.4. Suppose n = 3 and t = 2 then Diagram (13) becomes:

0
[∧2 S2

]
0

[∧1 S2
]

1

[∧0 S2
]

2 I2 0

0
∧3 R3 ∧3 R2 ∧1 R3 (∆2

1,∆
2
2,∆

2
3) 0.

ϕ2
2 ϕ1

2

Then, Theorem 3.3 says the left square commutes for,

ϕ
2
2 (e1∧ e2∧ e3) = (−1)2

∆1∆2∆3((−1)(6+3) f1∧ f2)

=−∆1∆2∆3( f1∧ f2)

and

ϕ
1
2 (ea∧ eb) = (−1)3−2

∆a∆b

(
Ta

∆a
+

Tb

∆b

)
((−1)a+b+1X{a,b}c,2 f1 +(−1)a+b+2X{a,b}c,1 f2)

=−(∆bTa +∆aTb)((−1)a+b+1X{a,b}c,2 f1 +(−1)a+b+2X{a,b}c,1 f2)

=


−(∆2T1 +∆1T2)(x3,2 f1− x3,1 f2) (a,b) = (1,2),
−(∆3T1 +∆1T3)(−x2,2 f1 + x2,1 f2) (a,b) = (1,3),
−(∆3T2 +∆2T3)(x1,2 f1− x1,1 f2) (a,b) = (2,3).

To check that the square does indeed commute amounts to repeated application of the relation
∑

n
i=1 xi,α∆i. This relation should most relevantly be thought of as a determinantal expansion of a matrix

with a repeated column and lies at the heart of the computations in the remainder of this sections.
One may notice that the only way to possibly complete this diagram with a map ϕ0

2 :
∧1 R3→ [

∧0 S2]2
and have any hope that it commutes is to set ϕ0

2 (ei) = T 2
i . Later, in Theorem 3.7 we will see that this is

the correct choice to make the diagram commute, along with how to construct the maps for other t.

Proof of Theorem 3.3. To show this diagram commutes we simply compute the two compositions of maps.
Fix A⊆ {1, . . . ,n}. Then,
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LOCAL COHOMOLOGY OF CERTAIN DETERMINANTAL THICKENINGS 11

δ (ϕr−1
r−1 (eA)) = δ ((−1)r−1

∆
r−2
A ∑

K⊆{1...n−1}
#K=r−1

(−1)A+KXAcKc fK)

= (−1)r−1
∆

r−2
A ∑

K⊆{1...n−1}
#K=r−1

(−1)A+KXAcKcδ ( fK)

= (−1)r−1
∆

r−2
A ∑

K⊆{1...n−1}
#K=r−1

(−1)A+KXAcKc(∑
k∈K

ρ({k},K \{k})Fk fK\{k})

= (−1)r−1
∆

r−2
A ∑

K⊆{1...n−1}
#K=r−1

(−1)A+KXAcKc(∑
k∈K

ρ({k},K \{k})(
n

∑
i=1

xikTi) fK\{k})

= (−1)r−1
∆

r−2
A

n

∑
i=1

Ti ∑
K⊆{1...n−1}

#K=r−1

∑
k∈K

(−1)A+KXAcKcρ({k},K \{k})xik fK\{k}

= (−1)r−1
∆

r−2
A

n

∑
i=1

Ti ∑
H⊆{1...n−1}

#H=r−2

(−1)A+H fH ∑
α∈Hc

(−1)α
ρ({α},H)xiαXAc(H∪{α})c

Now by Lemma 3.2 (2) we know that ρ({α},Hc \α)ρ({α},H) = (−1)α−1. Hence, (−1)αρ({α},H) =
(−1)ρ({α},Hc \α). So the above is

= (−1)r−1
∆

r−2
A

n

∑
i=1

Ti ∑
H⊆{1...n−1}

#H=r−2

(−1)A+H fH ∑
α∈Hc

(−1)ρ({α},Hc \α)xiαXAc(H∪{α})c

= (−1)r
∆

r−2
A

n

∑
i=1

Ti ∑
H⊆{1...n−1}

#H=r−2

(−1)A+H fH ∑
α∈Hc

ρ({α},Hc \α)xiαXAc(H∪{α})c

Now applying Lemma 3.2 (1) we get

= (−1)r
∆

r−2
A

n

∑
i=1

Ti ∑
H⊆{1...n−1}

#H=r−2

(−1)A+H fHYA,H,i

= (−1)r
∆

r−2
A ∑

H⊆{1...n−1}
#H=r−2

(−1)A+H fH

n

∑
i=1

YA,H,iTi

= (−1)r
∆

r−2
A ∑

H⊆{1...n−1}
#H=r−2

(−1)A+H fH ∑
i∈A

YA,H,iTi.

Here the last equality follows from the fact that YA,H,i = 0 if i 6∈ A.
Now for the other composition,
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LOCAL COHOMOLOGY OF CERTAIN DETERMINANTAL THICKENINGS 12

ϕ
r−2
r−1 (∂ (eA)) = ϕ

r−2
r−1 (∑

β∈A
ρ({β},A\{β})∆r−1

β
eA\{β})

= ∑
β∈A

ρ({β},A\{β})∆r−1
β

ϕ
r−2
r−1 (eA\{β})

= ∑
β∈A

ρ({β},A\{β})∆r−1
β

(−1)r
∆

r−2
A\{β} ∑

b∈A\{β}

Tb

∆b
∑

H⊆{1...n−1}
#H=r−2

(−1)A\{β}+HX(A\{β})cHc fH

= (−1)r
∑

H⊆{1...n−1}
#H=r−2

(−1)A+H fH ∑
β∈A

∑
b∈A\{β}

(−1)β Tb

∆b
ρ({β},A\{β})∆r−2

A ∆β X(A\{β})cHc

= (−1)r
∆

r−2
A ∑

H⊆{1...n−1}
#H=r−2

(−1)A+H fH ∑
i∈A

Ti

∆i
∑

γ∈A\{i}
(−1)γ

ρ({γ},A\{γ})∆γX(A\{γ})cHc

We now write

X(A\{γ})cHc = ρ({γ},Ac \{γ})YA,H,γ = ρ({γ},Ac \{γ}) ∑
α∈Hc

ρ({α},Hc \{α})xγαXAc(H∪α)c .

Hence by Lemma 3.2 (2) we have

ρ({γ},A\{γ})X(A\{γ})cHc = ρ({γ},A\{γ})ρ({γ},Ac \{γ}) ∑
α∈Hc

ρ({α},Hc \{α})xγαXAc(H∪α)c

= (−1)γ−1
∑

α∈Hc
ρ({α},Hc \{α})xγαXAc(H∪α)c .

So, returning to the original expression,

ϕ
r−2
r−1 (∂ (eA)) = · · ·∑

i∈A

Ti

∆i
∑

γ∈A\{i}
(−1)γ

∆γ(−1)γ−1
∑

α∈Hc
ρ({α},Hc \{α})xγαXAc(H∪α)c

= · · ·(−1)∑
i∈A

Ti

∆i
∑

α∈Hc
ρ({α},Hc \{α})XAc(H∪α)c ∑

γ∈A\{i}
∆γxγα

Using the fact that ∑
n
i=1 ∆ixiα = 0 we get that ∑γ∈A\{i}∆γxγα =−∑γ∈Ac∪{i}∆γxγα . Therefore the previous

line becomes

= · · ·(−1)∑
i∈A

Ti

∆i
∑

α∈Hc
ρ({α},Hc \{α})XAc(H∪α)c((−1) ∑

γ∈Ac∪{i}
∆γxγα)

= · · ·∑
i∈A

Ti

∆i
∑

γ∈Ac∪{i}
∆γ ∑

α∈Hc
ρ({α},Hc \{α})xγαXAc(H∪α)c

Using Lemma 3.2 (1), we see that ∑α∈Hc ρ({α},Hc \{α})xγαXAc(H∪α)c = YA,H,γ . Thus, we have

= · · ·∑
i∈A

Ti

∆i
∑

γ∈Ac∪{i}
∆γYA,H,γ .
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Finally, using that YA,H,γ = 0 for γ ∈ Ac, the expression simplifies to

= · · ·∑
i∈A

Ti

∆i
∆iYA,H,i

= (−1)r
∆

r−2
A ∑

H⊆{1...n−1}
#H=r−2

(−1)A+H fH ∑
i∈A

Ti

∆i
∆iYA,H,i

= (−1)r
∆

r−2
A ∑

H⊆{1...n−1}
#H=r−2

(−1)A+H fH ∑
i∈A

YA,H,iTi.

We have shown that

ϕ
r−2
r−1 (∂ (eA)) = (−1)r

∆
r−2
A ∑

H⊆{1...n−1}
#H=r−2

(−1)A+H fH ∑
i∈A

YA,H,iTi

and

δ (ϕr−1
r−1 (eA)) = (−1)r

∆
r−2
A ∑

H⊆{1...n−1}
#H=r−2

(−1)A+H fH ∑
i∈A

YA,H,iTi

so the commutativity of the diagram is proven.
�

Corollary 3.5. Suppose ϕ
r−1
r−1 and ϕ

r−2
r−1 are the maps defined in Theorem 3.3. Consider the following two

squares of Diagram (13) where t = r−1.

0 =
[∧r Sn−1

]
−1

[∧r−1 Sn−1
]

0

[∧r−2 Sn−1
]

1

∧r+1 Rn ∧r Rn ∧r−1 Rn

δ

∂
r+1
r−1

0

∂ r
r−1

ϕ
r−1
r−1 ϕ

r−2
r−1

This diagram commutes.

Proof. This follows from the injectivity of δ , since the the top row is the tail of a resolution of Ir−1, and
Theorem 3.3: We have that im(ϕr−1

r−1 ◦∂
r+1
r−1 )⊆ kerδ = 0. �

Notation 3.6. Let sl(y1, . . . ,yd) be the complete homogeneous symmetric function of degree l in y1, . . . ,yd .
For A = {a1, . . . ,ad} ⊆ {1, . . . ,n} define hl(A) = sl(

Ta1
∆a1

, . . . ,
Tad
∆ad

).

Theorem 3.7. For r > 1 let ϕ
r−1
r−1 be the maps defined in Theorem 3.3 and let ϕ0

0 :
∧1 Rn→ [

∧0 Sn−1]0 be
the map ϕ0

0 (ea) = 1. Then for all t,r ≥ 1 define functions ϕ
r−1
t :

∧r Rn→ [
∧r−1 Sn−1]t−r+1 as follows:

ϕ
r−1
t (eA) :=


0 t < r−1,
ϕ

r−1
r−1 (eA) t = r−1,

ϕ
r−1
r−1 (eA)(∆

t−r+1
A ht−r+1(A)) t > r−1.
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LOCAL COHOMOLOGY OF CERTAIN DETERMINANTAL THICKENINGS 14

(Note that this definition of ϕ
r−2
r−1 agrees with Theorem 3.3). Then

· · ·
[∧r−1 Sn−1

]
t−r+1 · · ·

[∧1 Sn−1
]

t−1 [S]t It

· · ·
∧r Rn · · ·

∧2 Rn ∧1 Rn (∆t
1, . . . ,∆

t
n)

δ r−1 δ 1 δ 0

∂ r
t

ϕ
r−1
t

∂ 2
t

ϕ1
t

∂ 1
t

ϕ0
t

commutes, where the rightmost vertical map is the natural inclusion, the top row is the t-th strand of
K•([F1 . . .Fn−1];S) and the bottom row is a truncation of K•([∆t

1 . . .∆
t
n];R).

Again, before proving this theorem lets return to Example 3.4.

Example 3.8. Suppose n = 3 and t = 2 then Diagram (13) becomes:

0
[∧2 S2

]
0

[∧1 S2
]

1

[∧0 S2
]

2 I2 0

0
∧3 R3 ∧3 R2 ∧1 R3 (∆2

1,∆
2
2,∆

2
3) 0.

ϕ2
2 ϕ1

2 ϕ0
2

We saw in Example 3.4 that

ϕ
2
2 (e1∧ e2∧ e3) = (−1)2

∆1∆2∆3((−1)(6+3) f1∧ f2)

=−∆1∆2∆3( f1∧ f2).

Now using Theorem 3.7 we compute ϕ0
2 and ϕ1

2 : ϕ0
0 (ea) = 1 and h2({a}) = T 2

a
∆2

a
, so

ϕ
0
2 (ea) = (1)(∆2

a)

(
T 2

a

∆2
a

)
= T 2

a .

Note that this agrees with the observation we made in Example 3.4 of what this map should be.
For ϕ1

2 we first need to compute ϕ1
1 :

ϕ
1
1 (ea∧ eb) = (−1)2−1(∆a∆b)

2−2((−1)a+b+1X{a,b}c,1 f1 +(−1)a+b+1X{a,b}c,1 f2)

=


−(x3,2 f1− x3,1 f2) (a,b) = (1,2)
−(−x2,2 f1 + x2,1 f2) (a,b) = (1,3)
−(x1,2 f1− x1,1 f2) (a,b) = (2,3)

.

Now h1({a,b}) = Ta
∆a

+ Tb
∆b

and we have,

ϕ
1
2 (ea∧ eb) = ϕ

1
1 (ea∧ eb)(∆a∆b)

(
Ta

∆a
+

Tb

∆b

)
= ϕ

1
1 (ea∧ eb)(∆bTa +∆aTb)

=


−(∆2T1 +∆1T2)(x3,2 f1− x3,1 f2) (a,b) = (1,2)
−(∆3T1 +∆1T3)(−x2,2 f1 + x2,1 f2) (a,b) = (1,3)
−(∆3T2 +∆2T3)(x1,2 f1− x1,1 f2) (a,b) = (2,3)

,

which agrees with the computation in Example 3.4.
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LOCAL COHOMOLOGY OF CERTAIN DETERMINANTAL THICKENINGS 15

Proof of Theorem 3.7. The commutativity of the rightmost square is immediate so we are done once we
show that for all r ≥ 2 the following square commutes:[∧r−1 Sn−1

]
t−r+1

[∧r−2 Sn−1
]

t−r+2

∧r Rn ∧r−1 Rn

δ r−1

∂ r
t

ϕ
r−1
t ϕ

r−2
t

.

If t < r−2 the top row vanishes and both vertical maps are zero, so commutativity is clear. The case that
t = r−2 is addressed by Corollary 3.5. Finally, the case where t = r−1 is handled by Theorem 3.3. So it
is left to check the cases t > r−1.
Before computing the two compositions we note the following key identity. Let A ⊆ {1, . . . ,n} with
#A = r. Using Corollary 3.5 we have that:

(14)

0 = ϕ
r−2
r−2 (∂

r
r−2)(eA)

= ϕ
r−2
r−2 ( ∑

α∈A
ρ({α},A\{α})∆r−2

α eA\α)

= ∑
α∈A

ρ({α},A\{α})∆r−2
α ϕ

r−2
r−2 (eA\α).

Now we are ready to show that the square commutes. Let A⊆{1, . . . ,n}with #A= r and set l = t−r+1.
Then,

δ
r−1(ϕr−1

t (eA)) = δ
r−1(ϕr−1

r−1 (eA)(∆
l
Ahl(A)))

= ∆
l
Ahl(A)δ r−1(ϕr−1

r−1 (eA)),

where the second equality follows from the S-linearity of δ . Now using Theorem 3.3 we have,

= ∆
l
Ahl(A)ϕr−2

r−1 (∂
r
r−1(eA))

= ∆
l
Ahl(A)ϕr−2

r−1 ( ∑
α∈A

ρ({α},A\{α})∆r−1
α eA\{α})

= ∆
l
Ahl(A) ∑

α∈A
ρ({α},A\{α})∆r−1

α ϕ
r−2
r−1 (eA\{α})

= ∆
l
Ahl(A) ∑

α∈A
ρ({α},A\{α})∆r−1

α (ϕr−2
r−2 (eA\{α})

∆A

∆α

h1(A\{α}))

= ∆
l+1
A hl(A) ∑

α∈A
ρ({α},A\{α})∆r−2

α ϕ
r−2
r−2 (eA\{α})h1(A\{α})

= ∆
l+1
A ∑

α∈A
ρ({α},A\{α})∆r−2

α ϕ
r−2
r−2 (eA\{α}) ∑

β∈A\{α}

Tβ

∆β

hl(A).

Now apply the fact that for β ∈ A, hl+1(A) =
Tβ

∆β
hl(A)+hl+1(A\{β}) to see that the above is

= ∆
l+1
A ∑

α∈A
ρ({α},A\{α})∆r−2

α ϕ
r−2
r−2 (eA\{α}) ∑

β∈A\{α}
(hl+1(A)−hl+1(A\{β}))

= ∆
l+1
A ∑

α∈A
ρ({α},A\{α})∆r−2

α ϕ
r−2
r−2 (eA\{α}) ∑

β∈A\{α}
hl+1(A)

−∆
l+1
A ∑

α∈A
ρ({α},A\{α})∆r−2

α ϕ
r−2
r−2 (eA\{α}) ∑

β∈A\{α}
hl+1(A\{β}))
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LOCAL COHOMOLOGY OF CERTAIN DETERMINANTAL THICKENINGS 16

But ∑β∈A\{α} hl+1(A) = (#A−1)hl+1(A) = (r−1)hl+1(A). So by identity (14),

0 = ∆
l+1
A ∑

α∈A
ρ({α},A\{α})∆r−2

α ϕ
r−2
r−2 (eA\{α}) ∑

β∈A\{α}
hl+1(A)

= (r−1)∆l+1
A hl+1(A) ∑

α∈A
ρ({α},A\{α})∆r−2

α ϕ
r−2
r−2 (eA\{α}).

Hence continuing we have that

δ
r−1(ϕr−1

t (eA)) =−∆
l+1
A ∑

α∈A
ρ({α},A\{α})∆r−2

α ϕ
r−2
r−2 (eA\{α}) ∑

β∈A\{α}
hl+1(A\{β}))

=−∆
l+1
A ∑

α∈A
hl+1(A\{α}) ∑

β∈A\{α}
ρ({β},A\{β})∆r−2

β
ϕ

r−2
r−2 (eA\{β}).

By identity (14), we see that 0=∑β∈A\{α}ρ({β},A\{β})∆r−2
β

ϕ
r−2
r−2 (eA\{β})+ρ({α},A\{α})∆r−2

α ϕ
r−2
r−2 (eA\{α}).

So the above expression is equal to

=−∆
l+1
A ∑

α∈A
hl+1(A\{α})(−ρ({α},A\{α})∆r−2

α ϕ
r−2
r−2 (eA\{α}))

= ∑
α∈A

ρ({α},A\{α})∆r−2
α ϕ

r−2
r−2 (eA\{α})∆

l+1
A hl+1(A\{α})

= ∑
α∈A

ρ({α},A\{α})∆r−2+l+1
α ϕ

r−2
r−2 (eA\{α})

(
∆A

∆α

)l+1

hl+1(A\{α})

= ∑
α∈A

ρ({α},A\{α})∆r−2+l+1
α ϕ

r−2
r−2 (eA\{α})∆

l+1
A\αhl+1(A\{α})

= ∑
α∈A

ρ({α},A\{α})∆t
αϕ

r−2
t (eA\{α})

= ϕ
r−2
t ( ∑

α∈A
ρ({α},A\{α})∆t

αeA\{α})

= ϕ
r−2
t (∂ r

t (eA)).

�

The results of this section are highly specialized to the case that X is size n× (n−1), in all other cases
the Rees algebra of the ideal of maximal minors is substantially less nice and it is much more difficult to
access a resolution of It , cf. [19]. However, this is the only specialized aspect of this argument. Due to the
elementary computational nature of the proof, Theorem 3.7 holds for any grade 2 perfect ideal of linear
type with mild assumptions assumptions on the ambient ring.

4. The n× (n−1) Case

For this section let X be a n× (n− 1) matrix of indeterminates, R = C[X ] and I = In−1(X). We write
di for the determinant of the matrix obtained by deleting the i-th row of X . As noted in Section 2.2
R∼= Sym(F⊗G) where F = Cn, G = Cn−1 and GL = GLn×GLn−1 acts on R.

4.1. The Cyclic Local Cohomology Module. By Proposition 2.10, we have that H(n−1)2−1
m (R/It) =

Hn2−2n
m (R/It) is a cyclic R-module. Define Jt to be the ideal such that

Hn2−2n
m (R/It)∼= R/Jt .

We will utilize the lift constructed in Section 3 to describe the modules ExtnR(R/It ,R) as submodules of
Hn

I (R). After constructing an isomorphism of D-modules Hn
I (R)→Hn(n−1)

m (R) we obtain a description of
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LOCAL COHOMOLOGY OF CERTAIN DETERMINANTAL THICKENINGS 17

ExtnR(R/It ,R) as a submodule of Hn(n−1)
m (R) which we can use to directly compute annR ExtnR(R/It ,R) =

Jt .

4.2. Description of ExtnR(R/It ,R). Let ∆i = (−1)idi and S = Sym(Rn−1). Then we have the following
commutative diagram:

(15)

R
[

1
∆1
, . . . , 1

∆n

]
Hn(Č•(∆1, . . . ,∆n;R))∼= Hn

I (R) 0

R Hn(K•(∆t
1, . . . ,∆

t
n;R)) 0

ExtnR(R/It ,R)

f 7→ f
(∏∆i)t

ψt

By Corollary 2.8, the composition of vertical maps on the right is injective. Moreover ψt is induced by the
map ϕ

n−1
t : R∼=

∧n Rn→ [
∧n−1(S)n−1]t−n ∼= [S]t−n+1 described in Theorem 3.3 and Theorem 3.7. This

map is zero for t < n−1. For t = n−1, we have ϕ
n−1
n−1 , and hence ψn−1 is multiplication by the constant:

(−1)n−1(
n

∏
i=1

∆i)
n−2.

Thus, the image of ExtnR(R/In−1,R) is generated by (∏n
i=1 ∆i)

n−2

(∏n
i=1 ∆i)n−1 = 1

∏
n
i=1 ∆i

in Hn
I (R). For t ≥ n we see that

for |α|= t−n+1,

ψt(T α) = (−1)n−1(
n

∏
i=1

∆i)
n−2(

n

∏
i=1

∆i)
t−n+1 1

∆α
= (−1)n−1(

n

∏
i=1

∆i)
t−1 1

∆α
.

Since di and ∆i agree up to sign the above discussion proves the following:

Theorem 4.1. Under the embedding ExtnR(R/It ,R) ↪→ Hn
I (R) of Diagram (15), ExtnR(R/It ,R) is the

submodule generated by {
1

∏
n
i=1 di

· 1
dα

}
|α|=t−n+1

.

Recall that Hn
I (R) is a cyclic D-module. The following result allows us to describe the images of the

modules ExtnR(R/It ,R) in Hn
I (R) in a manner related to the D-module structure of Hn

I (R).

Proposition 4.2. [15, Remark 3.8] [20] Let s = (s1, . . . ,sn) and s = ∑si. For each i, we have

d∗i • (di ·ds) = (si +1)(s+2)(s+3) · · ·(s+n)ds

This proposition immediately gives us the following.

Proposition 4.3. Under the embedding induced by Diagram (15), for t ≥ n−1, we have

ExtnR(R/It ,R) = ∑
|α|=t−n+1

R · (dα)∗ • 1
∏

n
i=1 di

.

By Theorem 2.9 the D-modules Hn
I (R) and Hn(n−1)

m (R) are isomorphic cyclic D-modules. To describe
a D-isomorphism between them it is sufficient to choose a socle generator of Hn

I (R) and of Hn(n−1)
m (R).

Choose
1

∏
n
i=1 di

∈ Soc(Hn
I (R))
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LOCAL COHOMOLOGY OF CERTAIN DETERMINANTAL THICKENINGS 18

and
1
x

:=
1

∏i j xi j
∈ Soc(Hn(n−1)

m (R)).

We observe the image of ExtnR(R/It ,R) in Hn(n−1)
m (R) under the map induced by 1

∏
n
i=1 di
7→ 1

x .

Proposition 4.4. For t ≥ n−1, we have

ExtnR(R/It ,R)∼= ∑
|α|=t−n+1

R · (dα)∗ • 1
x
,

where we write 1
x for the class in Hn(n−1)

m (R).

Example 4.5. Let n = t = 3. Then,

Ext3R(R/I3,R)∼=
3

∑
i=1

R · (di)
∗ • 1

x1,1x1,2x2,1x2,2x3,1x3,2
.

Thus, Ext3R(R/I3,R)⊆ Hn(n−1)
m (R) is generated as an R-module by

1
x

(
1

x2,1x3,2
− 1

x2,2x3,1

)
,

1
x

(
1

x1,1x3,2
− 1

x1,2x3,1

)
,

and
1
x

(
1

x1,1x2,2
− 1

x1,2x2,1

)
.

Using this description ExtnR(R/It ,R), we can utilize the D-module structure of Hn(n−1)
m (R) to describe

the annihilator of ExtnR(R/It ,R). Recall from Section 2.3 that R∗ = C[∂i j] and for a polynomial f ∈ R we
write f ∗ = f (∂i j) ∈ R∗. For an element f ∈ R we can form the R∗ module generated by f , where R∗ acts
by differentiation.

Proposition 4.6. Let t ≥ n−1. Then

(annR ExtnR(R/It ,R))∗ = annR∗ ∑
|α|=t−n+1

R∗ ·dα .

Proof. Let ζ = 1
x ∈Hn(n−1)

m (R) then Hn(n−1)
m (R) =D ·ζ and annD ζ =D ·m. Now f ∈ annR ExtnR(R/It ,R)

if and only if for all |α|= t−n+1 we have f dα∗ •ζ = 0. Now f dα∗ •ζ = 0 if and only if f dα∗ ∈D ·m.
So, applying the Fourier automorphism which sends xi j 7→ ∂i j ,∂i j 7→ −xi j, we have that f dα∗ ∈ D ·m
if and only if f ∗dα ∈ D · (m∗) if and only if f ∗ • dα = 0. Hence f ∈ annR ExtnR(R/It ,R) if and only if
f ∗ ∈ annR∗∑|α|=t−n+1 R∗ ·dα . �

4.3. The annihilator of ExtnR(R/It ,R). Recall from Section 2.3 that for all k ≥ 0 there exists a GL-
equivariant pairing 〈 , 〉 : [R∗]k× [R]k→ C induced by differentiation.

Proposition 4.7. Let k≥ 1, λ = (k+1) and N = [Ik](n−1)k = ∑|α|=kC ·dα . Then for all f in the GL-orbit
of detλ , f ∗ •N = 0.

Proof. detλ = xt+1
1,1 so for all |α|= t we have that (detλ )∗ •dα = 0. The claim then follows from Lemma

2.5. �

We are now ready to prove Theorem 5.1 in the n× (n−1) case.
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LOCAL COHOMOLOGY OF CERTAIN DETERMINANTAL THICKENINGS 19

Theorem 4.8. If t ≤ n−2 then Jt = R. If t ≥ n−1 then

annR ExtnR(R/It ,R) = Jt = I(t−n+2).

Proof. In the case that t ≤ n−2 we have that projdim R(R/It)< n so clearly

annR ExtnR(R/It ,R) = R.

For t ≥ n−1, first, we claim that

I(t−n+2) ⊆ annR ExtnR(R/It ,R).

Let f ∈ I(t−n+2), then by Proposition 4.7, f ∗•dα = 0 for all |α|= t−n+1. Thus f ∗ ∈ annR∗∑|α|=t−n+1 R∗ ·
dα , so by Proposition 4.6, f ∈ annR ExtnR(R/It ,R).

Now for the other inclusions we note that ExtnR(R/It ,R) is GL-equivariant hence annR ExtnR(R/It ,R) is
a GL-invariant ideal. As was noted in Subsection 2.2, [14] proved that every GL-invariant ideal is of the
form Iχ = ∑λ∈χ Iλ for some finite collection of incomparable partitions χ .

Suppose for the sake of contradiction that I(t−n+2) ( annR ExtnR(R/It ,R) and set Iχ = annR ExtnR(R/It ,R)
where χ is a collection of incomparable partitions. Thus there exists a partition µ ∈ χ such that either
(t− n+ 2) > µ or (t− n+ 2) is incomparable to µ . In either case we have that ((t− n+ 1)n−1) ≥ µ ,
hence I((t−n+1)n−1) ⊆ annR ExtnR(R/It ,R). In particular this implies that

det((t−n+1)n−1) = dt−n+1
n ∈ annR ExtnR(R/It ,R).

However, this is a contradiction because by Theorem 4.1 we have that 1
∏

n
i=1 di

1
dt−n+1

n
∈ ExtnR(R/It ,R) but

dt−n+1
n ·

(
1

∏
n
i=1 di

1
dt−n+1

n

)
=

1
∏

n
i=1 di

6= 0.

�

In the next section we will generalize the results of Section 4 to maximal minors of arbitrary size
matrices using graded duality and results from [2]. The cost of this increased generality is that no longer
have explicit isomorphisms. For X an arbitrary size m×n matrix, when one computes local cohomology
with the the Čech complex on the maximal minors of X , writing down a description of a socle generator
or even a non-zero element of Hmn−n2+1

In(X)
(R) becomes non-trivial. As a consequense of this describing an

explicit isomorphism Hmn−n2+1
In(X)

(R)∼= Hmn
m (R) is challenging.

5. The General Case

We return to the setting of Section 2.2: Let F = Cm and G = Cn where m≥ n. Then

R := Sym(F⊗G) = C[∂i j] = C[X ] and GL := GL(F)×GL(G).

Fix I to be the ideal of n×n minors of X .

Theorem 5.1. Let R, I be as above and set m to be the homogeneous maximal ideal. Then

Hn2−1
m (R/It)∼= R/Jt ,

where Jt = R for t < n, and for t ≥ n, Jt = I(t−n+1), i.e., the ideal generated by the GL orbit of xt−n+1
11 .

Proof. By graded duality we have the following isomorphism:

Hn2−1
m (R/It)∼= HomR(Extmn−n2+1

R (R/It ,R),Hmn
m (R)).
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LOCAL COHOMOLOGY OF CERTAIN DETERMINANTAL THICKENINGS 20

The GL structure of Hmn
m (R) is given by,

Hmn
m (R) =

⊕
λ∈Zn

dom
λ1≤−m

Sλ (n)F⊗Sλ G,

where Sλ (n)F⊗Sλ G lives in degree |λ |. We begin describing the GL structure of Hn2−1
m (R/It) by first

analyzing a single graded component.

[Hn2−1
m (R/It)]r = [HomR(Extmn−n2+1

R (R/It ,R),Hmn
m (R))]r

= HomC([Extmn−n2+1
R (R/It ,R)]−mn−r, [Hmn

m (R)]−mn)

= HomC([Extmn−n2+1
R (R/It ,R)]−mn−r,(

m∧
F)−n⊗ (

n∧
G)−m)

= HomC([Extmn−n2+1
R (R/It ,R)]−mn−r,C)⊗ (

m∧
F)−n⊗ (

n∧
G)−m.

Now by Theorem 2.6 we have that

Extmn−n2+1
R (R/It ,R)]−mn−r =

⊕
λ∈A(r)

Sλ (n)F⊗Sλ G,

where

A(r) = {λ ∈ Zn|
n

∑
i=1

λi =−mn− r and −m≥ λ1 ≥ ·· · ≥ λn ≥−t− (m−n)}.

Dualizing into C we get that

HomC([Extmn−n2+1
R (R/It ,R)]−mn−r,C) =

⊕
λ∈B(r)

Sλ+(−mn)+(nm)F⊗Sλ G,

where

B(r) = {λ ∈ Zn|
n

∑
i=1

λi = mn+ r and t +(m−n)≥ λ1 ≥ ·· · ≥ λn ≥ m}.

With this we can now describe the decomposition of Hn2−1
m (R/It) into irreducible GL-representations:

[Hn2−1
m (R/It)]r =

⊕
λ∈B(r)

Sλ+(−mn)+(nm)F⊗Sλ G⊗ (
m∧

F)−n⊗ (
n∧

G)−m

=
⊕

λ∈B(r)

Sλ+(−mn)+(nm)+(−nm)F⊗Sλ+(−mn)G

=
⊕

λ∈B(r)

Sλ+(−mn)F⊗Sλ+(−mn)G

=
⊕

λ∈Zn
dom

t−n≥λ1
λn≥0
|λ |=r

Sλ F⊗Sλ G.
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Thus by Cauchy’s formula (3) we see that Jt as a GL-representation is a direct sum of terms SµF⊗SµG
not present in the above direct sum. Hence by Remark 2.3 and Formula (4) we have that

Jt =
⊕

λ∈Zn
dom

λ1≥t−n+1
λn≥0

Sλ F⊗Sλ G = I(t−n+1).

�

In a similar manner we can also obtain a general version of Proposition 4.3. Note however that unlike
in Section 4.1 the isomorphism here is abstract. To the author’s knowledge there is no known description
of the socle element of Hmn−t2+1

I (R) as a class in Čech cohomology, this precludes the constructions of
an explicit isomorphism as in Section 4.1.

Theorem 5.2. Let R and I be as above, then

Extmn−n2+1
R (R/It ,R)∼= ∑

|α|=t−n
R · (dα)∗

1
x
,

where as before f ∗ denotes the polynomial differential operator obtained from f by replacing xi with ∂i..

Proof. Note that under graded duality the C-vector space generated by 1
xα

1
x = (xα)∗ • 1

x ⊆ Hmn
m (R) corre-

sponds to the C-vector space generated by xα ⊆ R∼= HomR(Hmn
m (R),Hmn

m (R)). Thus, Extmn−n2+1
R (R/It ,R)

is generated by elements f ∗ • 1
x where f + I(t−n+1) ∈ SocHn2−1

m (R/It).

From 5.1 we have that Hn2−1
m (R/It)' R/I(t−n+1). Since the socle is equivariant by [14] we have that

SocR/I(t−n+1) =
⊕
λ∈C

Sλ F⊗Sλ G,

where

C = {λ ∈Pn|(t−n+1) 6≤ λ and (t−n+1)≤ τ for all λ ≥ τ ∈Pn}.

On one hand (t−n+1) 6≤ λ if and only if λ1 < t−n+1, on the other hand (t−n+1)≤ τ for all λ < τ

if and only if λn ≥ t−n. So we conclude that C = {(t−nn)} and SocR/I(t−n+1) = It−n + I(t−n+1). Thus

Extmn−n2+1
R (R/It ,R) = ∑

|α|=t−n
R · (dα)∗ • 1

x
.

�

Comments on Characteristic p > 0. The description of these local cohomology modules in characteristic
p > 0 is almost completely unknown. While the results of Section 3 are not dependent on characteristic,
the approach used for the n× (n−1) case fails completely. Since I is Cohen-Macaulay of height (m−
n+1), we have that Hmn−n2+1

I (R) = 0 so extracting information from the maps Extmn−n2+1
R (R/It ,R)→

Hmn−n2+1
I (R) is challenging.
Computer computations in Macaulay2 [21] show that in prime characteristic the modules Hn2−1

m (R/It)
are not always cyclic and may have generators in multiple degrees. In [7] it was shown that the degree 0
component of Hn2−1

m (R/It) can have arbitrarily large vector space dimension, suggesting these modules
may have arbitrarily many generators.
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