
THE PERFECTION CAN BE A NON-COHERENT GCD DOMAIN
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Abstract. We show that there exists a complete local Noetherian normal domain of prime

characteristic whose perfection is a non-coherent GCD domain, answering a question of

Patankar in the negative concerning characterizations of 𝐹-coherent rings. This recovers

and extends a result of Glaz using tight closure methods.

1. Introduction

Let 𝑅 be a Noetherian ring of prime characteristic 𝑝 > 0. The perfection (or perfect closure)

of 𝑅, denoted in this note by 𝑅perf, is defined as

𝑅perf = lim

−→

(
𝑅

𝐹→ 𝑅
𝐹→ · · ·

)
where 𝐹 : 𝑅 → 𝑅 is the Frobenius map 𝑟 ↦→ 𝑟𝑝 . If 𝑅 is further assumed to be a domain

with fraction field 𝐾 = Frac(𝑅), then the absolute integral closure of 𝑅 is defined to be the

integral closure of 𝑅 in a choice of algebraic closure 𝐾. These two objects 𝑅perf ⊆ 𝑅+
have

over the past few decades seen substantial use in subjects where one usually only a priori

considers Noetherian rings, despite being highly non-Noetherian themselves. It is natural

to ask which “Noetherian-like” properties these objects enjoy. Two such notions of interest

in this note are coherence (that is, all finitely generated ideals are finitely presented) and

the property of being a GCD domain (that is, a domain in which the intersection of two

principal ideals is principal).

In the case of 𝑅+
, this can be effectively hopeless due to the fact that 𝑅+

usually fails

to be coherent regardless of characteristic [AH97; Asg17; Pat22]. For 𝑅perf however,

the situation is not as dire — the perfect closure of a Noetherian regular ring of prime

characteristic is coherent [Shi11, Proposition 3.3(1)] and its finitely generated ideals enjoy

finite primary decomposition [Rad83, Corollaire 1], essentially both because of Kunz’s

theorem [Kun69]. The study of Noetherian rings with coherent perfect closures was

pioneered by Shimomoto in [Shi11] who called them 𝐹-coherent, suggesting connections

to other classes of singularities defined via the Frobenius map. The results of [Shi11] for

𝐹-coherent rings 𝑅 may be summarized as follows, where for simplicity we assume that

𝑅 is reduced and that 𝐹∗𝑅 is a finite 𝑅-module.

(1) 𝐹-coherence is stable under localization and descends under faithfully flat maps.

(2) 𝐹-coherent rings have purely inseparable normalizations.

(3) Regular rings, purely inseparable extensions of regular rings, and purely insepa-

rable subrings of regular rings, are all 𝐹-coherent.
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(4) If (𝑅,𝔪) is local and 𝐹-coherent, then 𝑅perf is a big Cohen-Macaulay algebra.

(5) Tight closure coincides with Frobenius closure in the 𝐹-coherent setting. In par-

ticular, tight closure localizes, weak 𝐹-regularity and 𝐹-purity are equivalent, and

𝐹-injectivity and 𝐹-rationality are equivalent.

At present, the major shortcoming of this theory is the scarcity of examples. In fact, the

only known examples of 𝐹-coherent rings are those which come from a purely inseparable

extension or inclusion of a regular ring as in (3).

This subject has been further explored in [Asg17] using homological methods. For

example, it is observed in [Asg17] (relying heavily on ideas introduced in [AH97]) that if

𝑅perf is coherent then it is a GCD domain. The relationship between GCD domains and

the coherence property has a peculiar history — for instance, it had been wondered for

some time in the broader context of non-Noetherian ring theory whether there exists a

non-coherent GCD domain. Such a ring was first constructed in [Gla01] (see Section 1 of

op. cit. for further context) and a different construction via ultraproducts was provided

in [OS03]. The question of whether this phenomenon may occur for the perfect closure

of a Noetherian ring (and in particular whether 𝑅perf being a GCD domain characterizes

𝐹-coherent rings) is posed in [Pat22, Remark 4.9]. The content of this note is the following:

Theorem 1.1. (= Corollary 2.4 + Examples 2.5 and 2.6) There exists a complete local Noetherian
normal domain 𝑅 of prime characteristic 𝑝 > 0 such that 𝑅perf is a non-coherent GCD domain.

To find such rings, we first observe that if 𝑅 is a prime characteristic Noetherian UFD,

then𝑅perf is a GCD domain (Theorem 2.1). We then appeal to (5) above to conclude that any

𝐹-pure UFD which is not Cohen–Macaulay (or even just not weakly 𝐹-regular) will satisfy

this requirement. Such rings exist by work of Bertin [Ber67] and Fossum-Griffith [FG75],

considering certain rings of invariants in characteristic 2 (Example 2.5). We also provide

Cohen–Macaulay examples by considering certain diagonal hypersurfaces (Example 2.6).
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2. Results

Recall that a domain 𝐴 (not necessarily Noetherian) is a GCD domain if for any 𝑟, 𝑠 ∈ 𝐴,

the ideal 𝑟𝐴∩𝑠𝐴 is principal (equivalently, the ideal (𝑟 :𝐴 𝑠) is principal). Asgharzadeh has

observed using homological methods that if 𝑅 is a local Noetherian 𝐹-coherent domain,

then 𝑅perf is a GCD domain [Asg17, Corollary 3.7]. In this section we construct Noetherian

rings 𝑅 which are not 𝐹-coherent but whose perfections are GCD domains. We begin with

an elementary proof that if 𝑅 is a prime characteristic UFD, then 𝑅perf is a GCD domain

irrespective of any coherence assumptions.

Theorem 2.1. Let 𝑅 be a Noetherian UFD of prime characteristic 𝑝 > 0. Then 𝑅perf is a GCD
domain.
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Proof. Let 𝑎, 𝑏 ∈ 𝑅perf. We will show that (𝑎 :𝑅
perf

𝑏) is a principal ideal. There exists

𝑁1 ≫ 0 such that 𝑎𝑝
𝑁

1 , 𝑏𝑝
𝑁

1 ∈ 𝑅. Let

𝑎𝑝
𝑁

1

= 𝑢𝜋𝑠1

1
· · ·𝜋𝑠𝑚𝑚

𝑏𝑝
𝑁

1

= 𝑣𝜋𝑡1
1
· · ·𝜋𝑡𝑚𝑚

be prime factorizations of 𝑎𝑝
𝑁

1

and 𝑏𝑝
𝑁

1

where 𝑢, 𝑣 ∈ 𝑅 are units, 𝜋𝑖 ∈ 𝑅 are distinct

irreducible elements, and 𝑠𝑖 , 𝑡𝑖 ≥ 0. Note that(
𝑎𝑝

𝑁
1

:𝑅 𝑏
𝑝𝑁1

)
=
©«

lcm

(
𝑎𝑝

𝑁
1 , 𝑏𝑝

𝑁
1

)
𝑏𝑝

𝑁
1

ª®®¬ = (𝑐)

where 𝑐 = 𝜋max{0,𝑠1−𝑡1}
1

· · ·𝜋max{0,𝑠𝑚−𝑡𝑚}
𝑚 . We claim that (𝑎 :𝑅

perf
𝑏) = (𝑐1/𝑝𝑁1 )𝑅perf, where

the ⊇ direction is clear. Let � ∈ (𝑎 :𝑅
perf

𝑏) and write �𝑏 = �𝑎 for some � ∈ 𝑅perf. Choose

𝑁2 ≫ 0 such that �𝑝
𝑁

1
+𝑁

2 , �𝑝
𝑁

1
+𝑁

2 ∈ 𝑅. We see that

�𝑝
𝑁

1
+𝑁

2 ∈
(
𝑎𝑝

𝑁
1
+𝑁

2

:𝑅 𝑏
𝑝𝑁1

+𝑁
2

)
=

(
𝜋

max{0,𝑝𝑁2 (𝑠1−𝑡1)}
1

· · ·𝜋max{0,𝑝𝑁2 (𝑠𝑚−𝑡𝑚)}
𝑚

)
=

(
𝑐𝑝

𝑁
2

)
.(2.1)

Write �𝑝
𝑁

1
+𝑁

2

= 𝑟𝑐𝑝
𝑁

2

for some 𝑟 ∈ 𝑅. Taking 𝑝𝑁1+𝑁2
-th roots, we have the equation

� = 𝑟1/𝑝𝑁1
+𝑁

2 𝑐1/𝑝𝑁1

(in 𝑅perf), so � ∈ (𝑐1/𝑝𝑁1 )𝑅perf as desired. □

Remark 2.2. If 𝑅 is not a UFD then the equality ( 𝑓 :𝑅 𝑔)[𝑝
𝑒 ] = ( 𝑓 𝑝𝑒 :𝑅 𝑔

𝑝𝑒 ) in Equation (2.1)

need not hold; in fact, such behavior characterizes local prime characteristic UFDs by

[Zha09, Theorem 3.5].

We briefly recall for the reader the notions of 𝐹-purity and weak 𝐹-regularity. Let 𝑅 be

a Noetherian ring of prime characteristic 𝑝 > 0. 𝑅 is said to be 𝐹-pure if the Frobenius map

𝐹 : 𝑅 → 𝐹∗𝑅 is a pure 𝑅-module homomorphism. If 𝐹∗𝑅 is a finite 𝑅-module or if 𝑅 is a

complete local ring, then 𝑅 is 𝐹-pure if and only if 𝑅 → 𝐹∗𝑅 splits as a map of 𝑅-modules.

𝑅 is said to be cyclically 𝐹-pure if 𝐼 = 𝐼𝐹 for all ideals 𝐼 ⊆ 𝑅, where 𝐼𝐹 := 𝐼𝑅perf ∩ 𝑅 denotes

the Frobenius closure of 𝐼. 𝐹-purity always implies cyclic 𝐹-purity, and the converse holds,

for example, for rings which are excellent and reduced [Hoc77]. Finally, 𝑅 is said to be

weakly 𝐹-regular if 𝐼 = 𝐼∗ for all ideals 𝐼 ⊆ 𝑅, where

𝐼∗ =

𝑟 ∈ 𝑅 | there exists 𝑐 ∈ 𝑅 \
⋃

𝔭∈min(𝑅)
𝔭 such that 𝑐𝑟𝑝

𝑒 ∈ 𝐼[𝑝𝑒 ] for all 𝑒 ≫ 0


denotes the tight closure of 𝐼. We recall the following theorem of Shimomoto since it is a

key ingredient in our construction.

Theorem 2.3. [Shi11, Proposition 3.12 & Corollary 3.15] Let 𝑅 be a reduced cyclically 𝐹-pure
local ring of prime characteristic 𝑝 > 0 whose perfection 𝑅perf is coherent. Then 𝑅 is weakly
𝐹-regular. If 𝑅 is further assumed to be excellent, then 𝑅 is Cohen–Macaulay.
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The proof of Theorem 2.3 uses a valuation argument to show that coherence of 𝑅perf

implies the equality 𝐼𝐹 = 𝐼∗ for all ideals 𝐼 ⊆ 𝑅, and weakly 𝐹-regular excellent rings are

well-known to be Cohen–Macaulay. Despite having a simple proof, Theorem 2.1 has the

following unexpected consequence when combined with Theorem 2.3.

Corollary 2.4. Let 𝑅 be a local Noetherian 𝐹-pure UFD of prime characteristic 𝑝 > 0. Then

𝑅perf is a GCD domain which is not coherent in either of the following two cases:

(1) 𝑅 is not weakly 𝐹-regular;

(2) 𝑅 is excellent and not Cohen–Macaulay.

Proof. 𝑅perf is a GCD domain by Theorem 2.1. Since 𝑅 is 𝐹-pure, it is reduced and cyclically

𝐹-pure. The fact that 𝑅perf is not coherent in the two cases above now follows from the

contrapositives of both statements in Theorem 2.3, as desired. □

We demonstrate that rings satisfying the above hypotheses exist:

Example 2.5. Let 𝓀 be a field of characteristic 2 and let 𝐵 := 𝓀[𝑥0, 𝑥1, 𝑥2, 𝑥3]. Consider the

action of the group 𝐺 := ℤ/4ℤ on 𝐵 induced by the 𝓀-algebra automorphism 𝜎(𝑥𝑖) = 𝑥𝑖+1

(where the indices are viewed mod 4). Let 𝔪 = (𝑥0, 𝑥1, 𝑥2, 𝑥3) be the homogeneous

maximal ideal of 𝐵, and let 𝐴 = 𝐵𝐺 be the invariant subring. It is shown in [Ber67] that

𝐴 is a UFD which is not Cohen–Macaulay. Moreover, 𝐴 is 𝐹-pure by [Gla95, Proposition

2.4(a)]. Let 𝔫 = 𝔪 ∩ 𝐴, and denote 𝑅 = 𝐴𝔫. 𝑅 is 𝐹-pure by [MP21, Exercise 11 & Corollary

2.3], and it is shown in [FG75] that 𝑅 is a UFD. It follows that 𝑅perf is a non-coherent GCD

domain by Corollary 2.4 (2). □

We can also use (1) instead of (2) in Corollary 2.4 to produce Cohen–Macaulay examples

exhibiting the conclusion of Theorem 1.1.

Example 2.6. Let 𝑝 ≡ 1 mod 5 and consider the degree 5 diagonal hypersurface

𝐴 = 𝔽𝑝[𝑥, 𝑦, 𝑧, 𝑢, 𝑣]/(𝑥5 + 𝑦5 + 𝑧5 + 𝑢5 + 𝑣5)
with homogeneous maximal ideal 𝔪. By the Jacobian criterion, 𝔪 defines the singular

locus of 𝐴, hence 𝐴 and its 𝔪-adic completion 𝑅 := 𝐴 are UFDs by Grothendieck’s

parafactoriality theorem [SGA2, XI Corollaire 3.10 and XI Théorème 3.13(ii)] (see also

[CL94]). By the assumption on the characteristic, the coefficient of (𝑥𝑦𝑧𝑢𝑣)𝑝−1
in the

monomial expansion of (𝑥5 + 𝑦5 + 𝑧5 + 𝑢5 + 𝑣5)𝑝−1
is nonzero, hence 𝐴 and 𝑅 are both

𝐹-pure by Fedder’s criterion [Fed83]. However, it is well-known that 𝐴 and 𝑅 are not

weakly 𝐹-regular. Indeed, the ideal (𝑦, 𝑧, 𝑢, 𝑣) is not tightly closed in either ring as one

checks that 𝑥4 ∈ (𝑦, 𝑧, 𝑢, 𝑣)∗ (see also [MP21, Exercise 17] and [Hun96, Example 1.6.3]).

We then apply Corollary 2.4 (1) to conclude that 𝑅perf is a non-coherent GCD domain.

We remark that this reasoning applies more generally to any 𝐹-pure local hypersurface

of dimension at least four which is not weakly 𝐹-regular and which has an isolated

singularity. □

We may also deduce non-explicitly that there are plenty of the eponymous rings by

combining Corollary 2.4 with a well-known result of Heitmann, as suggested to the

author by B. Olberding:
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Corollary 2.7. Let (𝑇,𝔪) be a complete local domain with depth𝑇 ≥ 2 which is 𝐹-pure

but not weakly 𝐹-regular. Then there exists an excellent local ring (𝐴,𝔪 ∩ 𝐴) such that

𝐴perf is a non-coherent GCD domain and such that 𝐴 � 𝑇.

Proof. We use [Hei93, Theorem 8] to construct an excellent local UFD 𝐴 such that 𝐴 � 𝑇.

Since 𝑇 is not weakly 𝐹-regular, the excellence of 𝐴 together with [HH94, Corollary 7.28]

implies that 𝐴 is not weakly 𝐹-regular. Since 𝐴 is 𝐹-pure, we may apply Corollary 2.4 (1)

to conclude that 𝐴perf is a non-coherent GCD domain. □

We conclude with the following remarks.

Remark 2.8. (1) Corollary 2.4 (2) does not provide additional content to Corollary 2.7

because all rings under consideration are excellent, and excellent weakly 𝐹-regular

rings are Cohen–Macaulay by [HH94, Proposition 4.2(c)].

(2) In view of Theorem 2.1 we may ask whether the property of 𝑅perf being a GCD

domain characterizes those rings 𝑅 sharing a perfect closure with a prime charac-

teristic UFD.

(3) Corollary 2.7 suggests a potential approach to showing that the completion of

a local 𝐹-coherent ring need not be 𝐹-coherent – the existence of such a ring is

unknown to the author.
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atică 32 (1983), pp. 65–68.

[Shi11] Kazuma Shimomoto. “F-coherent rings with applications to tight closure theory”. Journal of
Algebra 338.1 (2011), pp. 24–34. doi: 10.1016/j.jalgebra.2011.05.006.

[Zha09] Wenliang Zhang. “On the Frobenius Power and Colon Ideals”. Communications in Algebra 37.7

(2009), pp. 2391–2395. doi: 10.1080/00927870802216438.

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109 USA

Email address: austyn@umich.edu

3 Dec 2023 16:49:45 PST
230823-Simpson Version 2 - Submitted to J. Comm. Alg.

https://doi.org/10.2307/2154942
https://doi.org/10.2307/1997914
https://doi.org/10.1016/0167-4889(95)00136-0
https://doi.org/10.2307/2373351
https://www.math.purdue.edu/~ma326/F-singularitiesBook.pdf
https://www.math.purdue.edu/~ma326/F-singularitiesBook.pdf
https://doi.org/10.1201/9780203910627
https://doi.org/10.1090/bproc/121
https://doi.org/10.1016/j.jalgebra.2011.05.006
https://doi.org/10.1080/00927870802216438

	Introduction
	Results

