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Abstract. Let M be a cancellative and commutative monoid (written additively).
The monoid M is atomic if every non-invertible element can be written as a sum of
irreducible elements (often called atoms in the literature). Weaker versions of atomicity
have been recently introduced and investigated, including the properties of being nearly
atomic, almost atomic, quasi-atomic, and Furstenberg. In this paper, we investigate
the atomic structure of lattice monoids, (i.e., submonoids of a finite-rank free abelian
group), putting special emphasis on the four mentioned atomic properties.

1. Introduction

Let M be a cancellative and commutative monoid written additively. A non-invertible
element a in M is an atom provided that whenever a = u+v either u or v is an invertible
element of M . A non-invertible element of M is atomic if it can be written as a sum of
atoms. Clearly, every atom is an atomic element. The monoid M is atomic if every non-
invertible element is atomic. Motivated by the landmark paper [1] by D. D. Anderson, D.
F. Anderson, and M. Zafrullah, the notion of atomicity has been systematically studied
for the last three decades, with special focus on Krull monoids and the multiplicative
monoids of integral domains.

Weaker versions of atomicity have been recently introduced and studied. In 2015, J.
Boynton and J. Coykendall [3] made known the notions of almost atomicity and quasi-
atomicity. Following their paper, we say that M is quasi-atomic (resp., almost atomic)
if for each b ∈ M there exists an element (resp., an atomic element) m ∈ M such that
the element b + m is atomic. Observe that the properties of being quasi-atomic and
being almost atomic are weaker versions of that of being atomic. Honoring the work of
H. Furstenberg [9], P. L. Clark in [5] presented the property of being Furstenberg in the
context of integral domains. Following [5], we say that M is a Furstenberg monoid if
every non-invertible element of M is divisible by an atom. It is clear that the property
of being Furstenberg is also a weaker version of that of being atomic. Most recently, in
2019, N. Lebowitz-Lockard [21] studied all the weaker versions of atomicity mentioned
in this paragraph, along with that of M being nearly atomic, namely, the existence of
b ∈M such that b+m is atomic for all m ∈M .
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2 C. LIU, P. RODRIGUEZ, AND M. TIRADOR

In the recent papers [13] and [15], F. Gotti studied certain arithmetic and factoriza-
tion aspects of submonoids of finite-rank free abelian groups, which we call here lattice
submonoids as they can be realized by monoids consisting of lattice points in Zn for
some n ∈ N. Motivated by the Frobenius coin problem, the rank-one lattice monoids
have been largely considered in the literature under the name of numerical monoids.
Numerical monoids are always atomic. However, this is not the case for lattice monoids
with rank 2 or higher. The primary purpose of this paper is to provide evidence of the
complexity of the subatomic structure of lattice monoids of rank higher than 1.

In Section 2, we introduce the terminology, notation, and main well-established results
we will be using later.

In Section 3, after providing some initial examples illustrating how the size of the sets
of atoms of additive submonoids of Zn (specially Z2) can vary, we provide a sufficient
condition for atomicity in the class consisting of all additive submonoids of Z2. Examples
illustrating different aspects of the atomicity and factorization of rank-2 submonoids have
also been given in [13, Section 3] and more recently in [18, Sections 4 and 5]. In addition,
the set of atoms of the root-closed submonoids of Z2 has been fully described in [22].
Not long ago, an example of an atomic submonoid of Z2 that does not satisfy the ACCP
was constructed in [14, Section 3].

In Section 4, we investigate the properties of being nearly atomic, almost atomic,
and quasi-atomic. These three properties have been considered in [21] for the class of
integral domains, in [17] for the class of semidomains (subsemirings of integral domains),
and lately in [18] for the class of positive monoids (i.e., submonoids of a totally ordered
group contained in its nonnegative cone). First, we quickly argue that every nearly
atomic monoid is almost atomic (this follows as in the special case of integral domains,
which was first argued in [21]). We also prove that in the class of rationally supported
additive submonoids of Z2, the condition of being atomic and being nearly atomic are
equivalent. Then, following a technique introduced in the proof of [14, Proposition 3.6],
we construct a nearly atomic additive submonoid of Z2 that is not atomic. After that, we
exhibit examples to confirm that near atomicity, almost atomicity, and quasi-atomicity
are non-equivalent properties in the class consisting of all lattice monoids of Z2. Finally,
we present a characterization of quasi-atomic monoids, which generalizes the results
established in [17, Theorem 5.2] and [21, Theorem 8].

Finally, in Section 5, we study the property of being Furstenberg. Besides being first
investigated in the context of integral domains in [21], the property of being Furstenberg
has been considered in recent years in [16, Section 5] and [19, Section 4], also in the
context of integral domains. The same property was most recently considered in [17,
Section 3] in the context of semidomains. Here we focus on the context of lattice monoids
of Z2. First, we prove that for each k ∈ N ∪ {∞} there exists a non-atomic Furstenberg
monoid having precisely k atoms. Then we show that every rationally supported lattice
monoid of Z2 is a Furstenberg monoid.

12 Nov 2023 22:09:25 PST
230802-Tirador Version 2 - Submitted to J. Comm. Alg.



SUBATOMICITY IN RANK-2 LATTICE MONOIDS 3

2. Background

In this section we introduce most of the relevant concepts related to commutative
semigroups and convex geometry required to follow the results presented later. General
references for any undefined term or notation can be found in [20] for commutative
semigroups, in [11] for atomic monoids, and in [23] for convex geometry. Also, see [12]
for a recent survey on factorizations in commutative monoids.

2.1. General Notation. We set N := {1, 2, . . . } and N0 := N ∪ {0}. If x, y ∈ Z, then
we let Jx, yK denote the interval of integers between x and y, i.e.,

Jx, yK := {z ∈ Z | x ≤ z ≤ y}.
Clearly, Jx, yK is empty when x > y. In addition, for X ⊆ R and r ∈ R, we set
X≥r := {x ∈ X | x ≥ r}, and we use the notation X>r in a similar way. Lastly, if
Y ⊆ Rd for some d ∈ N, then we set Y • := Y \ {0}.

2.2. Commutative Monoids. Throughout this manuscript, the term monoid refers
to a cancellative, commutative semigroup with identity. Let M be a monoid written
additively. We set M• := M \ {0}, and we say that M is trivial if M• = ∅. The
invertible elements of M form a group, which we denote by U (M), and M is called
reduced if U (M) is the trivial group. The difference group gp(M) of M is the unique
abelian group gp(M) up to isomorphism satisfying that any abelian group containing an
isomorphic image of M also contains an isomorphic image of gp(M). The rank of M
is taken to be the rank of gp(M) as a Z-module, that is, the dimension of the vector
space Q ⊗Z gp(M). The monoid M is torsion-free if nx = ny for some n ∈ N and
x, y ∈ M implies that x = y. A monoid is torsion-free if and only if its difference group
is torsion-free (see [4, Section 2.A]). The reduced monoid of M is the quotient of M by
U (M), which is denoted by Mred.

For r, s ∈M , we say that s divides r in M if there is a t ∈M such that r = s+ t; in
this case, we write s |M r. A submonoid M ′ of M is called a divisor-closed submonoid
if every element of M dividing an element of M ′ in M must belong to M ′. If S is a
subset of M , then we let 〈S〉 denote the smallest submonoid of M containing S, in which
case, we say that S is a generating set of 〈S〉. The monoid M is called finitely generated
provided that M = 〈S〉 for some finite subset S of M .

An element a ∈M \U (M) is called an atom if whenever a = r+ s for some r, s ∈M
either r ∈ U (M) or s ∈ U (M). We let A (M) denote the set consisting of all the atoms
of M . Note that if M is reduced, then A (M) is contained in every generating set of M .
A non-invertible element b ∈ M is called atomic (resp., almost atomic, quasi-atomic)
provided that b ∈ 〈A (M)〉 (resp., b ∈ gp(〈A (M)〉), b ∈ 〈A (M)〉 −M := {a −m | a ∈
〈A (M)〉 and m ∈ M}). Following [6], we say that M is atomic if each non-invertible
element of M is atomic and, following [3], we say that M is almost atomic (resp., quasi-
atomic) if each non-invertible element of M is almost atomic (resp., quasi-atomic). It
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follows directly from the definitions that every atomic monoid is almost atomic and also
that every almost atomic monoid is quasi-atomic. Following [21], we say that M is nearly
atomic if there exists b ∈ M such that b + m is atomic for all m ∈ M . It is clear that
every atomic monoid is nearly atomic. In addition, every nearly atomic monoid is almost
atomic: this was proved in [21] for the special case of integral domains, and we will see
in Proposition 4.1 that it is also true in the more general case of monoids.

Following [5], we say that the monoid M is a Furstenberg monoid if every element
of M \ U (M) is divisible by an atom in M . It follows from the definitions that every
atomic monoid is Furstenberg. The converse does not hold in general: for instance,
the monoid constructed in [18, Example 4.11] is Furstenberg but not atomic (integral
domains that are Furstenberg but not atomic also exist [21, Lemma 16]). In addition,
non-Furstenberg monoids with any prescribed number of atoms have been exhibited
in [19] (integral domains with nonempty set of atoms that are not Furstenberg also
exist: see [21, Lemma 17] for a stronger result and see [8, Section 5] in tandem with [19,
Example 4.10] for the construction of a non-Furstenberg monoid domains with infinitely
many atoms).

A subset I of M is called an ideal of M if the set I +M := {r+ s | r ∈ I and s ∈M}
is contained in I or, equivalently, if I + M = I. We say that an ideal I of M is proper
if I 6= M . In addition, a proper ideal P of M is called prime if whenever r + s ∈ P for
some r, s ∈M , then either r ∈ P or s ∈ P .

2.3. Factorizations. A multiplicative monoid F is said to be free on a subset A of F
provided that each element x ∈ F can be written uniquely in the form

x =
∏
a∈A

ava(x),

where va(x) ∈ N0 and va(x) > 0 only for finitely many a ∈ A. It is well known that for
each set A, there exists a unique (up to isomorphism) monoid F such that F is a free
monoid on A. For the monoid M , the free monoid on A (Mred), denoted by Z(M), is
called the factorization monoid of M , and the elements of Z(M) are called factorizations.
If z = a1 · · · an is a factorization in Z(M) for some n ∈ N0 and a1, . . . , an ∈ A (Mred),
then n is called the length of z and is denoted by |z|. In addition, the unique monoid
homomorphism φ : Z(M) → Mred satisfying that φ(a) = a for all a ∈ A (Mred) is called
the factorization homomorphism of M . For each x ∈M the set

Z(x) := ZM(x) := φ−1(x) ⊆ Z(M)

is called the set of factorizations of x. Observe that M is atomic if and only if Z(x) is
nonempty for all x ∈M (notice that Z(0) = {∅}). For each x ∈M , the set of lengths of
x is defined by

L(x) := LM(x) := {|z| : z ∈ Z(x)}.
The sets of lengths of submonoids of (Nd,+), where d ∈ N, have been considered in [15].
A survey on sets of lengths can be found in [10].
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SUBATOMICITY IN RANK-2 LATTICE MONOIDS 5

2.4. Euclidean Geometry and Convexity. Let u be a nonzero vector in R2, and let
L be a one-dimensional subspace (a line through the origin) of R2. Then we let pu and
pL denote the projection vectors on the one-dimensional subspace generated by u and
the one-dimensional subspace L, respectively. Also, we denote the upper (resp., lower)
closed half-space determined by L as L+ (resp., L−). If M is a submonoid of Z2, a
supporting line of M is a line LM through the origin of R2 such that either M ⊆ L+

M

or M ⊆ L−M . Additionally, if M has a supporting line with rational slope, then we say
that M is rationally supported.

For the rest of this subsection, fix d ∈ N with d ≥ 2. For any x = (x1, . . . , xd) and
y = (y1, . . . , yd) in Rd, we let 〈x, y〉 denote the standard inner product of x and y, that is,

〈x, y〉 =
∑d

i=1 xiyi. In addition, for each x ∈ Rd, we let ‖x‖ denote the Euclidean norm
of x. Also, if x, y ∈ Rd and Y is a nonempty subset of Rd, then we let d(x, y) denote the
Euclidean distance between x and y, and we set

d(x, Y ) := inf{‖x− y‖ | y ∈ Y },
which is the Euclidean distance from x to Y .

Let S be a nonempty subset of Rd. The convex hull of S (i.e., the intersection of
all convex subsets of Rd containing S) is denoted by conv(S). A nonempty convex
subset C of Rd is called a cone if C is closed under linear combinations with nonnegative
coefficients. A cone C is called pointed if C ∩ −C = {0}. The conic hull of S, denoted
by cone(S), is defined as follows:

cone(S) :=

{ n∑
i=1

cisi

∣∣∣∣ n ∈ N, and si ∈ S and ci ≥ 0 for every i ∈ J1, nK
}
,

i.e., cone(S) is the smallest cone in Rd containing S. For s1, . . . , sk ∈ Rd, we write
cone(s1, . . . , sk) instead of cone({s1, . . . , sk}).

3. Atomicity of Lattice Monoids

3.1. Preliminary Examples of Lattice Monoids. The central objects of this paper
are the lattice monoids. A lattice monoid is a submonoid of a finite-rank free abelian
group. Lattice monoids can be realized, up to isomorphism, as additive submonoids of
Zn, where n ∈ N. The nontrivial lattice monoids of rank 1 are the additive submonoids of
Z, which are either infinite cyclic groups or numerical monoids, i.e., additive submonoids
of N0. Although it is easy to verify that every numerical monoid is finitely generated,
this is not the case for lattice monoids of rank greater than 1, as they are not finitely
generated in general. This is illustrated in the following examples.

Example 3.1. We proceed to present two atomic lattice monoids with infinitely many
atoms, one of them having a reduced monoid with infinitely many atoms and one of
them having a reduced monoid with exactly one atom.
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(1) Observe that the set M := {(0, 0)} ∪ (Z×N) is closed under addition. Therefore,
it is a lattice monoid. It is clear that M is reduced. Figure 1(1) illustrates the elements
of M . Now note that every lattice point contained in the line y = 1 is an atom of M . In
addition, one can readily see that every nonzero element of M is the finite sum of lattice
points in the line y = 1. Hence, A (M) = {(a, 1) | a ∈ Z}. Finally, since M is reduced,
it is isomorphic to its reduced monoid, and so Mred also has infinitely many atoms.

(2) Now set M := Z × N0, and observe that M is a lattice monoid because both
Z and N0 are additive monoids. Figure 1(2) illustrates the elements of M . We can
readily see that U (M) = Z× {0}. Therefore, for each a ∈ Z, whenever (a, 1) = v1 + v2
for some v1, v2 ∈ M either v1 or v2 belongs to U (M). Thus, every element of the
form (a, 1), where a ∈ Z, is an atom of M , and so each element in M \ U (M) can be
written as a sum of atoms. Hence, M is atomic with A (M) = {(a, 1) | a ∈ Z}. Since
a1 + U (M) = a2 + U (M) for all a1, a2 ∈ A (M), it follows that A (Mred) is a singleton.
Hence, Mred is an atomic monoid with exactly one atom, from which we can infer that
Mred is isomorphic to the additive monoid N0.

Figure 1. Elements of the two lattice monoids constructed in this exam-
ple. Atoms are displayed in red and units in blue.

Indeed, there are lattice monoids having infinitely many atoms that are not atomic.
The following example sheds some light upon this observation.

Example 3.2. Consider the lattice submonoid M ′ = 〈(0, 0, 1), (x, 1, 0) | x ∈ Z〉 of Z3,
and then set M := M ′ ∪ {(x, y, z) ∈ Z3 | y ≥ 2}. It is clear that M is closed under
addition. Therefore, M is a lattice monoid. Since the intersection of M with the plane
determined by y = 0 is the reduced monoid M0 := {(0, 0, z) | z ∈ N0}, we conclude that
M is also a reduced monoid.

We first show that A (M) = {e3, an | n ∈ Z}, where e3 = (0, 0, 1) and an = (n, 1, 0)
for every n ∈ Z. Since M0 is a divisor-closed submonoid of M , and e3 is an atom of
M0, it follows that e3 ∈ A (M). Now observe that M intersects the plane determined by
y = 1 at the set {(x, 1, z) ∈ Z3 | z ≥ 0}. As none of the vectors in M•

0 divides any of
the vectors in {an | n ∈ Z}, it follows that an ∈ A (M) for every n ∈ Z. Since e3 divides
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SUBATOMICITY IN RANK-2 LATTICE MONOIDS 7

(x, 1, z) for any (x, z) ∈ Z × N, it follows that A (M) intersects the plane determined
by y = 1 in {an | n ∈ Z}. Finally, the fact that e3 divides (x, y, z) in M for each y ≥ 2
guarantees that A (M) = {e3, an | n ∈ Z}, as desired.

It is only left to verify that M is not atomic. Indeed, since A (M) is contained in the
half-space of R3 determined by z ≥ 0, the element (0, 2,−1) ∈ M cannot be written as
a sum of atoms in M .

3.2. A Sufficient Condition for Atomicity. There are non-atomic lattice submonoids
of Z2 with infinitely many atoms, and we will construct some of such monoids in Ex-
ample 4.6. However, the construction of those monoids requires more subtlety. This is
given to the fact that if a non-atomic lattice monoid of rank 2 has a supporting line with
rational slope, then it has only finitely many atoms. This is an immediate consequence of
Theorem 3.4, which is the main result of this section and offers a sufficient condition for
the atomicity of a lattice monoid. Before establishing that result, we need the following
lemma.

Lemma 3.3. Let M be a lattice monoid of Z2. If M is rationally supported, then M is
isomorphic to a submonoid of Z× N0.

Proof. Let L be a supporting line of M having a rational slope. Assume, without loss of
generality, that M ⊂ L+. Let a/b, with a ∈ Z and b ∈ N, be the slope of L. Now consider
the function f : M → Z×N0 defined as f(r) = (〈(b, a), r〉, 〈(−a, b), r〉). Observe that for
every r = (r1, r2) ∈ M , it follows that r2 ≥ a

b
r1 and so 〈(−a, b), r〉 = b

(
r2 − a

b
r1
)
≥ 0.

Thus, f is well defined. In addition, the linearity of the maps r 7→ 〈(b, a), r〉 and
r 7→ 〈(−a, b), r〉 ensures that f is indeed a monoid homomorphism. To show that f
is injective take r = (r1, r2) and s = (s1, s2) in M such that f(r) = f(s). Then the
equalities

br1 + ar2 = bs1 + as2 and − ar1 + br2 = −as1 + bs2

hold. This implies that a(r2 − s2) = −b(r1 − s1) and a(r1 − s1) = b(r2 − s2). After
multiplying these equalities by b and a, respectively, we see that

a2(r1 − s1) = ab(r2 − s2) = −b2(r1 − s1).
Therefore, r1 = s1, which implies that r2 = s2. Hence, the function f is injective and, as
a result, M ∼= f(M) ⊆ Z× N0. �

In the following theorem we offer a sufficient condition for a lattice monoid to be
atomic.

Theorem 3.4. Let M be a rationally supported lattice monoid. If |A (M)| = ∞, then
M is atomic.

Proof. In light of Lemma 3.3, we can assume that M is a submonoid of Z × N0. Now
suppose, for the sake of a contradiction, that M is not atomic. Let b0 be a non-atomic
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element in M that is not invertible. Then there exists a sequence (bn)n∈N0 of non-
invertible non-atomic and pairwise non-associate elements of M such that bn+1 |M bn for
every n ∈ N0. For each k ∈ N0, consider Lk := {(x, y) ∈ Z2 | y = k}. Let u = (0, 1). We
will split the rest of our proof into the following two cases.

Case 1: L0 ∩M = {(0, 0)} or L0 ∩M contains elements in both sides of the origin. In
this case, it can be proved that every element in L0∩M is invertible. Hence, the sequence
(‖pu(bn)‖)n∈N0 is strictly decreasing since its elements are non-associate. However, this
sequence contains only finitely many different elements, which yields a contradiction.

Case 2: L0 ∩M• contains elements in one and only one side of the origin. Let (d0, 0)
be the element with the smallest norm of L0 ∩M•. Notice that there exist N ∈ N0 and
k0 ∈ N0 such that for every n ≥ N the element bn belongs to Lk0 ∩M .

Now we prove that m(d0, 0) divides the element bN for all m ∈ N. For every n ≥ N
we have that cn := bn − bn+1 is an atomic element of L0 ∩M . Observe that L0 ∩M is a
divisor-closed submonoid of M that is isomorphic to a submonoid of (N0,+). Therefore,
it has a finite number of atoms. Hence, at least one of them, namely (d1, 0), divides an
infinite number of cn. Besides, the element bn − bn+1 divides bN for every n ≥ N since
bN = bN − bN+1 + bN+1 − bN+2 · · ·+ bn − bn+1 + bn+1. Then m(d1, 0) divides the element
bN for every m ∈ N. If d0 = d1 we are done. Suppose otherwise that d0 6= d1 and let
m0 = d0/ gcd(d0, d1). From Bézout’s identity we know that there exist r, s ∈ N0 such
that

bN −m(d0, 0) = bN −mm0(gcd(d0, d1), 0) = bN −mm0(r(d1, 0)− s(d0, 0)) ∈M
for every m ∈ N, as desired.

For each k ∈ J0, k0 − 1K, set Ck :=
⋃

p∈N0
Lk+pk0 , and let us prove that Ck contains at

most finitely many atoms. Notice that Lk+pk0 = {x + pbN | x ∈ Lk} for every p ∈ N0.
Thus,

Ck = {x+ pbN | x ∈ Lk, p ∈ N0} =

d0−1⋃
d=0

{
(d, k) +m(d0, 0) + pbN | m ∈ Z, p ∈ N0

}
.

Take a1, a2 ∈ {(d, k) +m(d0, 0) + pbN | m ∈ Z, p ∈ N0

}
for some d ∈ J0, d0− 1K. Assume

that a1 and a2 are both atoms and write a1 − a2 = p′bN +m′(d0, 0), for some m′, p′ ∈ Z.
Suppose, without loss of generality, that p′ > 0. Therefore,

a1 − a2 = p′bN +m′(d0, 0) = (p′ − 1)bN + (bN +m′(d0, 0)) ∈M,

which contradicts that a1 is an atom. Then {(d, k) + m(d0, 0) + pbN | m ∈ Z, p ∈ N0

}
contains at most one atom for every d ∈ J0, d0 − 1K. Hence, Ck has at most d0 atoms.

Finally, the equality Z× N0 = C0 ∪ C1 ∪ · · · ∪ Ck0−1 implies that

|A (M)| ≤
k0−1∑
k=0

|Ck ∩A (M)| ≤ k0d0,

which is a contradiction. �
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SUBATOMICITY IN RANK-2 LATTICE MONOIDS 9

4. Subatomicity

4.1. Near Atomicity. In this subsection, we study near atomicity in lattice monoids.
The following proposition, which is a generalization of [21, Lemma 5], shows that every
nearly atomic monoid is almost atomic.

Proposition 4.1. Every nearly atomic monoid is almost atomic.

Proof. Let M be a nearly atomic monoid. Then there exists some b ∈ M such that for
every m ∈ M \ U (M), the inclusion b + m ∈ 〈A (M)〉 holds. Suppose first that b is
invertible. Then m = b + (m − b) ∈ 〈A (M)〉 for all m ∈ M . Thus, M is an atomic
monoid, implying that M is almost atomic. Now suppose that b is not invertible. Notice
that 2b + m = b + (b + m) ∈ 〈A (M)〉 for all m ∈ M . This, along with the fact that
2b ∈ 〈A (M)〉, shows that M is almost atomic. �

Now we will prove that if a lattice monoid M has a unique line L as a supporting line
and L has an irrational slope, then if M is a nearly atomic monoid then M contains
infinitely many atoms.

Proposition 4.2. Let L be a line with irrational slope that is the only supporting line of
a lattice monoid M . If M is a nearly atomic monoid then M contains infinitely many
atoms.

Proof. Suppose that M is nearly atomic. Let v be a unit vector such that L = vR,
and let u be a unit vector that is normal to v in a way that 〈u, x〉 > 0 for all x in M .
Suppose that there exists a vector w ∈ R2 such that 〈u,w〉 > 0, and for every x ∈M we
have that x ∈ cone(−v, w). Hence, the line wR is clearly a supporting line of M which
contradicts the uniqueness of L. Then for every vector w satisfying that 〈u,w〉 > 0, there
exists some element x ∈M• such that x ∈ cone(w, v). Hence, there exists some sequence
(dn)n∈N, with dn ∈M for every n ∈ N, such that lim

n→∞
‖dn‖ =∞ and dn ∈ cone(dn−1, v).

Moreover, because L has irrational slope it has no nonzero point with both coordinates
rational, and therefore, dn is in the interior of cone(dn−1, v) for every n ∈ N. Then the
angle between dn and v, namely αn, approaches to 0 when n goes large. On the other
hand, since M is nearly atomic, we know that there exists some b ∈M such that b+ dn
is an atomic element for every n ∈ N. Now let us prove that the angle between b + dn
and v, namely βn, approaches to 0 when n goes large. First observe that

lim
n→∞

〈v, dn + b〉
‖v‖ ‖dn‖

= lim
n→∞

〈v, dn〉
‖v‖ ‖dn‖

+ lim
n→∞

〈v, b〉
‖dn‖

= lim
n→∞

cosαn = 1,

and also that

lim
n→∞

‖dn + b‖2

‖dn‖2
= lim

n→∞

‖dn‖2 + 2〈dn, b〉+ ‖b‖2

‖dn‖2
= 1 + lim

n→∞

(
2
‖b‖ cos γn
‖dn‖

+
‖b‖2

‖dn‖2

)
= 1,
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10 C. LIU, P. RODRIGUEZ, AND M. TIRADOR

where γn is the angle between b and dn. Finally we have that

lim
n→∞

cos βn = lim
n→∞

〈v, dn + b〉
‖v‖ ‖dn + b‖

= lim
n→∞

〈v, dn + b〉
‖v‖ ‖dn‖

lim
n→∞

‖dn‖
‖dn + b‖

= 1,

and so βn approaches to 0 when n goes large and the sequence (dn + b)n∈N has infinitely
many elements in cone(w, v) for every w such that 〈u,w〉 > 0. So, if we suppose that M
has finitely many atoms, then there exists an atom a such that all the atomic elements
of M belong to cone(−v, a) which contradicts the previous statement. �

We proceed to identify a large class consisting of lattice monoids where being nearly
atomic and being atomic are equivalent conditions.

Theorem 4.3. Let M be a rationally supported lattice monoid of Z2. If M is nearly
atomic, then M is atomic.

Proof. Assume that M is a rationally supported nearly atomic monoid. By virtue of
Lemma 3.3, we can assume that M is a submonoid of Z×N0 and so L is the line y = 0.
Let u = (0, 1). Suppose, by way of contradiction, that M is not atomic. Therefore, there
exists a sequence (dn)n∈N of pairwise non-associate elements of M such that dn+1 |M dn
for every n ∈ N and none of its elements can be written as a sum of atoms.

It follows from our argument in Case 1 of the proof of Theorem 3.4 that L contains an
element of M different from (0, 0). Moreover, we infer that L does not contain elements
of M at both sides of the origin.

Since M is nearly atomic, we can take r ∈ M such that r + M ⊆ 〈A (M)〉. Observe
that the sequence (‖pu(dn)‖)n∈N is decreasing and has finitely many different elements.
Then there exists k ∈ N and N ∈ N such that ‖pu(dn)‖ = k for all n ≥ N . Also, notice
that we can take the previous N large enough to guarantee r+ dn is in the opposite side
of uR from v. This implies that (‖pL(r + dn)‖)n∈N is strictly increasing for n ≥ N .

Let us set A := {a ∈ A (M) | 1 ≤ ‖pu(a)‖ ≤ k+‖pu(r)‖}. It follows from Theorem 3.4
that A (M) has finitely many elements and so does A. Take a to be the element in A
with maximum distance to uR. Since (‖pL(r + dn)‖)n∈N is strictly increasing for n ≥ N ,
we can take dm with m > N such that ‖pL(r + dm)‖ > ‖pL(a)‖ (‖pu(r)‖ + k). Let
z =

∑m1

i=1 ai +
∑m2

i=1 bi be a factorization of r+ dm such that ai ∈ A for every 1 ≤ i ≤ m1

and bi ∈ L for every 1 ≤ i ≤ m2. Hence,

‖pu(r)‖+ ‖pu(dm)‖ = ‖pu(r + dm)‖ =

∥∥∥∥∥pu
(

m1∑
i=1

ai +

m2∑
i=1

bi

)∥∥∥∥∥
=

m1∑
i=1

‖pu(ai)‖+

m2∑
i=1

‖pu(bi)‖ =

m1∑
i=1

‖pu(ai)‖ ≥ m1,
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SUBATOMICITY IN RANK-2 LATTICE MONOIDS 11

which directly implies that m1 ≤ ‖pu(r)‖+ k because k = ‖pu(dm)‖. This leads to

‖pL(r + dm)‖ =

∥∥∥∥∥pL
(

m1∑
i=1

ai +

m2∑
i=1

bi

)∥∥∥∥∥ =

∥∥∥∥∥pL
(

m1∑
i=1

ai

)∥∥∥∥∥−
m2∑
i=1

‖pL(bi)‖

≤
m1∑
i=1

‖pL(ai)‖ −
m2∑
i=1

‖pL(bi)‖

≤
m1∑
i=1

‖pL(ai)‖

≤ m1 ‖pL(a)‖
≤ ‖pL(a)‖ (‖pu(r)‖+ k),

where the second equality holds since bi and r+dm are in different quadrants. We arrive
here to a contradiction, implying that M is atomic. �

Our final goal in this subsection is to construct a nearly atomic lattice monoid that is
not atomic. For such a purpose, we need the following lemmas.

Lemma 4.4. Let L be a real line through the origin in R2. Then for every ε > 0 there
exists v ∈ Z2 \ {(0, 0)} such that d(v, L) < ε.

Proof. Fix ε > 0. If the slope of L is a rational number, then it is clear that L must
contain a nonzero vector with integer coordinates and the statement of the lemma follows.
Then we assume that the slope of L is irrational. Take x ∈ R such that w := (x, 1) ∈ L.
Since the slope of L is irrational, x is also irrational. It is well known that the set
{nx−bnxc | n ∈ N} is dense in [0, 1]. Then there exists m ∈ N such that mx−bmxc < ε.
After setting v := (bmxc,m) ∈ Z2, we see that

d(v, L) ≤ ‖v −mw‖ = mx− bmxc < ε.

�

Lemma 4.5. Let L be a line in R2 with irrational slope. Then for every ε > 0 there exists
v ∈ Z2 \ {(0, 0)} such that d(v, L) < ε. Moreover, we can take v with both coordinates
even, or with both coordinates odd.

Proof. Let L0 be a line through the origin parallel to L and u be a vector normal to L0.
Assume, without loss of generality, that L is above L0. Fix ε > 0. Take a lattice point
v0 in L+. From Lemma 4.4 there exists a lattice point w ∈ L+

0 such that ‖pu(w)‖ < ε.
Set

v := v0 −
⌊
‖pu(v0)− d(L,L0)‖ / ‖pu(w)‖

⌋
w.

Then we have that d(v, L) = ‖pu(v)‖ − d(L,L0) < ‖pu(w)‖ < ε, which concludes the
first part of our proof.
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12 C. LIU, P. RODRIGUEZ, AND M. TIRADOR

Let L′ be a parallel line to L such that 2d(L′, L0) = d(L,L0). From the first part of
this proof, there exists v ∈ Z2 ∩ L′+ such that d(v, L′) < ε/2. Then we have

‖pu(2v)‖ = 2 ‖pu(v)‖ < 2(d(L′, L0) + ε/2) = d(L,L0) + ε.

Hence, 2v is a lattice point with even coordinates such that d(2v, L) < ε.
Finally, we must prove the existence of a lattice point v′ with odd coordinates such

that d(v′, L) < ε. Let w′ = (−1,−1) and consider the affine line Lw′ := w′ + L. Then
there exists a lattice point v1 with even coordinates such that d(v1, Lw′) < ε. Observe
that v′ := v1 + (1, 1) is a lattice point with odd coordinates. Hence, it follows from the
definition of Lw′ that d(v′, L) < ε, as desired. �

We are in a position to exhibit a nearly atomic lattice monoid that is not atomic.

Example 4.6. (cf. [14, Proposition 3.6]) Let L be a line through the origin in R2

with positive irrational slope. Let v be the unit vector in the first quadrant such that
L = vR, and let u be the unit vector in the second quadrant that is normal to v. Also,
for any vector w, let L+

w (resp., L−w) be the affine upper (resp., lower) closed half-space
determined by the affine line Lw := w + L.

Let w = (0, 2) and ` = ‖pu(w)‖. Since the only lattice point of L is the origin, the only
lattice point of Lw is w. Take a0 to be a point with odd coordinates in cone(w, v) such
that `/2 < ‖pu(a0)‖ < `. By Lemma 4.5 we can take a point a1 with odd coordinates
in the interior of cone(v, a0) such that ` > ‖pu(a1)‖ > ‖pu(a0)‖. We can construct,
by repeating this process, an infinite sequence of lattice points with odd coordinates
(an)n∈N0 such that an+1 ∈ cone(v, an) and ` > ‖pu(an+1)‖ > ‖pu(an)‖ for every n ∈ N0.

Now let d0 be a point with even coordinates in the interior of cone(w,Lw) such that
` < ‖pu(d0)‖ < 2 ‖pu(a0)‖. Following Lemma 4.5 we can construct inductively a se-
quence of lattice points with even coordinates (dn)n∈N0 such that dn+1 ∈ cone(dn, Lw)
and ‖pu(dn+1)‖ < ‖pu(dn)‖ for every n ∈ N0.

Let A be the set of all lattice points with even coordinates that belong to cone(−v, u).
Now consider the lattice monoid M := 〈A∪{an | n ∈ N0}∪{dn | n ∈ N0}∪{w}〉. Figure 2
shows the elements of this generator set of M , present in a region of Z2 containing the
origin.

We claim that all the terms of the sequence (an)n∈N0 are atoms in M . Assume oth-
erwise, that ak is not an atom, for some k ∈ N0. If it is the case, then at divides
ak for some t ∈ N0, given that ak has odd coordinates. Furthermore, t < k holds,
since ‖pu(at)‖ > ‖pu(ak)‖ for every t > k. Write ak = at + r for some r ∈ M . Then
r ∈ cone(u, v) and ‖pu(r)‖ < `/2, but this contradicts that r ∈M .

Now we aim to prove that M is not atomic by arguing that none of the elements of
(dn)n∈N0 can be written as a sum of atoms. First observe that dn is not an atom for any
n ∈ N0. This follows from the fact that dn− dn+1 is a vector that belongs to cone(u,−v)
with even coordinates, for every n ∈ N0, and hence, it belongs to M . Assume that there
exists m ∈ N0 such that dm can be written as a sum of atoms. Since dm ∈ cone(u, v),
there must be an atom a, also inside of cone(u, v), that divides dm. Suppose that a = ak
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SUBATOMICITY IN RANK-2 LATTICE MONOIDS 13

for some k ∈ N0. Since ak has odd coordinates, there exists t ∈ N0 such that ak + at
divides dm. However, ‖pu(dm)‖ < 2 ‖pu(a0)‖ < ‖pu(ak)‖ + ‖pu(at)‖, which leads to a
contradiction. Since a is inside cone(u, v) and it cannot be divided by any element of
{an, dn | n ∈ N0}, the only possibility left is a = w. If it is the case, then dm − w lies
inside of cone(u, v) and ‖pu(dm − w)‖ < ‖pu(a0)‖. Thus, dm − w does not belong to M .
We conclude that dm cannot be written as a sum of atoms.

It is not hard to see that w is also an atom. We claim now that every element in A is
atomic. Take an arbitrary s ∈ A and let r = s − b‖pu(s)‖ /`cw. Observe that r is also
in A, so r ∈ M . If we prove that r can be written as a sum of atoms, then s can also
be written as a sum of atoms. Suppose that ak |M r for some k ∈ N0. Similar as we
argue before this implies that ak + at |M r for some t ∈ N0, which is not possible since
‖pu(r)‖ < ` < ‖pu(ak + at)‖. Since w does not divide r either, the divisors of r are all
in cone(−v, u). It is not hard to observe that 0 is not a limit point of the projections in
the x-axis of the elements in cone(−v, u), and thus r can be written as a sum of atoms.

Finally, let us prove that M is nearly atomic by arguing that w+M ⊂ 〈A (M)〉. Since
every element in 〈A ∪ {an | n ∈ N0} ∪ {w}〉 is atomic, it is enough to show that every
element r ∈ {w + d | d ∈ 〈{dn | n ∈ N0}〉 \ (0, 0)} is atomic. Take k ∈ N0 in such a way
that ak is large enough to guarantee that r − ak ∈ cone(−v, u). Since ‖pu(r)‖ > 2`, we
have that r − 2ak is also inside of cone(−v, u). Moreover, since r has even coordinates,
r − 2ak also has even coordinates, implying that r − 2ak ∈ A. Then r − 2ak is atomic
and so is r. Hence, we conclude that M is a nearly atomic lattice monoid that is not
atomic.

Figure 2. Region of Z2 showing some of the elements of the generator
set used to define the lattice monoid in this example. The elements of A
are displayed in blue, those of (dn)n∈N0 in purple and those of (an)n∈N0 in
yellow. Also w is displayed in red as one can see.
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14 C. LIU, P. RODRIGUEZ, AND M. TIRADOR

4.2. Almost Atomicity and Quasi-Atomicity. Let us take a look now at an example
of an almost atomic lattice monoid that is not nearly atomic.

Example 4.7. Consider the lattice monoid M ′ = 〈(1, 0), (1, 1)〉. Now set M := M ′ ∪
(Z× N≥2), and observe that M is closed under addition so it is a reduced lattice monoid.
Figure 3 shows the monoid M . It is clear that (1, 0) and (1, 1) are both atoms. We claim
that. A (M) = {(1, 0), (1, 1)}. It suffices to show that none of the elements in M \M ′ is
an atom of M . Fix (x, y) ∈ M \M ′. As (x, y) /∈ M ′, we see that (x, y) ∈ Z× N≥2, and
so (x − 1, y) ∈ Z × N≥2, which implies that (1, 0) divides (x, y). Hence, (x, y) is not an
atom, as desired.

Let us show now that the monoid M is almost atomic. Notice that {(x, y) | 0 ≤ y ≤
x} ⊂ 〈A (M)〉 (indeed, it is not hard to check that the other inclusion holds). Consider
an element (x, y) ∈M\〈A (M)〉. Then y > x, which ensures that (y − x, 0) ∈ 〈(1, 0)〉 ⊆
〈A (M)〉. Now we see that (y − x, 0) + (x, y) = (y, y) ∈ 〈A (M)〉. Hence, M is almost
atomic.

Finally, we check that M is not nearly atomic. Observe that for every element (x, y) ∈
M the element (−x, 2) belongs to the monoid and (−x, 2)+(x, y) = (0, y+2) /∈ 〈A (M)〉.

Figure 3. Almost atomic lattice monoid that is not nearly atomic. The
atoms are displayed in red and the rest of the atomic elements in purple.

Here is an example of a quasi-atomic lattice monoid that is not almost atomic.

Example 4.8. Consider the lattice monoid M ′ = 〈(1, 0), (0, 2)〉. Now set M := M ′ ∪
(Z× N≥3), and observe that M is closed under addition so it is a lattice monoid. Figure 4
shows the monoid M . Also, note that M is a reduced monoid. It is clear that (1, 0) and
(0, 2) are both atoms. Indeed, A (M) = {(1, 0), (0, 2)}, and this fact can be proved using
an argument similar to that used in Example 4.7.

Let us show now that the monoid M is quasi-atomic. Because M ′ = 〈A (M)〉, it is
enough to argue that each element of M \M ′ ⊂ Z × N≥3 is a divisor of an element in
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〈A (M)〉. This is indeed the case, as for each (x, y) ∈M \M ′, one immediately sees that
(−x, y) ∈M and (x, y) + (−x, y) = (0, 2y) ∈ 〈A (M)〉. Hence, M is quasi-atomic.

Finally, we shall verify that M is not almost atomic. Since the second coordinate of
each element in 〈A (M)〉 is even, this amounts to observing that the second coordinate of
(0, 3)+(x, y) is odd for all (x, y) ∈ 〈A (M)〉. Then we conclude that M is a quasi-atomic
lattice monoid that is not almost atomic.

Figure 4. Quasi-atomic lattice monoid that is not almost atomic. The
atoms are displayed in red and the rest of the atomic elements in purple.

We conclude this section by presenting a characterization of quasi-atomic monoids,
which is a generalization of [17, Theorem 5.2], which in turn is a generalization of [21,
Theorem 8].

Theorem 4.9. A monoid M is quasi-atomic if and only if every nonzero prime ideal
of M contains an atom.

Proof. For the direct implication, suppose first that M is quasi-atomic. Fix a nonzero
prime ideal P of M and take an element r ∈ P . Because M is quasi-atomic, there exists
an element s ∈M such that r+s can be written as a sum of atoms. Now since r+s ∈ P ,
we have that at least one atom in a factorization of r + s belongs to P , as desired.

For the converse, suppose that M is not a quasi-atomic monoid. Then the set P
consisting of all the (non-invertible and) non-quasi-atomic elements of M is nonempty.
Let us argue first that P is an ideal of M . Assume, otherwise, that there exist r ∈ P
and s ∈ M such that r + s /∈ P . As r ∈ P , it cannot be invertible, and so r + s is
not invertible. This, along with the fact that r + s /∈ P , guarantees that r + s is a
quasi-atomic element of M . Then there exists m ∈M such that m+ (r+ s) ∈ 〈A (M)〉.
However, this implies that r is also quasi-atomic, contradicting that r ∈ P . Hence P
is an ideal of M . Moreover, P is a prime ideal since it is proper and the sum of two
quasi-atomic elements is always quasi-atomic. Thus, P is a nonzero prime ideal of M
that does not contain any atoms, which concludes our proof. �
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16 C. LIU, P. RODRIGUEZ, AND M. TIRADOR

5. Furstenbergness

Recall that a monoid M is Furstenberg provided that every non-invertible element
of M is divisible by an atom. As the properties studied in the previous section, being
Furstenberg is a property weaker than being atomic. The following realizability result
shows the existence of a variety of Furstenberg lattice monoids that are not atomic.

Proposition 5.1. For each k ∈ N ∪ {∞}, there exists a non-atomic Furstenberg lattice
monoid M of Z2 such that |A (M)| = k.

Proof. Assume first that k ∈ N. Consider the numerical monoid Nk := {0} ∪ Z≥k. It is
well known and easy to check that A (Nk) = Jk, 2k − 1K. Now take M to be the lattice
monoid (Nk × {0}) ∪ (Z × N). Since Nk × {0} is a divisor-closed submonoid of M , it
follows that Jk, 2k−1K×{0} ⊆ A (M). Since every element of M \(Nk×{0}) is divisible
by (k, 0), the equality A (M) = Jk, 2k − 1K × {0} actually holds. Hence, |A (M)| = k.
Since the second coordinate of each atom of M is zero, it is clear that M cannot be
atomic. On the other hand, the atomicity of Nk×{0} ∼= Nk, along with the fact that the
atom (k, 0) divides each element of M \ (Nk ×{0}), guarantees that M is a Furstenberg
monoid.

Let us now settle the case of k = ∞; that is, we should find a lattice monoid of Z2

with infinitely many atoms that is Furstenberg but not atomic. Consider the monoid M
seen in Example 4.6 (Figure 2). We already proved that it is not atomic and contains
infinitely many atoms. Let us prove that M is a Furstenberg monoid. Since every element
in A ∪ {an | n ∈ N0} ∪ {w} is atomic, it only remains to show that every element in
{dn | n ∈ N0} is divided by some atom. This follows immediately after observing that
dn − dn+1 ∈ A. �

Proposition 5.2. Let M be a rationally supported lattice monoid of Z2. Then M is a
Furstenberg monoid.

Proof. By virtue of Lemma 3.3, it suffices to prove that every additive submonoid of
Z× N0 is a Furstenberg monoid. Let M be an additive submonoid of Z× N0.

We first argue that if M ∩ (Z × {0}) ⊆ U (M) (that is, M ∩ (Z × {0}) = U (M)),
then M is a BFM. To do so, suppose that M ∩ (Z×{0}) ⊆ U (M). If M ⊆ Z×{0}, then
M is a group, and so it is a BFM. Therefore, we can assume, without loss of generality,
that M is not a subset of Z × {0}, which implies that M is not a group. Now let
u = (0, 1). To argue that M is a BFM, take a non-invertible element b ∈ M , and write
b = a1 + · · · + a` for some non-invertible elements a1, . . . , a` ∈ M . For each i ∈ J1, `K,
the fact that ai /∈ U (M) implies that ‖pu(ai)‖ ≥ 1, and so

` ≤
∑̀
i=1

‖pu(ai)‖ =

∥∥∥∥∥pu
(∑̀

i=1

ai

)∥∥∥∥∥ = ‖pu(b)‖ .

As a consequence, after assuming that we have chosen ` as large as it can possibly be, the
maximality of ` will guarantee that the elements a1, . . . , a` are atoms of M . Therefore,
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we obtain that b is an atomic element such that max L(b) ≤ ‖pu(b)‖. Thus, we conclude
that M is a BFM.

Finally, suppose, for the sake of a contradiction, that M is not a Furstenberg monoid.
Observe that N := M ∩ (Z×{0}) is not a subset of U (M) as, otherwise, M would be a
BFM by virtue of the argument given in the previous paragraph, contradicting that M
is not a Furstenberg monoid. Therefore, there is an element of N that is not invertible,
which means that N is not a group. Since N is isomorphic to a submonoid of Z, and
every submonoid of Z is either a group or a numerical monoid (up to isomorphism),
we can further assume that either N ⊆ N0 × {0} or N ⊆ −N0 × {0}. After replacing
M by its isomorphic copy {(−x, y) | (x, y) ∈ M} if necessary, we can actually assume
that N ⊆ N0 × {0}. Let u be as in the previous paragraph, and among all the nonzero
elements of M that are not divisible by any atoms, let v be one such that ‖pu(v)‖ is
minimum. Since v is not an atom, it can be written as v = v1 + v2 for some nonzero
v1, v2 ∈M such that neither v1 nor v2 is divisible by an atom in M . Since N is an atomic
divisor-closed submonoid of M , it follows that every nonzero element of N is divisible
by an atom in M . As a result, neither v1 nor v2 are elements of N , which implies that
‖pu(v1)‖ > 0 and ‖pu(v2)‖ > 0. Thus, v1 is an element in M that is not divisible by any
atoms and satisfies that ‖pu(v1)‖ < ‖pu(v)‖, which contradicts the minimality of v. �

Finally, we construct a lattice monoid of Z2 which is not a group and contains no
atoms, and so it is not a Furstenberg monoid. Following the terminology introduced
in [7] by Coykendall, Dobbs, and Mullins (in the context of integral domains), we say
that a monoid is antimatter if its set of atoms is empty. It is clear, for instance, that
the additive monoid Q≥0 is an antimatter monoid. Integral domains that are antimatter
also exist, and they were first studied in [7]. Furthermore, various class of antimatter
monoid domains were identified in [2]. We conclude this paper exhibiting an example of
an antimatter lattice monoid of Z2.

Example 5.3. Let L be a line through 0 in R2 such that L has negative irrational slope,
and let u be the unique unit vector in R≥0 × R≥0 that is orthogonal to L. For instance,

we can take L = R(−
√
2
2
,
√
2
2

) and u = (
√
2
2
,
√
2
2

). Now consider the lattice monoid M
defined as follows:

M := {v ∈ Z2 | 〈v, u〉 ≥ 0}.
We claim that M contains no atoms. To argue this, fix w ∈ M . Lemma 4.4 guarantees
the existence of v ∈ Z2 \ {(0, 0)} such that d(v, L) < d(w,L). We can assume, without
loss of generality, that v ∈M (otherwise, replacing v by −v). Therefore, we see that

〈w − v, u〉 = ‖u‖
(
〈w, u〉
‖u‖

− 〈v, u〉
‖u‖

)
= ‖u‖

(
d(w,L)− d(v, L)

)
> 0.

This implies that w − v ∈ M , and then we can decompose w in M as w = v + (w − v).
As the only point with rational coordinates in the line L is (0, 0), the monoid M must
be reduced, and so the decomposition w = v + (w − v) ensures that w /∈ A (M). As a
consequence, the monoid M is antimatter, as desired.
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