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Abstract. We describe the shape of the Lyubeznik table of either rings in positive characteristic
or Stanley-Reisner rings in any characteristic when they satisfy Serre’s condition Sr or they are
Cohen-Macaulay in a given codimension, condition denoted by CMr. Moreover we show that these
results are sharp.

1. Introduction

Let (R,m) be a regular local ring containing a field K and set A = R/I, where I is an ideal
of R. It is known that some vanishing results on local cohomology modules behave similarly in
either the case where K is a field of positive characteristic or I is a squarefree monomial ideal in a
polynomial ring in any characteristic. For example, as a consequence of work of Peskine and Szpiro
[PS73] in positive characteristic and Lyubeznik [Lyu84] for monomial ideals, there is only one local
cohomology different from zero when A is Cohen-Macaulay. The main reason behind this similar
behaviour is that the Frobenius morphism in positive characteristic is flat by Kunz theorem [Kun69]
and, applying it to our ideal I recursively gives us a cofinal system of ideals with respect to the
system given by the usual powers which describe these local cohomology modules. For squarefree
monomial ideals we have a similar flat morphism, raising any variable of the polynomial ring to its
second power, that plays the same role. This point of view has already been successfully used by
Singh and Walther [SW07] and Àlvarez Montaner [AM15].

The vanishing of local cohomology modules implies the vanishing of some Lyubeznik numbers
of A introduced in [Lyu93]. Indeed, using an spectral sequence argument one may check that the
Lyubeznik table of a Cohen-Macaulay ring A is trivial [AM00, Remark 4.2]. This still holds true
replacing the Cohen-Macaulay property for sequentially Cohen-Macaulay [AM15]. We point out
that these results are no longer true when A is Cohen-Macaulay containing a field of characteristic
zero. For example, consider the ideal generated by the 2 × 2 minors of a generic 2 × 3 matrix
[AML06].

In this note we continue the study of Lyubeznik numbers of A in either the case where K is a
field of positive characteristic or I is a squarefree monomial ideal in any characteristic. The main
results are Theorems 3.4 and 3.5 where we describe the shape of the Lyubeznik table of A when
we relax the Cohen-Macaulay condition on A to Serre’s condition Sr or being Cohen-Macaulay in
codimension r, condition denoted by CMr.

A priori, there is no reason for thinking that the results we obtain are sharp but this is indeed
the case as we will show in Section 4. Finally we highlight that, using results obtained by Conca
and Varbaro [CV20], one may compute some apparently complicated Lyubeznik tables in positive
characteristic in the event that the ring A has a squarefree Gröbner deformation.

JAM is partially supported by grant PID2019-103849GB-I00 (MCIN/AEI/10.13039/501100011033), AGAUR
grant 2021 SGR 00603 and Spanish State Research Agency, through the Severo Ochoa and Maria de Maeztu Program
for Centers and Units of Excellence in R&D (project CEX2020-001084-M).

1

19 Mar 2024 10:49:53 PDT
230330-Yassemi Version 2 - Submitted to J. Comm. Alg.



2. Lyubeznik numbers

Let (R,m) be a regular local ring containing a field K and I an ideal of R. Some finiteness
properties of local cohomology modules Hr

I (R) were proved by Huneke and Sharp [HS93] when
the field K has positive characteristic and Lyubeznik [Lyu93] in the characteristic zero case. In
particular, they proved that the Bass numbers of these local cohomology modules are finite. Relying
on this fact, Lyubeznik [Lyu93] introduced a set of numerical invariants of local rings containing a
field as follows:

Theorem/Definition 2.1. Let A be a local ring containing a field K, so that its completion Â

admits a surjective ring homomorphism R
π // //Â from a regular local ring (R,m) of dimension n

and set I := ker(π). Then, the Bass numbers

λp,i(A) := µp(m, H
n−i
I (R)) = µ0(m, H

p
m(Hn−i

I (R)))

depend only on A, i and p, but neither on R nor on π.

We refer to these invariants as Lyubeznik numbers and they are known to satisfy the following
properties: λp,i(A) = 0 if i > d, λp,i(A) = 0 if p > i and λd,d(A) 6= 0, where d = dimA. Therefore
we can collect them in the so-called Lyubeznik table:

Λ(A) =

 λ0,0 · · · λ0,d
. . .

...
λd,d

 .

We say that the Lyubeznik table is trivial if λd,d(A) = 1 and λp,i(A) = 0 for p and i different
from d. The highest Lyubeznik number λd,d(A) has an interpretation in terms of the dual graph
Γ1(A), also known as Hochster-Huneke graph, associated to Spec(A).

Definition 2.1. Let A be a ring of dimension d and let t be an integer such that 0 ≤ t ≤ d. We
define the graph Γt(A) as a simple graph whose vertices are the minimal primes of A and there is
an edge between p and q distinct minimal primes if and only if ht(p + q) ≤ t.

Zhang gave the following characterization.

Theorem 2.2. [Zha07, Main Theorem] Let A be a complete local ring with separably closed residue
field. Then:

λd,d(A) = #Γ1(A).

Remark 2.3. More generally λd,d(A) = #Γ1(B) where B =
̂̂
Ash is the completion of the strict

henselianization of the completion of A.

We point out that Kawasaki already proved in [Kaw02, Theorem 2] that the highest Lyubeznik
number λd,d of a Cohen-Macaulay ring (or even S2) is always one. Other Lyubeznik numbers can
be described from the graphs Γt(A) as shown by Walther [Wal01] and Núñez-Betancourt, Spiroff
and Witt [NnBSW19]. Moreover, Walther describe the possible Lyubeznik tables for d ≤ 2 (see
also [RWZ22] for other small dimensional cases).

Proposition 2.4. Let A be an equidimensional complete local ring of dimension ≥ 3 with separably
closed residue field. Then

(i) [Wal01, Proposition 2.2] λ0,1(A) = #Γd−1(A)− 1.
(ii) [NnBSW19, Theorem 5.4 (1)] λ1,2(A) = #Γd−2(A)−#Γd−1(A).
(iii) [NnBSW19, Theorem 5.4 (2)] λi,i+1(A) ≥ #Γd−i−1(A)−#Γd−i(A) for 1 ≤ i ≤ d− 2.
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3. Lyubeznik tables of Sr and CMr rings

Throughout this section we will always assume that (R,m) is a regular local ring and A is a
complete local ring containing a field that admits a presentation A = R/I where I ⊆ R is an ideal.
We will study the Lyubeznik table when we relax the Cohen-Macaulay condition on the ring A.
The classical way of doing so is by means of Serre’s conditions. Another way is by asking for being
Cohen-Macaulay up to some codimension. This notion has been considered by Miller, Novik and
Schwarz [MNS11] and it was further developed in [HYZN12, HYZN12, PPTY22] for the case that
A is equidimensional and defined by a squarefree monomial ideal.

Definition 3.1. We say:

(i) A satisfies Serre’s condition Sr if

depth Ap ≥ min{r, dimAp},
for all p ∈ Spec(R).

(ii) A satisfies the condition CMr if it is Cohen-Macaulay in codimension r, that is Ap is
Cohen-Macaulay for all p ∈ Spec(R) with ht p ≤ d− r.

Remark 3.2. Schenzel [Sch79] proved that if A satisfies Sr with r ≥ 2 then it is equidimensional.
However, we may have non-equidimensional CMr rings (see Example 4.3).

Both the Sr and CMr conditions can be characterized in terms of the deficiency modules

Ki
A := Extn−iR (A,R).

The following result can be found in the the work of Schenzel [Sch82, Lemma 3.2.1] (see also [CV20,
Remark 2.9]). For the squarefree monomial ideals case one may consult [PPTY22].

Proposition 3.3. We have:

(i) A is Sr, r ≥ 2, if and only if dimKi
A ≤ i− r for all 1 ≤ i ≤ d.

(ii) A is CMr if and only if dimKi
A ≤ r for all 1 ≤ i ≤ d.

Next we present the main results of the paper where the shape of the Lyubeznik tables is given
in terms of the Sr and the CMr conditions.

Theorem 3.4. Assume that r ≥ 2 and either that:

• A is Sr and contains a field of positive characteristic, or
• A is Sr and I is a squarefree monomial ideal.

Then, the Lyubeznik table of A satisfies λi,i = λi,i+1 = · · · = λi,i+(r−1) = 0, for i ∈ {0, . . . , d− 1}.

Proof. If A contains a field of positive characteristic, then Huneke and Sharp [HS93, Corollary 2.3]
proved that Ass (Hn−i

I (R)) ⊆ Ass (Ki
A), and thus dim (Hn−i

I (R)) ≤ dim (Ki
A). In the squarefree

monomial ideal case, Yanagawa [Yan01, Theorem 2.11] proved that the straight module Hn−i
I (R)

is equivalent to the squarefree module Ki
A. In particular this gives the equality dim (Hn−i

I (R)) =

dim (Ki
A) [Yan01, Lemma 2.8].

Now assume in both cases that A is Sr and thus we have dim (Ki
A) ≤ i − r and consequently

dim (Hn−i
I (R)) ≤ i− r for all 1 ≤ i ≤ d. Then the result follows from the inequality

idR (Hn−i
I (R)) ≤ dim (Hn−i

I (R))

proved in [HS93, Corollary 3.9] and [Lyu93, Theorem 3.4]. Namely, the Lyubeznik numbers are the
Bass numbers λp,i(A) = µp(m, H

n−i
I (R)) and thus the possible non-zero λp,i(A) are in the range

0 ≤ p ≤ i− r. �
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Theorem 3.5. Assume either that:

• A is CMr and contains a field of positive characteristic, or
• A is CMr and I is a squarefree monomial ideal.

Then the Lyubeznik table of A satisfies λp,i = 0, ∀p ≥ r and i ∈ {0, . . . , d− 1}.

Proof. The proof is analogous to the proof of Theorem 3.4 but in the present case we have
dim (Ki

A) ≤ r and thus dim (Hn−i
I (R)) ≤ r for all 1 ≤ i ≤ d. �

Remark 3.6. Under the hypothesis of Theorem 3.5, assume that A is CM1 and thus the only
possible non-zero row of the Lyubeznik table is the 0-th row. Then, the Lyubeznik numbers of A
satisfy λd,d = λ0,1 + 1 and λp,d = λ0,d−p+1 for all p ∈ {2, . . . , d− 1} (see [GLS98, BB05]).

Using Grothendieck’s spectral sequence

Ep,n−i2 = Hp
m(Hn−i

I (R)) =⇒ Hp+n−i
m (R)

we can give a similar result for the CM2 case.

Corollary 3.7. Assume either that :

• A is CM2 and contains a field of positive characteristic, or
• A is CM2 and I is a squarefree monomial ideal.

Then the Lyubeznik numbers of A satisfy λd,d = λ0,1 +λ1,2 + 1, λ2,d = λ0,d−1 and λp,d = λ0,d−p+1 +
λ1,d−p+2 for all p ∈ {3, . . . , d− 1}.

Proof. Under the CM2 condition, the only possibly non-zero terms of Grothendieck spectral se-
quence are placed at the dot spots in the following diagram:

p

n− i

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

n − d

n − d + 1

n − 1

n

0 1 2 d

We have λ0,0 = 0 by Grothendieck’s vanishing theorem (see [BS98, Theorem 6.1.2]). We also
notice that λ0,d = λ1,d = 0.

The only possible non-zero differentials at each Ej-page, j ≥ 2, of the spectral sequence are:

dj : E0,n−j+1
j −→ Ej,n−dj and dj : E1,n−j+1

j −→ Ej+1,n−d
j .

By the general theory of spectral sequences, there exist filtrations 0 ⊆ F rn ⊆ · · · ⊆ F r0 ⊆ Hr
m(R)

for all r, such that the consecutive quotients are F ri /F
r
i+1 = Ei,r−i∞ . Then, taking into account that

Hr
m(R) = 0 for all r 6= n, we have first:

4
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• 0 = E0,n−d+1
∞ = E0,n−d+1

3 = ker
(
d2 : E0,n−d+1

2 −→ E2,n−d
2

)
,

• 0 = E2,n−d
∞ = E2,n−d

3 = E2,n−d
2 /Im

(
d2 : E0,n−d+1

2 −→ E2,n−d
2

)
,

and thus λ2,d = λ0,d−1. For the next subdiagonal in the diagram we have, in the third page:

• E0,n−d+2
3 = E0,n−d+2

2 ,

• 0 = E1,n−d+1
∞ = E0,n−d+1

3 = ker
(
d2 : E1,n−d+1

2 −→ E3,n−d
2

)
,

• E3,n−d
3 = E3,n−d

2 /Im
(
d2 : E1,n−d+1

2 −→ E3,n−d
2

)
,

and in the fourth page:

• 0 = E0,n−d+2
∞ = E0,n−d+2

4 = ker
(
d3 : E0,n−d+2

3 −→ E3,n−d
3

)
,

• 0 = E2,n−d
∞ = E2,n−d

4 = E2,n−d
3 /Im

(
d3 : E0,n−d+2

3 −→ E3,n−d
3

)
.

Therefore λ3,d = λ0,d−2 + λ1,d−1 and analogously we get λp,d = λ0,d−p+1 + λ1,d−p+2 for all p ∈
{4, . . . , d − 1}. For the last case we only have to put into the picture the fact that Hn

m(R) is
isomorphic to the injective hull of the residue field which accounts for the +1 in the formula
λd,d = λ0,1 + λ1,2 + 1.

�

4. Squarefree monomial ideals

The aim of this section is to prove that the results given in Theorems 3.4 and 3.5 are sharp.
To make explicit computations we will use the approach given by Àlvarez Montaner and Vahidi
[AMV14] (see also [AMY18]) where one can interpret Lyubeznik numbers for the case of squarefree
monomial ideals is in terms of the linear strands of the free resolution of the Alexander dual of
the ideal. Throughout this section we let R = K[x1, . . . , xn] be a polynomial ring with coefficients
in a field K. Bass numbers behave well with respect to localization and completion so there is no
inconvenience in working in this setting. We start briefly recalling the results of [AMV14].

Let I∨ be the Alexander dual of a squarefree monomial ideal I ⊆ R. Its minimal Z-graded free
resolution is an exact sequence of free Z-graded R-modules:

L•(I∨) : 0 // Lm
dm // · · · // L1

d1 // L0
// I∨ // 0 ,

where the j-th term is of the form

Lj =
⊕
`∈Z

R(−`)βj,`(I∨),

and the matrices of the morphisms dj : Lj −→ Lj−1 do not contain invertible elements. The
Z-graded Betti numbers of I∨ are the invariants βj,`(I

∨). Given an integer r, the r-linear strand of
L•(I∨) is the complex:

L<r>• (I∨) : 0 // L<r>n−r
d<r>
n−r // · · · // L<r>1

d<r>
1 // L<r>0

// 0 ,

where

L<r>j = R(−j − r)βj,j+r(I
∨),

and the differentials d<r>j : L<r>j −→ L<r>j−1 are the corresponding components of dj .

We point out that these differentials can be described using the so-called monomial matrices
introduced by Miller [Mil00]. These are matrices with scalar entries that keep track of the degrees
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of the generators of the summands in the source and the target. Now we construct a complex of
K-vector spaces

F<r>• (I∨)∗ : 0 Kβn−r,n(I∨)︸ ︷︷ ︸
deg 0

oo · · ·oo Kβ1,1+r(I∨)︸ ︷︷ ︸
degn−r−1

oo Kβ0,r(I∨)︸ ︷︷ ︸
degn−r

oo 0oo ,

where the morphisms are given by the transpose of the corresponding monomial matrices and thus
we reverse the indices of the complex. Then, the Lyubeznik numbers are described by means of
the homology groups of these complexes.

Theorem 4.1. [AMV14, Cor. 4.2] Let I∨ be the Alexander dual of a squarefree monomial ideal
I ⊆ R. Then

λp,n−r(R/I) = dimKHp(F<r>• (I∨)∗).

It has been shown in [HSFYZN18], [VZN19], [PPTY22] that the Sr and CMr properties on the
ring R/I provide conditions on the vanishing of Betti numbers of the Alexander dual ideals I∨

and consequently the shape of the corresponding Betti table. In particular, it describes the linear
strands of the free resolution. To compute Lyubeznik numbers we have to take a step further and
consider the homology of these linear strands so, a priori, it may seem that the results in Theorems
3.4 and 3.5 are not sharp. The following examples show that indeed the results are sharp.

Example 4.2. Let I = (x1, x2, x3, x4)∩(x1, x2, x4, x6)∩(x1, x2, x5, x6)∩(x1, x2, x5, x7)∩(x1, x2, x7, x8)∩
(x1, x3, x4, x6)∩ (x1, x3, x5, x6)∩ (x1, x3, x5, x7)∩ (x1, x3, x6, x8)∩ (x1, x6, x7, x8)∩ (x2, x4, x5, x7)∩
(x2, x4, x6, x8)∩ (x2, x4, x7, x8)∩ (x3, x4, x5, x6)∩ (x3, x4, x6, x8)∩ (x3, x4, x7, x8)∩ (x4, x5, x6, x7)∩
(x5, x6, x7, x8) be an ideal in R = K[x1, . . . , x8]. The minimal free resolution of its Alexander dual
ideal is

L•(I∨) : 0 // R(−8)5 // R(−7)12 ⊕R(−6)4 // R(−5)28 // R(−4)18 // I∨ // 0 ,

and thus I∨ has two linear strands. The Lyubeznik table is:

Λ(R/I) =


0 0 0 0 0

0 0 7 0
0 0 0

0 7
1


The ring R/I is S2 (see [Hol19, Example 5.6]) but it is not Cohen-Macaulay because it has two
local cohomology modules different from zero. We point out that R/I is not CM1 but it is CM2

so it satisfies the properties shown in Corollary 3.7.

Example 4.3. Let I = (x1, x2, x3, x4, x5) ∩ (x1, x2, x3, y4, y5) ∩ (y1, y2, y3, y4, y5) be an ideal in
R = K[x1, . . . , x5, y1, . . . , y5]. The minimal free resolution of its Alexander dual ideal is

L•(I∨) : 0 // R(−7)⊕R(−8) // R(−5)3 // I∨ // 0 ,

and thus I∨ has three linear strands. The Lyubeznik table is:

Λ(R/I) =


0 0 0 0 0 0

0 0 0 0 0
0 1 0 0

0 1 0
0 0

3


6
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The ideal I can be interpreted as the edge ideal of a graph G(3, 2) obtained from a Cohen-Macaulay
bipartite graph G. Then, the ring R/I is CM4 by using [HSFYZN18, Theorem 4.5]. The ring R/J
with J = I ∩ (x1, x2, x3, x4, y1, y2, y3, y4) is not equidimensional but it is still CM4. Despite the fact
that the minimal free resolution of its Alexander dual ideal is

L•(J∨) : 0 // R(−10) // R(−7)⊕R(−8)⊕R(−9)2 // R(−5)3 ⊕R(−8) // J∨ // 0 ,

we have Λ(R/I) = Λ(R/J).

5. Squarefree initial ideals

Let R = K[x1, . . . , xn] be a polynomial ring with coefficients in a field K. Assume that R is
equipped with a Zm-graded structure such that deg(xi) ∈ Zm≥0. We have that some homological
invariants behave well with respect to Gröbner deformations. For instance, Conca and Varbaro
[CV20, Theorem 1.3] proved that, for a Zm-graded ideal I ⊆ R such that the initial ideal in(I) with
respect to some term order is squarefree, we have:

dimKH
i
m(R/I)α = dimKH

i
m(R/in(I))α

for all i ∈ Z≥0 and all α ∈ Zm. Therefore, extremal Betti numbers, depth and Castelnuovo-
Mumford regularity of R/I and R/in(I) coincide. Classes of ideals satisfying this condition are
ASL ideals, Cartwright-Sturmfels ideals and Knutson ideals (see [CV20] for details).

For our purposes we point out the following result:

Proposition 5.1. [CV20, Corollary 2.11] Let R = K[x1, . . . , xn] be a polynomial ring over a field.
Let I ⊆ R be an homogeneous ideal of codimension ≥ 2 such that the initial ideal in(I) with respect
to some term order is squarefree. Then:

(i) R/I is Sr, r ≥ 2, if and only if R/in(I) is Sr.
(ii) R/I is CMr if and only if R/in(I) is CMr.

It has been proved in [ALNnBRM22] that the graphs Γt(R/I) of equidimensional rings, and
consequently some Lyubeznik numbers, also behave well with respect to Gröbner deformations.

Theorem 5.2. [ALNnBRM22, Theorem 3.4] Let R = K[x1, . . . , xn] be a polynomial ring over a
field. Let I ⊆ R be an equidimensional homogeneous ideal of codimension ≥ 2 such that the initial
ideal in(I) with respect to some term order is squarefree. Then,

#Γt(R/I) = #Γt(R/in(I)).

Corollary 5.3. Let R = K[x1, . . . , xn] be a polynomial ring over a field. Let I ⊆ R be an equidi-
mensional homogeneous ideal of codimension ≥ 2 such that the initial ideal in(I) with respect to
some term order is squarefree. Then,

λd,d(R/I) = λd,d(R/in(I)), λ0,1(R/I) = λ0,1(R/in(I)) and λ1,2(R/I) = λ1,2(R/in(I)).

In positive characteristic, Nadi and Varbaro [NV20] proved the following inequality between the
Lyubeznik numbers of R/I and those of R/in(I).

Proposition 5.4. [NV20, Corollary 2.5] Let R = K[x1, . . . , xn] be a polynomial ring over a field
of positive characteristic. Let I ⊆ R be an homogeneous ideal such that the initial ideal in(I) with
respect to some term order is a squarefree monomial ideal. Then λp,i(R/I) ≤ λp,i(R/in(I)).

Combining this result with Theorems 3.4 and 3.5 we obtain the following:
7
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Corollary 5.5. Let R = K[x1, . . . , xn] be a polynomial ring over a field of positive characteristic.
Let I ⊆ R be an homogeneous ideal such that the initial ideal in(I) with respect to some term order
is a squarefree monomial ideal. Then:

• If R/in(I) is Sr with r ≥ 2 then the Lyubeznik table of R/I satisfies

λi,i(R/I) = λi,i+1(R/I) = · · · = λi,i+(r−1)(R/I) = 0, for i ∈ {0, . . . , d− 1}.

• If R/in(I) is CMr then the Lyubeznik table of R/I satisfies

λp,i(R/I) = 0, ∀p ≥ r and i ∈ {0, . . . , d− 1}.

It is quite common that the Lyubeznik table of a monomial ideal is trivial and thus the following
easy consequence becomes relevant.

Corollary 5.6. Let R = K[x1, . . . , xn] be a polynomial ring over a field of positive characteristic.
Let I ⊆ R be an homogeneous ideal such that the initial ideal in(I) with respect to some term order
is a squarefree monomial ideal. If the Lyubeznik table of R/in(I) is trivial then the Lyubeznik table
of R/I is trivial as well.

Using these results, we can compute the Lyubeznik table of the following examples:

Example 5.7. [CV20, Example 3.2] Let R = K[x1, . . . , x5] be a polynomial ring over a field of
positive characteristic. Let I be the homogeneous ideal given by the 2× 2-minors of the matrix(

x24 + xa5 x3 x2
x1 x24 xb3 − x2

)
with deg(x4) = a,deg(x1) = deg(x3) = 1,deg(x2) = b and deg(x5) = 2. On the other hand,

in(I) = (x1x3, x1x2, x2x3)

where we consider the lex term order and thus the Lyubeznik table of R/I is trivial in any charac-
teristic.

Binomial edge ideals satisfy that their generic initial ideals are squarefree [CDNG18, Theorem
2.1].

Example 5.8. Let R = K[x1, . . . , x6, y1, . . . , y6] be a polynomial ring over a field of positive char-
acteristic. Let JC6 ⊆ R be the binomial edge ideal associated to the 6-cycle C6 and gin(JC6) its
generic initial ideal. Namely, we have:

JC6 = (x1y2 − x2y1, x1y6 − x6y1, x2y3 − x3y2,−x3y4 + x4y3, x4y5 − x5y4, x5y6 − x6y5)
gin(JC6) =(x5x6, x4x5, x3x4, x2x3, x1x6, x1x2, x4x6y5, x3x5y4, x2x6y1, x2x4y3, x1x5y6, x1x3y2,

x3x6y4y5, x3x6y1y2, x2x5y3y4, x2x5y1y6, x1x4y5y6, x1x4y2y3, x4x6y1y2y3, x3x5y1y2y6,

x2x6y3y4y5, x2x4y1y5y6, x1x5y2y3y4, x1x3y4y5y6)

The Lyubeznik table of R/gin(JC6) is trivial in any characteristic and thus the Lyubeznik table
of R/JC6 is trivial as well.
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