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Abstract. We define the concentration of a numerical semigroup
S as C(S) = max {nextS(s)− s | s ∈ S\{0}} wherein nextS(s) =
min {x ∈ S | s < x}. In this paper, we study the class of numerical
semigroups with multiplicity m and concentration less than or equal to
k, denoted by Ck[m]. We give algorithms to calculate the whole set
Ck[m] with given genus or Frobenius number. In addition, we prove
that if S ∈ Ck[m] with k ≤

√
m
2

, then S verifies the Wilf’s conjecture.

1. Introduction

We start by recalling some terminology related to numerical semigroups
and setting some notations to be used along the paper. Let Z be the set of
integers and let N = {n ∈ Z | n ≥ 0} be the set of nonnegative integers. A
submonoid of (N,+) is a subset of N closed under addition and containing
0. A numerical semigroup is a submonoid S of (N,+) such that N\S =
{n ∈ N | n 6∈ S} is finite.

If S is a numerical semigroup, then m(S) = min(S\{0}), F(S) =
max(Z\S) and g(S) the cardinality of N\S are three important invariants
of S known as multiplicity, Frobenius number and genus of S, respec-
tively.

If S is a numerical semigroup and s ∈ S\{0}, we denote by
nextS(s) = min {x ∈ S | s < x} and by prevS(s) = max {x ∈ S | x < s}.
We define the concentration of a numerical semigroup S as C(S) =
max {nextS(s)− s | s ∈ S\{0}}.

For m a positive integer, the semigroup 4(m) = {0,m,→} is called
half-line or ordinary which has concentration 1. Moreover, every numeri-
cal semigroup with concentration 1 is of this form. The family of numerical
semigroups with concentration 2 has been studied in [16].

Given m and k positive integers, we denote by

L (m) = {S | S is a numerical semigroup with m(S) = m}
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and by, Ck[m] = {S | S ∈ L (m) with C(S) ≤ k} .
Observe that if k ≥ m, then Ck[m] = L (m). The purpose of the present

paper is to study the set of numerical semigroups Ck[m] when m ≥ 3 and
k ∈ {2, . . . ,m− 1}.

If X is a nonempty subset of N, we denote by 〈X 〉 the submonoid of (N,+)
generated by X , that is,

〈X 〉 =

{
n∑

i=1

λi xi | n ∈ N\ {0} , x1, . . . , xn ∈ X , and λ1, . . . , λn ∈ N

}
,

which is a numerical semigroup if and only if gcd(X ) = 1 (see [19]).
If M is a submonoid of (N,+) and M = 〈X 〉 then we say that X is a

system of generators of M . Moreover, if M 6= 〈Y〉 for all Y  X , then we
say that X is a minimal system of generators of S. In [19, Corollary 2.8]
it is shown that every submonoid of (N,+) has a unique minimal system
of generators, which is finite. We denote by msg(M) the minimal system
of generators of M , its cardinality is called the embedding dimension of M
and is denoted by e(M).

This paper is organized as follows. In Section 2, we will show that if S is a
numerical semigroup, then C(S) = max {nextS(x)− x | x ∈ msg(S)}. Also,
we will see that if S ∈ Ck[m] and S 6= 4(m) then S ∪{F(S)} ∈ Ck[m]. This
will allow us to order the elements of Ck[m] making a tree with root 4(m).
We will characterize the sons of an arbitrary vertex of this tree and this will
give us an algorithmic procedure to compute the elements of Ck[m] with a
given genus. Besides, we will prove that Ck[m] is an infinite set if and only
if there exists d ∈ {2, . . . , k} wherein d divides m.

Given S ∈ L (m), denote by θ(S) = S∩{m+ 1, . . . , 2m− 1}. An
(
k,m

)
-

set is a set A fulfilling that A = θ(S), for some S ∈ Ck[m]. We will start

the Section 3, by proving that the set Ck[m] is equal to
{
S ∈ L (m) | A ⊆

S for some
(
k,m

)
− set A

}
. From this, we will show that Ck[m] is the union

of finitely many Frobenius pseudo-varieties (see [14]).
Following the notation introduced in [17], we say that S is

an elementary numerical semigroup if F(S) < 2m. Denote
by E(m) = {S ∈ L (m) |S is elementary} and by E

(
Ck[m]

)
=

{S ∈ Ck[m] | S is elementary}. In Section 3, we will prove that the set

E
(
Ck[m]

)
is equal to

{
{0}∪

{
m,m+x1,m+x1+x2, . . . ,m+x1+x2+· · ·+xp

}
∪{

2m,→
}
|
(
x1, x2, . . . , xp, xp+1

)
∈ {1, . . . , k}p+1 and x1 +x2 + · · ·+xp+1 =

m
}

. As a consequence of this result, we will be able to give an algorithm to

compute the whole set E
(
Ck[m]

)
with given genus and Frobenius number.

Let Ck[m,F ] = {S ∈ Ck[m] | F(S) = F }. In Section 4, we will give an
algorithm to compute the whole set Ck[m,F ] (note that the case F(S) < 2m
has been studied in the Section 3). Using the terminology introduced in
[18] a numerical semigroup is irreducible if it cannot be expressed as the
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intersection of two numerical semigroups properly containing it. Denote
by I

(
Ck[m,F ]

)
= {S ∈ Ck[m,F ] | S is irreducible}. In this section, we

define an equivalence relation ∼ over Ck[m,F ] such that Ck[m,F ]/ ∼={
[S] | S ∈ I

(
Ck[m,F ]

)}
where [S] denotes the equivalence class of S with

respect to ∼.
This way, in order to determine explicitly the elements in the set Ck[m,F ]

we need:

(1) an algorithm to compute the set I
(
Ck[m,F ]

)
;

(2) an algorithm to compute the class [S], for each S ∈ I
(
Ck[m,F ]

)
.

Since (1) is solved in [3], we only need to solve (2).
An element s in S is a small element if s < F(S). Denote by N(S) the set

of all small elements in S and by n(S) its cardinality. In 1978, H. S. Wilf
(see [20]) conjectured that g(S) is bounded above by (e(S) − 1)n(S). This
question has been solved in some special cases, but remains open in general,
and it is one of the most important issues in Numerical Semigroups Theory.
In Section 5, we will show that if S ∈ Ck[m] with k ≤

√
m
2 , then S satisfies

Wilf’s conjecture.

2. The tree associated to Ck[m]

Throughout this paper, m and k are positive integers such that 2 ≤ k ≤
m− 1. From [19, Lemma 2.3] we can deduce the following result.

Lemma 1. Let M be a submonoid of (N,+) such that M 6= {0} and M∗ =
M\{0}. Then msg(M) = M∗\(M∗ +M∗).

The next result gives us characterizations for numerical semigroups with
multiplicity m and concentration less than or equal to k.

Proposition 2. Let S be a numerical semigroup with m(S) = m. The
following conditions are equivalent:

(1) S belongs to Ck[m].
(2) if h ∈ N\S such that h > m(S), then {h+ 1, . . . , h+ k − 1}∩S 6= ∅.
(3) {s+ 1, . . . , s+ k} ∩ S 6= ∅ for all s ∈ S\{0}.
(4) {x+ 1, . . . , x+ k} ∩ S 6= ∅ for all x ∈ msg(S).

Proof. (1) implies (2). Let s ∈ S\{0} such that s < h < nextS(s). As h >
m(S), then s ≥ m and thus nextS(s)− s ≤ k. Hence, h+ (nextS(s)−h) ∈ S
and nextS(s)− h ∈ {1, . . . , k − 1}.

(2) implies (3). If s+1 6∈ S then by (2), we deduce that {s+ 2, . . . , s+ k}∩
S 6= ∅.

(3) implies (4). Trivial.
(4) implies (1). If s ∈ S\{0}, then there exists x ∈ msg(S) and t ∈ S such

that s = x+t. Let i ∈ {1, . . . , k} such that x+i ∈ S, then s+i = x+i+t ∈ S
and thus nextS(s)− s ≤ s+ i− s ≤ k. �

From the proof of the previous proposition we obtain the following.
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Corollary 3. If S is a numerical semigroup, then C(S) =
max {nextS(x)− x | x ∈ msg(S)}.

Example 4. Using the previous results, we deduce that S = 〈5, 7, 9〉 is a
numerical semigroup with C(S) = 2, because max

{
nextS(5)− 5,nextS(7)−

7,nextS(9)− 9
}

= max {7− 5, 9− 7, 10− 9} = 2.

The following result can be deduced from Proposition 2 item (2).

Corollary 5. If {S, T} ⊆ L (m) such that S ⊂ T and S ∈ Ck[m], then
T ∈ Ck[m].

It is well known that if S is a numerical semigroup such that S 6= N, then
S ∪ {F(S)} is a numerical semigroup. As a consequence of Corollary 5, we
have:

Corollary 6. If S ∈ Ck[m] such that S 6= 4(m), then S ∪ {F(S)} ∈ Ck[m].

The previous result enables us, given an element S ∈ Ck[m], to define
recursively the following sequence of elements in Ck[m]:

• S0 = S,

• Sn+1 =

{
Sn ∪ {F(Sn)} if Sn 6= 4(m)
4(m) otherwise.

The next result is easy to prove.

Proposition 7. If S ∈ Ck[m] and {Sn | n ∈ N} is the previous sequence of
numerical semigroups, then Sg(S)−m+1 = 4(m).

A graph G = (V,E) consists of a set V and a collection E of ordered
pairs (v, w) of distinct elements from V . Elements of V are called ver-
tices and elements of E are called edges. A path of length n connecting
the vertices u and v of G is a sequence of n distinct edges of the form
(v0, v1), (v1, v2), . . . , (vn−1, vn) with v0 = u and vn = v.

A graph G is a tree if there exists a vertex r (known as the root of G) such
that for every other vertex v of G, there exists a unique path connecting v
and r. If (u, v) is an edge of the tree then we say that u is a son of v.

We define the graph G
(
Ck[m]

)
as the graph whose vertices are elements

of Ck[m] and (S, T ) ∈ Ck[m]× Ck[m] is an edge if T = S ∪ {F(S)}.
As a consequence of Proposition 7, we have the following result.

Theorem 8. The graph G
(
Ck[m]

)
is a tree with root equal to 4(m).

From this, it is possible to construct recursively the elements of the set
G
(
Ck[m]

)
, starting in 4(m), we connect each vertex with its sons. Hence,

we need to characterize the sons of an arbitrary vertex of this tree and so
we need the next result.

Lemma 9. [15, Lemma 1.7] Let S be a numerical semigroup and x ∈ S.
Then S\{x} is a numerical semigroup if and only if x ∈ msg(S).

The following result is easy to prove.
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Proposition 10. If S ∈ Ck[m], then the set of sons of S in the tree

G
(
Ck[m]

)
is equal to

{
S\{x} | x ∈ msg(S), x ≥ F(S) + 2

}
∪
{
S\{F(S) +

1} | F(S)+1 ∈ msg(S), F(S)+1 6= m and F(S)+2−prevS(F(S)+1) ≤ k
}

.

Example 11. From previous proposition, we construct the tree G
(
C2[5]

)
.

4(5) = 〈5, 6, 7, 8, 9〉

〈5, 7, 8, 9, 11〉 〈5, 6, 8, 9〉 〈5, 6, 7, 9〉 〈5, 6, 7, 8〉

〈5, 7, 9, 11, 13〉 〈5, 7, 8, 11〉 〈5, 7, 8, 9〉 〈5, 6, 8〉

〈5, 7, 9, 13〉 〈5, 7, 9, 11〉 〈5, 7, 8〉

〈5, 7, 9〉

6
7 8

9

8 9 11 9

11 13 11

13

Note that the number x appearing on either side of an edge (Q,P ) means
that Q = P\{x} and F(Q) = x.

We have that G
(
C2[5]

)
is finite, in fact by [16, Proposition 12] we already

knew that G
(
C2[5]

)
is finite but, for example, G

(
C2[4]

)
is infinite. Our next

goal is to characterize the pair of positive integers (k,m) such that Ck[m] is
finite.

If S is a numerical semigroup, then N\S is a finite set. Hence we can
announce the next result.

Lemma 12. If S is a numerical semigroup, then
{T | T is a numerical semigroup and S ⊆ T} is a finite set.

Proposition 13. The set Ck[m] is infinite if and only if there exists a divisor
d of m such that 2 ≤ d ≤ k.

Proof. Necessity. If S ∈ Ck[m], then nextS(m) ∈ {m+ 1, . . . ,m+ k} and
so Ck[m] ⊆

{
S | S is a numerical semigroup and 〈m,m+i〉 ⊆ S, for some i ∈

{1, . . . , k}
}

. By using Lemma 12, we can deduce that there exists i ∈
{1, . . . , k} such that gcd(m,m + i) = d 6= 1. Hence, d is a divisor of m
such that 2 ≤ d ≤ k.
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Sufficiency. For each t ∈ N define S(t) = {0} ∪
(
{m} + 〈d〉

)
∪

{m+ t.d,→}. It is clear that S(t) is a numerical semigroup in Ck[m] with
F
(
S(t)

)
= m+ t.d− 1. Therefore, Ck[m] is an infinite set. �

Example 14. Let d = 2, m = 14 and k = 3. As 2 divides 14 and 2 ≤ 3, by
Proposition 13, we have that C3[14] has infinite cardinality.

On the other hand, none of the elements of {2, 3, 4} divides 25, then C4[25]
has finite cardinality.

Let us finish this section by giving an algorithm that allows us to compute
the whole set Ck[m] with a given genus.

Let G be a tree with root, and v one of its vertices. The depth of the
vertex v is the length of the path that connects v to the root of G, denoted
by dG(v). Given n ∈ N, denote by

N(G,n) = {v | dG(v) = n} .

The height of the tree G is defined as h(G) = max {k ∈ N | N(G, k) 6= ∅}.
The following result is easy to prove.

Lemma 15. With the above notation, we have:

(1) N
(
G(Ck[m]), n

)
= {S ∈ Ck[m] | g(S) = m− 1 + n},

(2) N
(
G(Ck[m]), n+1

)
=
{
S | S is a son of an element in N

(
G(Ck[m], n)

)}
.

Algorithm 16.
Input: Integers m, g such that g ≥ m− 1.
Output: The set {S ∈ Ck[m] | g(S) = g}
(1) A = {〈m,m+ 1, . . . , 2m− 1〉}, i = m− 1.
(2) If i = g then return A.
(3) For each S ∈ A compute BS = {T | T is a son of S ∈ G(Ck[m])}.
(4) If

⋃
S∈ABS = ∅, then return ∅.

(5) A :=
⋃

S∈ABS , i = i+ 1 and go to step 2.

Example 17. Let us compute the set {S ∈ C3[4] | g(S) = 6}.
(1) Start with A = {〈4, 5, 6, 7〉}, i = 3.
(2) The first loop constructs B〈4,5,6,7〉 = {〈4, 6, 7, 9〉, 〈4, 5, 7〉, 〈4, 5, 6〉}

and then A = {〈4, 6, 7, 9〉, 〈4, 5, 7〉, 〈4, 5, 6〉}, i = 4.
(3) The second loop constructs B〈4,6,7,9〉 =
{〈4, 7, 9, 10〉, 〈4, 6, 9, 11〉, 〈4, 6, 7〉}, B〈4,5,7〉 =
{〈4, 5, 11〉} and B〈4,5,6〉 = ∅ and then A =
{〈4, 7, 9, 10〉, 〈4, 6, 9, 11〉, 〈4, 6, 7〉, 〈4, 5, 11〉}, i = 5.

(4) The third loop constructs B〈4,7,9,10〉 = {〈4, 7, 10, 13〉, 〈4, 7, 9〉},
B〈4,6,9,11〉 = {〈4, 6, 11, 13〉, 〈4, 6, 9〉}, B〈4,6,7〉 =
∅ and B〈4,5,11〉 = {〈4, 5〉} and then A =
{〈4, 7, 10, 13〉, 〈4, 7, 9〉, 〈4, 6, 11, 13〉, 〈4, 6, 9〉, 〈4, 5〉}, i = 6.

(5) Return{
〈4, 7, 10, 13〉, 〈4, 7, 9〉, 〈4, 6, 11, 13〉, 〈4, 6, 9〉, 〈4, 5〉

}
.
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3.
(
k,m

)
-sets

Recall that a
(
k,m

)
-set is the set of the form θ(S) = S ∩

{m+ 1, . . . , 2m− 1} with S ∈ Ck[m]. The next result characterizes the
set Ck[m].

Theorem 18. With the above notation, Ck[m] =
{
S ∈ L (m) | A ⊆

S for some
(
k,m

)
−set A

}
.

Proof. If S ∈ Ck[m], then S is a numerical semigroup with multiplicity m
and θ(S) ⊆ S.

Conversely, if A is a
(
k,m

)
-set, S ∈ L (m) such that A ⊆ S, we distin-

guish two cases:

(1) If gcd
(
{m} ∪ A

)
= 1, then T = 〈{m} ∪ A〉 ∈ L (m). From (4)

Proposition 2, we deduce that T ∈ Ck[m]. Since S ∈ L (m), T ⊆ S
and T ∈ Ck[m], then by Corollary 5, we have that S ∈ Ck[m].

(2) If gcd
(
{m} ∪ A

)
= d 6= 1, then T = 〈{m} ∪ A〉 ∪ {F(S) + 1,→} ∈

Ck[m] and T ⊆ S. By applying Corollary 5 again, we get S ∈ Ck[m].

�

Let Ω =
{
A | A is a

(
k,m

)
− set

}
. Clearly, the binary relation ⊆ is a

partial order on Ω (i.e. reflexive, transitive and antisymmetric). If ω is a
subset of Ω, we denote by Minimals⊆(ω) the set of minimal elements of ω
with the order ⊆.

Following the notation introduced in [14], a Frobenius pseudo-variety is
a non-empty family P of numerical semigroups that fulfills the following
conditions:

(1) P has a maximum element (with respect to the order ⊆);
(2) If {S, T} ⊆ P, then S ∩ T ∈ P;
(3) If S ∈ P and S 6= max P, then S ∪ {F(S)} ∈ P.

The next result is easy to prove.

Lemma 19. If A ⊆ {m,→}, then P(A) = {S ∈ L (m) | A ⊆ S} is a Frobe-
nius pseudo-variety with max

(
P(A)

)
= 4(m).

Note that, if the set Minimals⊆
{
A | A is a

(
k,m

)
− set

}
=

{A1, A2, . . . , Ap} then, as a consequence of Theorem 18, we have that
Ck[m] =

⋃p
i=1 P(Ai). From this fact we have:

Proposition 20. With the above notation, Ck[m] is the union of finitely
many Frobenius pseudo-varieties.

Our next goal is to give an algorithm to compute all
(
k,m

)
-sets, with

given k and m positive integers. To this end, we need to introduce some
concepts and results.

Given a
(
k,m

)
-set A such that A 6= {m+ 1,m+ 2, . . . , 2m− 1}, denote

by
B(A) = max

(
{m+ 1,m+ 2, . . . , 2m− 1} \A

)
.
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The following result is easy to prove.

Lemma 21. If A is a
(
k,m

)
-set and A ⊆ B ⊆ {m+ 1,m+ 2, . . . , 2m− 1},

then B is also a
(
k,m

)
-set.

The previous result enables us, given a
(
k,m

)
-set A , to define recursively

the following sequence of
(
k,m

)
-sets:

• A0 = A,

• An+1 =

{
An ∪ {B(An)} if An 6= {m+ 1,m+ 2, . . . , 2m− 1}
{m+ 1,m+ 2, . . . , 2m− 1} otherwise.

Let C
(
k,m

)
=

{
A | A is a

(
k,m

)
− set

}
. We define the graph

G
(
C
(
k,m

))
as the graph whose vertices are elements of C

(
k,m

)
and

(X,Y ) ∈ C
(
k,m

)
× C

(
k,m

)
is an edge if Y = X ∪ {B(X)}. From pre-

vious results it is easy to prove the next one.

Proposition 22. The graph G
(
C
(
k,m

))
is a tree with root equal

to {m+ 1,m+ 2, . . . , 2m− 1}. Moreover, if A is a
(
k,m

)
-set,

then the set of sons of A in the tree G
(
C
(
k,m

))
is equal to{

A\{a} | {a, a+ 1, . . . , 2m− 1} ⊆ A and either a ≤ m + k −

1 or {a− 1, a− 2, . . . , a− (k − 1)} ∩A 6= ∅
}

.

Example 23. By using Proposition 22, we construct the tree G
(
C
(
2, 4
))

.

{5, 6, 7}

{6, 7} {5, 7} {5, 6}

{6}

5 7

6

7

Observe that Minimals⊆
(
C
(
2, 4
))

=
{
{6}, {5, 7}

}
. Hence, by Theorem

18, we obtain that C2[4] = {S | S ∈ L (4) with {6} ⊂ S or {5, 7} ⊂ S}.
Moreover, by Proposition 20, C2[4] is the union of the
Frobenius pseudo-varieties {S | S ∈ L (4) with {6} ⊂ S} and
{S | S ∈ L (4) with {5, 7} ⊂ S}.

Now, our goal in this section, is to compute all
(
k,m

)
-sets with a given

cardinality.

Proposition 24. Let p be a positive integer. The following conditions are
equivalent.
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(1) A is an
(
k,m

)
-set with cardinality p,

(2) A =
{
m + x1,m + x1 + x2, . . . ,m + x1 + x2 + · · · +

xp | (x1, x2, . . . , xp, xp+1) ∈ {1, . . . , k}p+1 and x1 + x2 + · · ·+ xp +

xp+1 = m
}

.

Proof. 1) implies 2). Assume that A = {a1 < a2 < · · · < ap}, x1 = a1 −m,
xi+1 = ai+1−ai for all i ∈ {1, . . . , p− 1} and xp+1 = 2m−ap. Then, we can

conclude that (x1, x2, . . . , xp, xp+1) ∈ {1, . . . , k}p+1, x1+x2+· · ·+xp+xp+1 =
m and A = {m+ x1,m+ x1 + x2, . . . ,m+ x1 + x2 + · · ·+ xp}.

2) implies 1). It is clear that, under desired conditions, every A =
{
m+

x1,m + x1 + x2, . . . ,m + x1 + x2 + · · · + xp
}

is contained in
{
m + 1,m +

2, . . . , 2m− 1
}

. Then, we have that S = {0,m}∪A∪{2m,→} ∈ Ck[m] and

A = θ(S). Hence, A is a
(
k,m

)
-set with cardinality p. �

Given q ∈ Q and p ∈ N\{0}, we denote by dqe = min {z ∈ Z | q ≤ z} and
by n(k,m, p) = #

{
A | A is a

(
k,m

)
− set with cardinality p

}
(where #A

stands for cardinality of A).
As a consequence of Proposition 24, we obtain the following result.

Corollary 25. With the above notation, we have that n(k,m, p) 6= 0
if and only if dmk e − 1 ≤ p ≤ m − 1. Furthermore, n(k,m, p) =

#
{

(x1, x2, . . . , xp+1) ∈ {1, . . . , k}p+1 | x1 + x2 + · · ·+ xp + xp+1 = m
}

.

Example 26. By using Proposition 24 let us calculate:

(1) the set
{
A | A is a

(
2, 4
)
− set with cardinality 2

}
, which is equal

to
{
{4 + x1, 4 + x1 + x2} | (x1, x2, x3) ∈ {1, 2}3 and x1 +

x2 + x3 = 4
}

. Since
{

(x1, x2, x3) ∈ {1, 2}3 | x1 + x2 +

x3 = 4
}

=
{

(1, 1, 2), (1, 2, 1), (2, 1, 1)
}

, then the solution is{
{5, 6}, {5, 7}, {6, 7}

}
;

(2) the set
{
A | A is a

(
2, 4
)
− set with cardinality 1

}
, which is equal

to
{
{4 + x1} | (x1, x2) ∈ {1, 2}2 and x1 + x2 = 4

}
. As

{
(x1, x2) ∈

{1, 2}2 | x1+x2 = 4
}

=
{

(2, 2)
}

, then the solution is equal to
{
{6}
}

.

Recall that S is an elementary numerical semigroup if F(S) < 2m(S). We
denote by E(m) the set of elementary numerical semigroups with multiplicity
m.

Proposition 27. [17, Lemma 1] Let A be a subset of {m+ 1, . . . , 2m− 1}.
Then {0,m} ∪ A ∪ {2m,→} is an elementary numerical semigroup with
multiplicity m. Moreover, every elementary numerical semigroup with mul-
tiplicity m is of this form.

Denote by

E
(
Ck[m]

)
= {S ∈ Ck[m] | S is elementary} .

Thus, from Theorem 18 and Propositions 24 and 27, we deduce the next
result.
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Proposition 28. With the above notation, E
(
Ck[m]

)
=
{
{0} ∪

{
m,m +

x1,m+x1+x2, . . . ,m+x1+x2+· · ·+xp
}
∪
{

2m,→
}
|
(
x1, x2, . . . , xp, xp+1

)
∈

{1, . . . , k}p+1 and x1 + x2 + · · ·+ xp+1 = m
}

.

As a consequence of the previous proposition we have:

Corollary 29. Let g be a positive integer. Then, the set of{
S ∈ E

(
Ck[m]

)
with g(S) = g

}
is equal to

{
{0} ∪

{
m,m + x1,m + x1 +

x2, . . . ,m+x1+x2+· · ·+x2m−g−2
}
∪
{

2m,→
}
|
(
x1, x2, . . . , xp, x2m−g−1

)
∈

{1, . . . , k}2m−g−1 and x1 + x2 + · · ·+ x2m−g−1 = m
}

.

Example 30. Let us calculate all numerical semigroups S in E
(
C3[5]

)
with

g(S) = 6. By Corollary 29, we have that
{
S ∈ E

(
C3[5]

)
with g(S) = 6

}
={

{0}∪
{

5, 5 +x1, 5 +x1 +x2
}
∪
{

10,→
}
|
(
x1, x2, x3

)
∈ {1, 2, 3}3 and x1 +

x2 + x3 = 5
}

. As
{

(x1, x2, x3) ∈ {1, 2, 3}3 and x1 + x2 + x3 =

5
}

=
{

(1, 1, 3), (1, 2, 2), (1, 3, 1), (2, 1, 2), (2, 2, 1), (3, 1, 1)
}

, then
{
S ∈

E
(
C3[5]

)
| g(S) = 6

}
= {0} ∪ A ∪ {10,→} such that A belongs to{

{5, 6, 7} , {5, 6, 8} , {5, 6, 9} , {5, 7, 8} , {5, 7, 9} , {5, 8, 9}
}

.

Given a positive integer F , denote by

Ck[m,F ] = {S ∈ Ck[m] | F(S) = F } .

We will finish this section studying the elementary elements in Ck[m,F ].
The next result is easy to prove.

Proposition 31. With the above notation, we have the following:

(1) If F = m− 1 then Ck[m,F ] = {4(m)};
(2) If F = m + r with 1 ≤ r ≤ k − 1, then Ck[m,F ] =

{
{0,m} ∪ A ∪

{m+ r + 1,→} | A ⊆
{
m+ 1, . . . ,m+ r − 1

}}
;

(3) If F = m+ r with k ≤ r < m, then Ck[m,F ] =
{
{0,m} ∪A∪

{
m+

r + 1,→
}
| A =

{
m + x1,m + x1 + x2, . . . ,m + x1 + x2 + · · · +

xp
}
, (x1, x2, . . . , xp, xp+1) ∈ {1, . . . , k}p+1 with x1 +x2 + · · ·+xp +

xp+1 = r + 1 and xp+1 ≥ 2
}

.

Example 32. Let us calculate the set of numerical semigroups C2[5, 8]. By

Proposition 31, we get that C2[5, 8] =
{
{0, 5} ∪ A ∪ {9,→} | A = {5 +

x1}, (x1, x2) ∈ {1, 2}2 with x1 + x2 = 4 and x2 ≥ 2
}
∪
{
{5 + x1, 5 + x1 +

x2}, (x1, x2, x3) ∈ {1, 2}3 with x1 + x2 + x3 = 4 and x3 ≥ 2
}

. Then,

C2[5, 8] =
{
{0, 5} ∪A ∪ {9,→} | A ∈

{
{7}, {6, 7}

}}
.
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4. Non elementary elements of Ck[m,F ]

The aim of this section is to give an algorithm to compute all elements in
the set Ck[m,F ] with F > 2m.

Following the terminology introduced in [18] a numerical semigroup is
irreducible if it cannot be expressed as the intersection of two numerical
semigroups properly containing it. This class of numerical semigroups has
been widely studied in the literature and depending on the parity of the
Frobenius number, which is odd or even, are called symmetric or pseudo-
symmetric, respectively (see[11] and [1]). Of the many characterizations
of irreducible numerical semigroups existing in the literature, we have the
following results.

Proposition 33. [19, Corollary 4.5] Let S be a numerical semigroup.

(1) S is symmetric if and only if g(S) = F(S)+1
2 .

(2) S is pseudo-symmetric if and only if g(S) = F(S)+2
2 .

Note that if S is a numerical semigroup, then g(S) ≥ F(S)+1
2 (see, [19,

Lemma 2.14]. As a consequence of Proposition 33, we obtain that the ir-
reducible numerical semigroups are those with the least possible genus in
terms of their Frobenius number.

Proposition 34. [2, Lemma 4] Let S be a numerical semigroup. The fol-
lowing conditions hold:

(1) S is irreducible if and only if S is maximal in the set of all numerical
semigroups with Frobenius number F(S).

(2) if h = max
{
x ∈ N\S | F(S)− x 6∈ S and x 6= F(S)

2

}
, then S ∪ {h}

is also a numerical semigroup with Frobenius number F(S).
(3) S is irreducible if and only if

{
x ∈ N\S | F(S) − x 6∈ S and x 6=

F(S)
2

}
= ∅.

Let S be a non-irreducible numerical semigroup. Denote by α(S) =

max
{
x ∈ N\S | F(S)− x 6∈ S and x 6= F(S)

2

}
. If S is an irreducible numer-

ical semigroup, then by definition α(S) = 0. Observe that, if α(S) 6= 0 then
F(S)
2 < α(S) < F(S).
If S ∈ Ck[m,F ], as a consequence of Corollary 5 and Proposition 34, then

we can define the following sequence of elements in Ck[m,F ]:

• S0 = S,
• Sn+1 = Sn ∪ {α(Sn)}

It is easy to prove the next result.

Proposition 35. Let S ∈ Ck[m,F ] and let (Sn)n∈N be the previous sequence.
Then there exists a non negative integer p such that Sp is an irreducible
numerical semigroup in Ck[m,F ].
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We denote by I(S) the irreducible Sp obtained from a numerical semigroup
S.

We define the following equivalence relation over Ck[m,F ]:

S ∼ T if and only if I(S) = I(T ).

Denote the equivalence class modulo ∼ by [S] = {T ∈ Ck[m,F ] | S ∼ T}
and by I

(
Ck[m,F ]

)
= {S ∈ Ck[m,F ] | S is irreducible}. As a consequence

of Proposition 35, we deduce the next result.

Theorem 36. The quotient set Ck[m,F ]/∼ is equal to{
[S] | S ∈ I

(
Ck[m,F ]

)}
. Moreover, if {S, T} ⊆ I

(
Ck[m,F ]

)
and

S 6= T then [S] ∩ [T ] = ∅.

In view of Theorem 36, in order to determine explicitly the elements in
the set Ck[m,F ] we need:

(1) an algorithm to compute the set I
(
Ck[m,F ]

)
.

(2) an algorithm to compute the class [S], for each S ∈ I
(
Ck[m,F ]

)
.

In [3] an efficient algorithm was given to compute all irreducible numerical
semigroups with fixed multiplicity m and Frobenius number F . By using
Proposition 2, we choose those with concentration less than or equal to k
and thus we have solved (1). Our goal now is to provide an algorithm to
solve (2).

Let ∇ be an element in I
(
Ck[m,F ]

)
. Let G([∇]) be the graph with

vertex set [∇] and (S, T ) ∈ [∇]× [∇] is an edge if and only if T = S∪{α(S)}
and α(S) 6= 0.

Proposition 37. If ∇ ∈ I
(
Ck[m,F ]

)
, then the graph G([∇]) is a tree

with root equal to ∇. Moreover, the sons of a vertex T is
{
T\{x} | x ∈

msg(T ), F
2 < x < F, α(T ) < x, nextT (x)− prevT (x) ≤ k and x > m

}
.

Proof. If S is a son of T , then T = S ∪ {α(S)} with α(S) 6= 0 and thus
T\{α(S)} = S. By Lemma 9, we have that α(S) ∈ msg(T ). Clearly,
F
2 < α(S) < F , α(T ) < α(S) and nextT (α(S))− prevT (α(S)) ≤ k.

Conversely, if x ∈ msg(T ), F
2 < x < F , nextT (x) − prevT (x) ≤ k, then

we get that T\{x} ∈ Ck[m,F ]. If α(T ) < x, then we have α(T\{x}) = x.
Therefore, T = (T\{x}) ∪ {α(T\{x}} and thus T\{x} is a son of T . �

Algorithm 38.
Input: ∇ ∈ I

(
Ck[m,F ]

)
.

Output: The set [∇].

1. A = {∇} and C = {∇}.
2. For each S ∈ C compute the set
BS =

{
T | T is a son of S in the tree G([∇])

}
.

3. C =
⋃

S∈C BS .
4. If C = ∅ then return A.
5. A = A ∪ C go to step 2.
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Example 39. By Propositions 2 and 33 we have 〈5, 7, 9, 11〉 ∈ I
(
C3[5, 13]

)
.

Let us compute [〈5, 7, 9, 11〉].
• Start with A =

{
〈5, 7, 9, 11〉

}
and C =

{
〈5, 7, 9, 11〉

}
.

• The first loop constructs B〈5,7,9,11〉 =
{
〈5, 7, 11〉, 〈5, 7, 9〉

}
, then C ={

〈5, 7, 11〉, 〈5, 7, 9〉
}

and thus A =
{
〈5, 7, 9, 11〉, 〈5, 7, 11〉, 〈5, 7, 9〉

}
• The second loop constructs B〈5,7,11〉 =

{
〈5, 7, 16, 18〉,

}
and

B〈5,7,9〉 = ∅, then C =
{
〈5, 7, 16, 18〉,

}
and thus A ={

〈5, 7, 9, 11〉, 〈5, 7, 11〉, 〈5, 7, 9〉, 〈5, 7, 16, 18〉
}

.

• The third loop constructs B〈5,7,16,18〉 = ∅, then C = ∅.
• Hence, [〈5, 7, 9, 11〉] =

{
〈5, 7, 9, 11〉, 〈5, 7, 11〉, 〈5, 7, 9〉, 〈5, 7, 16, 18〉

}
.

5. Wilf’s conjecture

We say that s is a small element in S if s < F(S). Denote by N(S) the
set of all small elements in S and by n(S) its cardinality.

In 1978, H. S. Wilf (see [20]) conjectured an upper bound for g(S), namely
g(S) ≤ (e(S)− 1)n(S). Nowadays, Wilf’s conjecture remains unanswered in
general, but for some specific families of numerical semigroups this conjec-
ture is known to be true (see for example [6], [7], [9], [8], [10], [12], [13], [4]
and [5]).

The next result appears in [8, Corollary 6.5].

Lemma 40. If S is a numerical semigroup with F(S) + 1 ≤ 3m(S), then S
verifies Wilf ’s conjecture.

It is clear that {0, 1, . . . ,F(S)} = N(S)∪ (N\S) and so F(S)+1 = g(S)+
n(S). Hence, we have that F(S) + 1 ≤ e(S)n(S) is another way to present
Wilf’s conjecture.

Theorem 41. If S ∈ L (m), p = #θ(S) and 2m ≤ (p+1)2, then S satisfies
Wilf ’s conjecture.

Proof. Let q ∈ N and r ∈ {1, . . . ,m− 1} such that F(S) = q.m + r. If
q ∈ {0, 1, 2}, then by Lemma 40, S satisfies Wilf’s conjecture.

Now, we suppose that q ≥ 3. By Lemma 1, we know that θ(S) ∪ {m} ⊆
msg(S) and thus p + 1 ≤ e(S). Clearly, we have that {0}, θ(S) ∪ {m},
{m}+

(
θ(S)∪ {m}

)
, {2m}+

(
θ(S)∪ {m}

)
, . . ., {(q− 2)m}+

(
θ(S)∪ {m}

)
are disjoint subsets of the set N(S) and so we can conclude that (q− 1)(p+
1) + 1 ≤ n(S).

As by hypothesis 2m ≤ (p + 1)2, then 2(q − 1)m ≤ (q − 1)(p + 1)2. If
q ≥ 3, then q+1 ≤ 2(q−1) and so we deduce that (q+1)m ≤ (q−1)(p+1)2.
Since r ≤ m − 1, then we get F(S) + 1 = (q + 1)m ≤ (q − 1)(p + 1)2. As
p + 1 ≤ e(S) thus F (S) + 1 ≤ (q − 1)(p + 1)e(S). Applying the inequality
(q − 1)(p+ 1) + 1 ≤ n(S), we obtain F(S) + 1 ≤ e(S)(n(S)− 1). Hence, we
have F(S) + 1 ≤ e(S)n(S) and thus S verifies Wilf’s conjecture. �
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Corollary 42. If S ∈ Ck[m] with k ≤
√

m
2 , then S satisfies the Wilf ’s

conjecture.

Proof. If S ∈ Ck[m], by Proposition 24, θ(S) =
{
m+x1,m+x1+x2, . . . ,m+

x1 +x2 + · · ·+xp | (x1, x2, . . . , xp, xp+1) ∈ {1, . . . , k}p+1 and x1 +x2 + · · ·+
xp + xp+1 = m

}
. From Corollary 25, we have that #θ(S) ≥ dmk e − 1. If

k ≤
√

m
2 , then 2m ≤ (mk )2. This implies that 2m ≤ (p + 1)2. Finally, by

Theorem 41, we conclude that S satisfies Wilf’s conjecture. �

Example 43. If S ∈ C5[100], by Corollary 42, S satisfies Wilf’s conjecture.
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