JOURNAL OF COMMUTATIVE ALGEBRA Vol., No., YEAR 3 4 5 6 7 8 9 10 https://doi.org/jca.YEAR..PAGE

G-STABLE RANK OF SYMMETRIC TENSORS AND LOG CANONICAL THRESHOLD

12 13

14

15

40

47

ZHI JIANG

ABSTRACT. Shitov recently gave counterexamples over the real and complex field to Comon's conjecture that the symmetric tensor rank and tensor rank of a symmetric tensor are the same. In this paper we show that an analog of Comon's conjecture for the G-stable rank introduced by Derksen is true: the symmetric G-stable rank and G-stable rank of a symmetric tensor are the same over perfect fields. We also show that the log-canonical threshold of a complex singularity is bounded by the G-stable rank of the defining ideal.

1. Introduction

 $\frac{16}{2}$ An order d tensor is a vector in a tensor product of d vector spaces. The are several generalizations of the rank of a matrix to tensors of order ≥ 3 , for example the tensor rank, border rank, sub-rank, slice rank and G-stable rank. A simple tensor in $V_1 \otimes V_2 \otimes \cdots \otimes V_d$ is a tensor of the form $v_1 \otimes v_2 \otimes \cdots \otimes v_d$, where $v_i \in V_i$. The tensor rank of $T \in V_1 \otimes V_2 \otimes \cdots \otimes V_d$ is the smallest number of simple tensors that sum up to T. The G-stable rank of a tensor was introduced by Derksen in [2]. The slice rank and G-stable rank have been used to find bounds for the cap set problem (see [2], [3], [5], [14]).

If $V_1 = V_2 = \cdots = V_d = V$ then there is a natural action of the symmetric group S_d on $V^{\otimes d} = V \otimes V \otimes V$ $23 \cdots \otimes V$. A tensor invariant under this action is called a symmetric tensor of order d. The Waring rank or symmetric rank of a symmetric tensor $T \in V^{\otimes d}$ is the smallest number d such that T can be written as a sum of d tensors of the form $v^{\otimes d} = v \otimes v \otimes \cdots \otimes v$. It is clear that the tensor rank is less than or equal ²⁶ to the symmetric rank. It was conjectured by Comon [1] that the symmetric rank and tensor rank of a symmetric tensor are equal. Sufficient conditions were given in [4] under which Comon's conjecture is true. Comon's conjecture was proved when the rank of a tensor is less than its order [15] [16]. However, Shitov gave counterexamples over the real [12] and complex field [13]. It is also proved in [10] that there is an order 6 real tensor whose rank and symmetric rank differ. In this paper, we study the notion of G-stable rank of a tensor. The G-stable rank of a tensor is defined in terms of geometric invariant theory and the notion of stability for algebraic group actions on tensors. It is also natural to define a symmetric G-stable rank for a symmetric tensor. One main result of this paper is that the symmetric G-stable rank and G-stable rank of a symmetric tensor are the same over perfect fields.

In algebraic geometry and singularity theory, the log canonical threshold is an important invariant of singularities. We will show that the symmetric G-stable rank and the log canonical threshold are closely related. We extend the notion of G-stable rank to ideals in a coordinate ring of a smooth complex irreducible affine variety. In this context, we show that the log canonical threshold is less than or equal to the G-stable rank. In the case of monomial ideals in the polynomial ring we show equality.

1.1. Stability of tensors. Let K be a perfect field and G be a reductive algebraic group over K. Suppose $\rho: G \to \mathrm{GL}(W)$ is a rational representation of G. Let $\mathbb{O}_{\nu}, \overline{\mathbb{O}}_{\nu}, G_{\nu}$ denote the orbit, orbit-closure and stabilizer of v respectively. We have the following notions of stability:

1

⁴⁴ I would like to thank Harm Derksen for direction and discussion, and Visu Makam for comments on an earlier draft of this 46

²⁰²⁰ Mathematics Subject Classification. Invariant Theory, Algebraic Geometry.

Key words and phrases. Invariant Theory, Tensors, G-stable Rank, Algebraic Geometry.

15

19

23 24

27

46

47

Definition 1. We say $v \in W$ is.

• G-unstable, if $0 \in \overline{\mathbb{O}}_v$;
• G-semistable, if $0 \notin \overline{\mathbb{O}}_v$;
• G-polystable, if $v \neq 0$ and \mathbb{O}_v is closed;
• G-stable, if $v \neq 0$ and \mathbb{O}_v is closed;
• G-stable, if $v \neq 0$ and \mathbb{O}_v is closed;
• G-stable, if $v \neq 0$ and \mathbb{O}_v is closed;
• G-stable, if $v \neq 0$ and \mathbb{O}_v is closed;
• G-stable, if $v \neq 0$ and \mathbb{O}_v is closed;
• G-stable, if $v \neq 0$ and \mathbb{O}_v is closed;
• G-stable, if $v \neq 0$ and \mathbb{O}_v is closed;
• G-stable, if $v \neq 0$ and \mathbb{O}_v is closed;
• $v \neq 0$ and $v \neq 0$ is a homomorphism of algebraic groups and $v \neq 0$ is a homomorphism of algebraic groups by $v \neq 0$. We define the multiple of $v \neq 0$ is a 1-parameter subgroup with $v \neq 0$ is a 1-parameter subgroup with factor $v \neq 0$. It $\frac{13}{2}$ $\lambda : \mathbb{G}_m \to G$, such that

$$\lim_{t\to 0} \lambda(t) \cdot v = 0.$$

Example 2. Let $W = K^n$ be an n dimensional vector space. Fix a basis of W and let $p \in W$ be a point with coordinates $p = (x_1, x_2, \dots, x_n)$. Consider the action of \mathbb{G}_m on p by 18

$$t \cdot (x_1, x_2, \dots, x_n) = (t^{-1}x_1, tx_2, \dots, tx_n)$$

We note that any 1-parameter subgroup of \mathbb{G}_m is of the form $\lambda_k(t) = t^k$ for some integer $k \in \mathbb{Z}$. If $x_1 \neq 0$ 21 22 and $(x_2, x_3, \dots, x_n) \neq 0$, then

$$\lim_{t \to 0} \lambda_k(t) \cdot (x_1, x_2, \dots, x_n) = \lim_{t \to 0} (t^{-k}x_1, t^kx_2, \dots, t^kx_n)$$

does not exist for all $k \neq 0$, hence p is \mathbb{G}_m -semistable. One can also check that in this case the orbit \mathbb{O}_p is closed, therefore p is also \mathbb{G}_m -stable.

If $x_1 = 0$, by taking k = 1, we have $\lim_{t \to 0} \lambda_1(t) \cdot (x_1, x_2, \dots, x_n) = \lim_{t \to 0} (0, tx_2, \dots, tx_n) = 0$. Similarly, if $(x_2, x_3, \dots, x_n) = 0$, by taking k = -1, we have $\lim_{t \to 0} \lambda_{-1}(t) \cdot (x_1, x_2, \dots, x_n) = \lim_{t \to 0} (tx_1, 0, \dots, 0) = tx_1 \cdot (tx_1, 0, \dots, 0)$ 0. Therefore $p=(x_1,x_2,\cdots,x_n)$ is \mathbb{G}_m -unstable if $x_1=0$ or $(x_2,x_3,\cdots,x_n)=0$.

Let V be a finite dimensional vector space over K, we consider the action of the group of product of special linear groups $SL(V)^d = SL(V) \times SL(V) \times \cdots \times SL(V)$ on the tensor product space $V^{\otimes d} =$ $V \otimes V \otimes \cdots \otimes V$. In this paper, we are interested in the stability of tensors in $V^{\otimes d}$ under the action of $SL(V)^d$. By Definition 1, a tensor $v \in V^{\otimes d}$ is $SL(V)^d$ -unstable if there is a 1-parameter subgroup $\lambda : \mathbb{G}_m \to SL(V)^d$, such that $\lim_{t\to 0} \lambda(t) \cdot v = 0$. If no such 1-parameter subgroup exists, then v is $SL(V)^d$ -semistable.

Let G be a reductive algebraic group over K. By a G-scheme X we mean a separated, finite type scheme X over K as well as a morphism $G \times X \to X$ mapping (g,x) to $g \cdot x$, such that $g \cdot (h \cdot x) = (gh) \cdot x$, for all $g, h \in G$ and for all $x \in X$. A morphism $f: X \to Y$ between two G-schemes X and Y is G-equivariant if for all $g \in G$ and $x \in X$, we have $f(g \cdot x) = g \cdot f(x)$. A subscheme S of a G-scheme X is called a G-subscheme if *S* is a *G*-scheme and the immersion $S \hookrightarrow X$ is *G*-equivariant.

Throughout this paper, we will work over a perfect field K. In [7], Kempf proved a K-rational version of the Hilbert-Mumford criterion:

43 **Theorem 3** ([7], Corollary 4.3). Let G be a reductive algebraic group. Suppose that X is a G-scheme and $x \in X$ is a K-point. Assume S is a closed G-subscheme of X which does not contain x and S meets the closure of the orbit $G \cdot x$. Then there exits a K-rational 1-parameter subgroup $\lambda : \mathbb{G}_m \to G$, such that

$$\lim_{t\to 0}\lambda(t)\cdot x\in S.$$

If $G = SL(V)^d$, $X = V^{\otimes d}$, then by Theorem 3, v is unstable if and only if 0 is in the closure of the orbit $\frac{2}{2}$ of v, i.e. $0 \in \overline{SL(V)^d \cdot v}$.

A tensor $T \in V^{\otimes d}$ is called symmetric if it is invariant under the action of symmetric group S_d . Let $D^d V \subseteq V^{\otimes d}$ be the space of symmetric tensors. As a representation of GL(V), this is the space of divided powers, which is isomorphic to the d-th symmetric power $S^d V$ if the characteristic of K is 0 or > d.

It is interesting to look at the diagonal action of SL(V) on D^dV via the diagonal embedding:

$$\frac{7}{8} (1) \qquad \Delta : \operatorname{SL}(V) \hookrightarrow \operatorname{SL}(V)^d.$$

Definition 4. A symmetric tensor $v \in D^dV$ is SL(V)-unstable if there is a 1-parameter subgroup $\lambda : \mathbb{G}_m \to SL(V)$, such that

$$\lim_{t\to 0}\lambda(t)\cdot v=0.$$

Otherwise we say v is SL(V)-semistable.

11

24

29

33

36

14 **1.2.** *G-stable rank for tensors.* In [2], Derksen introduced *G*-stable rank for tensors. Suppose the base field *K* is perfect. If $\lambda: \mathbb{G}_m \to \operatorname{GL}_n$ is a 1-parameter subgroup, then we can view $\lambda(t)$ as an invertible $n \times n$ matrix whose entries lie in the ring $K[t,t^{-1}]$ of Laurent polynomials. We say that $\lambda(t)$ is a polynomial 1-parameter subgroup of GL_n if all these entries lie in the polynomial ring K[t]. Consider the action of the group $G = \operatorname{GL}(V_1) \times \operatorname{GL}(V_2) \times \cdots \times \operatorname{GL}(V_d)$ on the tensor product space $W = V_1 \otimes V_2 \otimes \cdots \otimes V_d$. A 1-parameter subgroup $\lambda: \mathbb{G}_m \to G$ can be written as

$$\lambda(t) = (\lambda_1(t), \cdots, \lambda_d(t)),$$

where $\lambda_i(t)$ is a 1-parameter subgroup of $GL(V_i)$ for all i. We say that $\lambda(t)$ is polynomial if and only if $\lambda_i(t)$ is a polynomial 1-parameter subgroup for all i.

The *t*-valuation $\operatorname{val}(a(t))$ of a polynomial $a(t) \in K[t]$ is the biggest integer n such that $a(t) = t^n b(n)$ for some $b(t) \in K[t]$. For $a(t), b(t) \in K[t]$, the *t*-valuation $\operatorname{val}\left(\frac{a(t)}{b(t)}\right)$ of the rational function $\frac{a(t)}{b(t)} \in K(t)$ is $\operatorname{val}\left(\frac{a(t)}{b(t)}\right) = \operatorname{val}(a(t)) - \operatorname{val}(b(t))$. For a tuple $u(t) = (u_1(t), u_2(t), \cdots, u_d(t)) \in K(t)^d$, we define the *t*-valuation of u(t) as

$$val(u(t)) = \min_{i} \{val(u_i(t)) | 1 \le i \le d\}.$$

If λ is a 1-parameter subgroup of G and $v \in W$ is a tensor, then we have $\lambda(t) \cdot v \in K(t) \otimes W$. We view $K(t) \otimes W$ as a vector space over K(t) and define the t-valuation $\operatorname{val}(\lambda(t) \cdot v)$ as in (2). Assume $\operatorname{val}(\lambda(t) \cdot v) > 0$, then for for any $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_d) \in \mathbb{R}^d_{>0}$, we define the slope

$$\mu_{\alpha}(\lambda(t), \nu) = \frac{\sum_{i=1}^{d} \alpha_{i} \operatorname{val}(\det(\lambda_{i}(t)))}{\operatorname{val}(\lambda(t) \cdot \nu)}.$$

The *G*-stable rank for $v \in W$ is the infimum of the slope with respect to all such 1-parameter subgroups. More precisely:

Definition 5 ([2], Theorem 2.4). If $\alpha \in \mathbb{R}^d_{>0}$, then the *G*-stable rank $\operatorname{rk}_{\alpha}^G(v)$ is the infimum of $\mu_{\alpha}(\lambda(t), v)$ where $\lambda(t)$ is a polynomial 1-parameter subgroup of $G = \operatorname{GL}(V_1) \times \cdots \times \operatorname{GL}(V_n)$ and $\operatorname{val}(\lambda(t) \cdot v) > 0$. If $\alpha = (1, 1, \dots, 1)$, we simply write $\operatorname{rk}^G(v)$.

Remark 6. In Definition 1.3 of the original paper [2], the *G*-stable rank is defined as the infimum of the slope $\mu_{\alpha}(g(t), v)$ over a more general family of group elements $g(t) \in G(K[[t]]) = \operatorname{GL}(V_1, K[[t]]) \times \operatorname{GL}(V_2, K[[t]]) \times \cdots \times \operatorname{GL}(V_n, K[[t]])$ with $\operatorname{val}(g(t) \cdot v) > 0$, where $\operatorname{GL}(V_i, K[[t]])$ is the group of K[[t]] endomorphisms of the space $K[[t]] \otimes_K V_i$. It is then proved in [2] Theorem 2.4 that to compute the *G*-stable rank, it suffices to consider all polynomial 1-parameter subgroups. For the purpose of this paper, we use the latter as our definition of *G*-stable rank.

Let V be a finitely dimensional vector space over K. Let $D^d V \subset V^{\otimes d}$ be the space of all symmetric tensors. Assume the group $\operatorname{GL}(V)$ acts on $D^d V$ via the diagonal embedding: $\operatorname{GL}(V) \hookrightarrow \operatorname{GL}(V)^d$.

Definition 7. Let $v \in D^d V$ be a symmetric tensor, the symmetric G-stable rank symmrk G(v) of V is the infimum of $\mu(\lambda(t), v) = d \frac{\operatorname{val}(\det(\lambda(t)))}{\operatorname{val}(\lambda(t) \cdot v)}$, where $\lambda(t)$ is a polynomial 1-parameter subgroup of $\operatorname{GL}(V)$ and $\operatorname{val}(\lambda(t) \cdot v) > 0.$

Since any 1-parameter subgroup of GL(V) is also a 1-parameter subgroup of $GL(V)^d$ via the diagonal embedding, we have symmrk $G(v) \ge \operatorname{rk}^G(v)$ for any $v \in D^dV$. It turns out that the other inequality is also 10

Theorem 8. Let $v \in D^dV$ be a symmetric tensor, then we have

13

19

20 21

24

25

$$\operatorname{symmrk}^{G}(v) = \operatorname{rk}^{G}(v).$$

Example 9. Suppose that $V = K^2$, and $v = e_2 \otimes e_1 \otimes e_1 + e_1 \otimes e_2 \otimes e_1 + e_1 \otimes e_1 \otimes e_2 \in V^{\otimes 3}$, where $\{e_1, e_2\}$ is the standard basis of $V = K^2$. Let $\lambda(t) = \begin{pmatrix} t & 0 \\ 0 & 1 \end{pmatrix}$ be a polynomial 1-parameter subgroup of $GL(K^2)$. Then $\lambda(t) \cdot v = t^2 v$, $\det(\lambda(t)) = t$, the slope is

$$\mu(\lambda(t), \nu) = 3 \frac{\operatorname{val}(\det(\lambda(t)))}{\operatorname{val}(\lambda(t) \cdot \nu)} = \frac{3}{2}.$$

Therefore we have $\operatorname{symmrk}^G(v) \leq \frac{3}{2}$. It was proved in [2] that $\operatorname{rk}^G(v) = \frac{3}{2}$. Hence by the fact $\operatorname{symmrk}^G(v) \geq \operatorname{rk}^G(v)$ we have $\operatorname{symmrk}^G(v) = \frac{3}{2}$.

A 1-parameter subgroup of SL(V) is also a 1-parameter subgroup of $SL(V)^d$ via the diagonal embedding. It follows that if a symmetric tensor $v \in D^dV$ is SL(V)-unstable, then v is also $SL(V)^d$ -unstable. Equivalently, if v is $SL(V)^d$ -semistable, then v is also SL(V)-semistable. It follows from Theorem 8 that the converse direction is also true:

Corollary 10. Let $v \in D^dV$ be a symmetric tensor, then v is $SL(V)^d$ -semistable if and only if it is SL(V)-semistable.

1.3. G-stable rank for ideals and log canonical threshold. Let V be an n-dimensional vector space over a perfect field K. By choosing a basis of V and a dual basis $\{x_1, x_2, \dots, x_n\}$ of V^* , we have an isomorphism of algebras $SV^* \cong K[x_1, \dots, x_n]$, where SV^* is the symmetric algebra on the vector space 35 V^* . We have defined the symmetric G-stable rank for symmetric tensors, it is natural to extend this idea 36 to polynomials and more generally to ideals in the polynomial ring $K[x_1, \dots, x_n]$. Furthermore, let X be a smooth irreducible affine variety with coordinate ring K[X], and let $\mathfrak{a} \subset K[X]$ be an ideal. We can define the G-stable rank $\mathrm{rk}^G(P,\mathfrak{a})$ for the ideal \mathfrak{a} at a point $P \in V(\mathfrak{a})$. We postpone the precise definition of G-stable rank for ideals to Section 5. It turns out that the G-stable rank $rk^G(P, \mathfrak{a})$ of an ideal \mathfrak{a} at P is closely related to the *log canonical threshold* $lct_P(\mathfrak{a})$ of the ideal \mathfrak{a} at the point $P \in V(\mathfrak{a})$.

Log canonical threshold is an invariant of singularities in algebraic geometry, [8] gives a comprehensive introduction to this subject. Let $K = \mathbb{C}$ be the complex field. Let $H \subset \mathbb{C}^n$ be a hypersurface defined by a polynomial $f \in \mathbb{C}[x_1, \dots, x_n]$, and let $P \in H$ be a closed point. The log canonical threshold $lct_P(f)$ of f at the point P tells us how singular f is at the point P. More precisely, $lct_P(f)$ is a rational number bounded above by 1, and equal to 1 if P is a smooth point of H.

There are several equivalent ways to define the log canonical threshold, here we give an analytic 47 definition, which we will use later.

Definition 11. Let X be a smooth irreducible affine variety. Let $\mathfrak{a} = (f_1, \dots, f_r) \subset \mathbb{C}[X]$ be an ideal, and $P \in V(\mathfrak{a})$ is a closed point. The *log canonical threshold* $lct_P(\mathfrak{a})$ of the ideal \mathfrak{a} at P is

$$\frac{\frac{3}{4}}{\frac{4}{5}}(4) \qquad \qquad \operatorname{lct}_{P}(\mathfrak{a}) = \sup \left\{ s > 0 \; \middle| \; \frac{1}{(\sum_{i=0}^{r} |f_{i}|^{2})^{s}} \text{ is integrable around } P \right\}.$$

The log canonical threshold $lct_P(f)$ of a polynomial $f \in \mathbb{C}[X]$ is the log canonical threshold of the principle ideal $\mathfrak{a} = (f)$. We have the following relation between the log canonical threshold and the G-stable rank:

Theorem 12. In the situation of Definition 11, the log canonical threshold of $\mathfrak a$ is less than or equal to the G-stable rank of $\mathfrak a$ at P:

$$\operatorname{lct}_{P}(\mathfrak{a}) \leq \operatorname{rk}^{G}(P, \mathfrak{a}).$$

13

18

19

26 27

28

35

When a is a monomial ideal, i.e. a is generated by monomials, the equality holds.

Theorem 13. Suppose $\mathfrak{a} \subset \mathbb{C}[x_1, \dots, x_n]$ is a proper nonzero ideal generated by monomials and $P = (0, \dots, 0)$ is the origin. Then we have

$$\frac{17}{16} (6) \qquad \operatorname{lct}_{P}(\mathfrak{a}) = \operatorname{rk}^{G}(P, \mathfrak{a}).$$

Our results indicate that the G-stable rank for tensors is a useful tool for attacking the stability of tensors. Corollary 10 shows the equivalence of $SL(V)^d$ -semistability and SL(V)-semistability for symmetric tensors, one can ask the same question for stability, i.e. is the subset of $SL(V)^d$ -stable symmetric tensors the same as the subset of SL(V)-stable symmetric tensors? On the other hand, the G-stable rank for ideals gives a numerical upper bound for the log canonical threshold, this provides a different perspective for the study of complex singularities. In the mean time, we noticed that [6] defined the same notion for homogeneous polynomials and it was used to give a sharp bound on the change of the slice rank of polynomials under field extensions.

2. Kempf's theory of optimal subgroups

Let G be a reductive algebraic group over a perfect field K. In our case, G is one of $SL(V)^d$, SL(V), $GL(V)^d$ or GL(V), depend on the situation. Let $\Gamma(G)$ denote the set of all 1-parameter subgroups of G. In [7], Kempf provided a way to approach the boundary of an orbit. Following [7], we have the definition:

Definition 14. Let *X* be a *G*-scheme over a perfect field *K* and let *x* ∈ *X* be a *K*-point. We define |X,x| to be the set of all 1-parameter subgroups of *G* such that $\lim_{t\to 0} \lambda(t) \cdot x$ exists in *X*. Assume *S* is a *G*-invariant closed sub-scheme of *X* not containing *x*, we define a subset $|X,x|_S \subset |X,x|$ by

36 (7)
$$|X, x|_S = \{\lambda \in |X, x| \mid \lim_{t \to 0} \lambda(t) \cdot x \in S\}.$$

Remark 15. If $S \cap \overline{G \cdot x} \neq \emptyset$, then by Theorem 3, there exists a 1-parameter subgroup $\lambda(t) \in \Gamma(G)$, such that $\lim_{t \to 0} \lambda(t) \cdot x \in S$. Hence $|X, x|_S \neq \emptyset$. If $X = V^{\otimes d}$, S = 0 and $v \in V^{\otimes d}$ is $SL(V)^d$ -unstable, then $|V^{\otimes d}, v|_{\{0\}} \neq \emptyset$.

Let $\lambda \in |X,x|$ be a 1-parameter subgroup of G, we get a morphism $\phi_{\lambda} : \mathbb{A}^1 \to X$ by $\phi_{\lambda}(t) = \lambda(t) \cdot x$ if $t \neq 0$ and $\phi_{\lambda}(0) = \lim_{t \to 0} \lambda(t) \cdot x$. Assume S is a G-invariant closed sub-scheme of X not containing x, the inverse image $\phi_{\lambda}^{-1}(S)$ is an effective divisor supported inside t = 0. Let $a_{S,x}(\lambda)$ denote the degree of the divisor $\phi_{\lambda}^{-1}(S)$ for $\lambda \in |X,x|$. Note that we have a natural conjugate action of G on the set of 1-parameter subgroups $\Gamma(G)$ by $(g \cdot \lambda)(t) = g\lambda(t)g^{-1}$, where $g \in G$, $\lambda \in \Gamma(G)$.

Definition 16. A *length* function $\|\cdot\|$ is a non-negative real-valued function on $\Gamma(G)$ such that

- (1) $\|g \cdot \lambda\| = \|\lambda\|$ for any $\lambda \in \Gamma(G)$ and $g \in G$.
- (2) For any maximal torus $T \subseteq G$, we have $\Gamma(T) \subseteq \Gamma(G)$, the restriction of $\|\cdot\|$ on $\Gamma(T)$ is integral valued and extends to a *norm* on the vector space $\Gamma(T) \otimes_{\mathbb{Z}} \mathbb{R}$.

Remark 17. Such a length function exists. Let T be a maximal torus of G. Let N be the normalizer of T. Then the Weyl group with respect to T is defined by W = N/T. By the fact that $\Gamma(G)/G \cong \Gamma(T)/W$, it suffices to define a W-invariant norm on $\Gamma(T) \otimes_{\mathbb{Z}} \mathbb{R}$. Since W is a finite group, any norm on $\Gamma(T) \otimes_{\mathbb{Z}} \mathbb{R}$ and then average over W will work.

Remark 18. In the original paper [7], Kempf defined a length function $\|\cdot\|$ that satisfies a different condition (2): for any maximal torus T of G, there is a positive definite integral-valued bilinear form (,)on $\Gamma(T)$, such that $(\lambda, \lambda) = \|\lambda\|^2$ for any λ in $\Gamma(T)$. But the proof in [7] of the theorem below is also valid for our slightly weaker definition of length function.

Theorem 19 (Kempf [7]). Let X be an affine G-scheme over a perfect field K. Let $x \in X$ be a K-point. Assume S is an G-invariant closed sub-scheme not containing x such that $S \cap \overline{G \cdot x} \neq \emptyset$. Fix a length function $\|\cdot\|$ on $\Gamma(G)$, then we have

- (1) The function $\frac{a_{S,x}(\lambda)}{\|\lambda\|}$ has a maximum positive value $B_{S,x}$ on the set of non-trivial 1-parameter subgroups in |X,x|.
- (2) Let $\Lambda_{S,x}$ be the set of indivisible 1-parameter subgroups $\lambda \in |X,x|$ such that $a_{S,x}(\lambda) = B_{S,x} \cdot ||\lambda||$, then we have
 - (a) $\Lambda_{S,x} \neq \emptyset$.

17 18

19

20

21

22

23

24

25 26

27

31

39

40

42

- (b) For $\lambda \in \Lambda_{S,x}$, Let $P(\lambda) = \{g \in G | \lim_{t \to 0} \lambda(t) \cdot g \cdot \lambda(t)^{-1} \text{ exists} \}$, then $P(\lambda)$ is a parabolic subgroup and independent of λ . We denote it by $P_{S,x}$.
- (c) Any maximal torus of $P_{S,x}$ contains a unique member of $\Lambda_{S,x}$.

3. G-stable rank and symmetric G-stable rank

Let V be an n dimensional vector space over K, fix a maximal torus T of GL(V), we have an isomorphism 29 $\Gamma(T) \cong \mathbb{Z}^n$. Any 1-parameter subgroup λ of the maximal torus T is given by a tuple of n integers 30 (v_1, \dots, v_n) , we define a function on $\Gamma(T) \cong \mathbb{Z}^n$ by

$$\|\lambda\| = \sum_{i=1}^{n} |v_i|.$$

This function extends linearly to a norm on the vector space $\Gamma(T) \otimes_{\mathbb{Z}} \mathbb{R}$. The Weyl group of GL(V) with respect to T is the symmetric group S_n . It is clear that the function is invariant under the action of S_n by permutation, therefore by Remark 17, it defines a length function on $\Gamma(GL(V))$. Let $G = GL(V)^d$, fix a maximal torus $T_i \subset GL(V)$ for each component of $GL(V)^d$, then $T = T_1 \times \cdots \times T_d$ is a maximal torus of G. We have $\Gamma(T) \cong (\mathbb{Z}^n)^d$, Let $\lambda = (\lambda_1, \dots, \lambda_d)$ be a 1-parameter subgroup of T, where

$$\lambda_i = (\lambda_{i,1}, \cdots, \lambda_{i,n}), \ \lambda_{i,j} \in \mathbb{Z} \text{ for all } j$$

is a tuple of n integers. We define a function on $\Gamma(T)$ by

$$\|\lambda\| = \sum_{i=1}^{d} \|\lambda_i\|,$$

where $\|\lambda_i\| = \sum_{j=1}^n |\lambda_{i,j}|$. This extends to a length function on $\Gamma(G) = \Gamma(\mathrm{GL}(V)^d)$.

Let $G = GL(V)^d$, $X = V^{\otimes d}$ and $S = \{0\}$. Recall the definition of t-valuation in equation (2).

Lemma 20. Let $v \in D^d V \subset V^{\otimes d}$ be a symmetric tensor, and $G = GL(V)^d$ acts on $V^{\otimes d}$ in the usual way.

2 If $\lambda(t)$ is a 1-parameter subgroup of G, then

(1) $|X,v| = \{\lambda \in \Gamma(G) \mid val(\lambda(t) \cdot v) \geq 0\}$.

(2) $|X,v|_{\{0\}} = \{\lambda \in \Gamma(G) \mid val(\lambda(t) \cdot v) > 0\}$.

(3) $a_{\{0\},v}(\lambda) = val(\lambda(t) \cdot v)$ for $\lambda \in |X,v|$.

7 Proof. This follows immediately from the definition.

1 Lemma 21. Let $v \in D^d V \subset V^{\otimes d}$ be a symmetric tensor, then the function $\frac{val(\lambda(t) \cdot v)}{\|\lambda\|} : \Gamma(G) \to \mathbb{R}$ attains its maximal value at some 1-parameter subgroup $\lambda \in \Gamma(GL(V)^d)$. The same state of λ is a symmetric tensor. maximal value at some 1-parameter subgroup $\lambda \in \Gamma(\mathrm{GL}(V)^d)$. There exists a maximal torus $T \subset \mathrm{GL}(V)^d$, such that $\lambda \in \Gamma(T)$ and under the isomorphism $\Gamma(T^d) \cong (\mathbb{Z}^n)^d$, we can write $\lambda = (\lambda_1, \dots, \lambda_d)$, where $\lambda_i = (\lambda_{i,1}, \dots, \lambda_{i,n})$ such that $\lambda_{i,j} \in \mathbb{Z}$ and $\lambda_{i,j} \geq 0$ for all $1 \leq i \leq d, 1 \leq j \leq n$, in other words, λ is a polynomial 1-parameter subgroup.

Proof. By Theorem 19, the maximal value of $\frac{\operatorname{val}(\lambda(t)\cdot\nu)}{\|\lambda\|}$ exists. Let $T\subset G$ be a maximal torus and $\lambda\in\Gamma(T)$ such that the function attains its maximum at λ . Assume λ is of the form in the lemma and $\lambda_{i,j}<0$ for some i and j. If we replace $\lambda_{i,j}$ by $-\lambda_{i,j}$, $\operatorname{val}(\lambda(t) \cdot v)$ never decreases and $\|\lambda\|$ does not change. Therefore by the maximality of $\frac{\operatorname{val}(\lambda(t) \cdot v)}{\|\lambda\|}$, the value $\frac{\operatorname{val}(\lambda(t) \cdot v)}{\|\lambda\|}$ does not change after the replacement. Hence without loss of generality we can assume all $\lambda_{i,j} \geq 0$.

Recall that for a tensor $v \in V^{\otimes d}$ and a polynomial 1-parameter subgroup λ of $G = GL(V)^d$ such that $val(\lambda(t) \cdot v) > 0$, we have the slope function

$$\mu(\lambda(t), \nu) = \frac{\sum_{i=1}^{d} \operatorname{val}(\det(\lambda_i(t)))}{\operatorname{val}(\lambda(t) \cdot \nu)}.$$

Let $\lambda = (\lambda_1, \cdots, \lambda_d) \in \Gamma(G)$ be a polynomial 1-parameter subgroup of $G = \operatorname{GL}(V)^d$, then by Lemma 21, $\sum_{i=1}^{d} \text{val}(\det(\lambda_i(t)))$ is the restriction of the length function defined by equation (9). Let S_d be the symmetric group acting on $G = GL(V)^d$ by permuting the d components. Then the length function defined by equation (9) is invariant under the action of S_d . From now on, fix this length function on $\Gamma(G)$. We have a corollary following from Theorem 19:

Corollary 22. Let $v \in D^d V \subset V^{\otimes d}$ be a symmetric tensor. Let $\Lambda_{\{0\},v}$ be the set of indivisible 1-parameter subgroups $\lambda \in |V^{\otimes d}, v|$ such that $\frac{\operatorname{val}(\lambda(t) \cdot v)}{\|\lambda\|}$ attains the maximum value. Then we have 32

- (1) $\Lambda_{\{0\},v}$ is invariant under S_d .
- (2) $P_{\{0\},v}$ is S_d invariant. In other words, $P_{\{0\},v} = P^d \subset \operatorname{GL}(V)^d$ for some parabolic subgroup $P \subset GL(V)$.

20

22

33

34

35 36 37

38

39 40

41 42

43 44

45

46

47

(1) It is clear that $\frac{\operatorname{val}(\lambda(t)\cdot v)}{\|\lambda\|}$ is S_d invariant. Indeed, Let $\sigma \in S_d$, since $v \in D^dV$ is a symmetric tensor and $\|\cdot\|$ is S_d invariant, we have

$$\frac{\operatorname{val}((\sigma\lambda)(t)\cdot v)}{\|\sigma\lambda\|} = \frac{\operatorname{val}((\sigma\lambda)(t)\cdot (\sigma v))}{\|\sigma\lambda\|} = \frac{\operatorname{val}(\sigma(\lambda(t)\cdot v))}{\|\sigma\lambda\|} = \frac{\operatorname{val}(\lambda(t)\cdot v)}{\|\lambda\|}.$$

Therefore if $\lambda \in \Lambda_{\{0\},\nu}$, so is $\sigma(\lambda)$.

(2) Since $G = GL(V)^d$, the parabolic subgroup $P_{\{0\},v}$ is a product of parabolic subgroups of GL(V), the symmetric group S_d acts on $P_{\{0\},\nu}$ by permuting the components. Let $\lambda \in \Lambda_{\{0\},\nu}$, for any $\sigma \in S_d$, we have

$$\sigma(P_{\{0\},\nu}) = P(\sigma(\lambda)) = P_{\{0\},\nu}.$$

We used the fact that $P_{\{0\},v} = P(\lambda)$ is independent of $\lambda \in \Lambda_{\{0\},v}$ and $\sigma(\lambda) \in \Lambda_{\{0\},v}$. So $P_{\{0\},v}$ is S_d invariant and we can find a parabolic subgroup $P \subset \operatorname{GL}(V)$ such that $P_{\{0\},v} = P^d$. \square Let $T \subset P \subset \operatorname{GL}(V)$ be a maximal torus, then T^d is a maximal torus of $P^d = P_{\{0\},v}$. By (2.c) in Theorem 19 and Lemma 21, there is a polynomial 1-parameter subgroup $\lambda = (\lambda_1, \cdots, \lambda_n)$ of $T^d \subset \operatorname{GL}(V)^d$, such that the slope function $\mu(\lambda(t),v) = \frac{\sum_{i=1}^d \operatorname{val}(\det(\lambda_i(t)))}{\operatorname{val}(\lambda(t) \cdot v)} = \frac{\|\lambda\|}{\operatorname{val}(\lambda(t) \cdot v)}$ has a minimum value at λ . The minimal value of $\mu(\lambda(t),v)$ is by definition the G-stable rank $\operatorname{rk}^G(v)$ of v. In rest of the section, we fix such a maximal torus $T \subset \operatorname{GL}(V)$. Let

$$\mu(\lambda(t), \nu) = \frac{\sum_{i=1}^{d} \operatorname{val}(\det(\lambda_i(t)))}{\operatorname{val}(\lambda(t) \cdot \nu)} = \frac{\|\lambda\|}{\operatorname{val}(\lambda(t) \cdot \nu)}$$

In rest of the section, we fix such a maximal torus $T \subset GL(V)$. Let

13

$$\lambda = (\lambda_1, \cdots, \lambda_d)$$

be a polynomial 1-parameter subgroup of $T^d \subset GL(V)^d$, then

(12)16

$$\gamma = \prod_{i=1}^d \lambda_i$$

is a polynomial 1-parameter subgroup of GL(V). Furthermore, γ acts on $v \in D^dV$ via the diagonal embedding $GL(V) \hookrightarrow GL(V)^d$. We have the following lemma:

Lemma 23. For any symmetric tensor $v \in D^dV$ and polynomial 1-parameter subgroup λ of $T^d \subset GL(V)^d$ as in (11), let γ be the polynomial 1-parameter subgroup defined in (12), we have val $(\gamma(t) \cdot v) > d$. $val(\lambda(t) \cdot v)$.

29

30 31

32

33

36 37

47

Proof. Let $C = \text{val}(\lambda(t) \cdot v)$, we define a subspace W of V^{\otimes} as following

$$W = \{ w \in V^{\otimes d} | \operatorname{val}(\sigma(\lambda(t)) \cdot w) \ge C, \forall \sigma \in S_d \}.$$

Since $\operatorname{val}(\sigma(\lambda(t)) \cdot v) = \operatorname{val}(\sigma(\lambda(t) \cdot v)) = \operatorname{val}(\lambda(t) \cdot v) = C$, we have $v \in W$. For any $\sigma \in S_d$, it is clear that $\sigma(\lambda(t)) \cdot W \subset t^C K[t] \cdot W$. We can write

$$\begin{split} \gamma(t) \cdot v &= (\Pi_{i=1}^d \lambda_i, \cdots, \Pi_{i=1}^d \lambda_i) \cdot v \\ &= (\lambda_1, \lambda_2, \cdots, \lambda_d) (\lambda_2, \lambda_3, \cdots, \lambda_d, \lambda_1) \cdots (\lambda_d, \lambda_1, \cdots, \lambda_{d-1}) \cdot v \\ &= (\lambda_1, \lambda_2, \cdots, \lambda_d) \sigma(\lambda_1, \lambda_2, \cdots, \lambda_d) \cdots \sigma^{d-1} (\lambda_1, \lambda_2, \cdots, \lambda_d) \cdot v \\ &= \lambda \sigma(\lambda) \cdots \sigma^{d-1}(\lambda) \cdot v, \end{split}$$

where $\sigma \in S_d$ satisfies $\sigma(1) = 2, \sigma(2) = 3, \dots, \sigma(d) = 1$. Therefore $\gamma(t) \cdot v \in t^{dC}K[t] \cdot W$, hence we get $\operatorname{val}(\gamma(t) \cdot v) \ge dC = d \cdot \operatorname{val}(\lambda(t) \cdot v).$

Next we prove that the symmetric G-stable rank is the same as the G-stable rank for symmetric tensors.

Proof of Theorem 8. Let T be the chosen maximal torus of GL(V) as above. Let $\lambda = (\lambda_1, \dots, \lambda_d)$ be a polynomial 1-parameter subgroup of $T^d \subset GL(V)^d$ such that the slope function $\mu(\lambda(t), v)$ attains its minimum value. In other words, λ computes the G-stable rank rk^G(v) of v:

$$\operatorname{rk}^{G}(v) = \frac{\sum_{i=1}^{d} \operatorname{val}(\det(\lambda_{i}(t)))}{\operatorname{val}(\lambda(t) \cdot v)}.$$

42 43 44 45 46 Let $\gamma = \prod_{i=1}^d \lambda_i$ as above, then we have

$$\operatorname{symmrk}^{G}(v) \leq \frac{\sum_{i=1}^{d} \operatorname{val}(\det(\gamma(t)))}{\operatorname{val}(\gamma(t) \cdot v)} \leq \frac{d \sum_{i=1}^{d} \operatorname{val}(\det(\lambda_{i}(t)))}{d \cdot \operatorname{val}(\lambda(t) \cdot v)} = \operatorname{rk}^{G}(v).$$

On the other hand, it is clear that symmrk $G(v) \ge \operatorname{rk}^G(v)$. Therefore symmrk $G(v) = \operatorname{rk}^G(v)$, this completes the proof.

4. Stability of symmetric tensors

As a result of Theorem 8, we prove Corollary 10, which says that for a symmetric tensor $v \in D^dV$

is $SL(V)^d$ -semistable if and only if v is SL(V)-semistable. It is clear that $SL(V)^d$ -semistability implies SL(V)-semistability. To prove the other direction, we will use a result which relates semistability with G-stable rank.

Proposition 24 ([2], Proposition 2.6). Suppose that $\alpha = (\frac{1}{n_1}, \cdots, \frac{1}{n_d})$ where $n_i = \dim V_i$. For $v \in V_1 \otimes V_2 \otimes V_3 \otimes V_4 \otimes V_4 \otimes V_5 \otimes V_5 \otimes V_6 \otimes V_6$ $\cdots \otimes V_d$ we have $\operatorname{rk}_{\alpha}^G(v) \leq 1$. Moreover, $\operatorname{rk}_{\alpha}^G(v) = 1$ if and only if v is semistable with respect to the group $H = \operatorname{SL}(V_1) \times \operatorname{SL}(V_2) \times \cdots \times \operatorname{SL}(V_d).$ 13

If $v \in D^d V$ is a symmetric tensor, $\alpha = (1, 1, \dots, 1)$ and $n = \dim V$, then by the above proposition, rk $^G(v) = n$ if and only if v is $SL(V)^d$ -semistable. We have a similar result for symmetric G-stable rank.

Proposition 25. For a symmetric tensor $v \in D^dV$, we have symmetric $G(v) \leq n$, where $n = \dim V$. Moreover, symmrk^G(v) = n if and only if v is SL(V)-semistable.

Proof. The first statement is clear from Theorem 8. If symmrk $^{G}(v) = n$, by Proposition 24, we have $rk^G(v) = n$ and v is $SL(V)^d$ -semistable, hence v is SL(V)-semistable. On the other hand, assume v is SL(V)-semistable. Let λ be a polynomial 1-parameter subgroup of GL(V) such that $\lim_{t\to 0} \lambda(t) \cdot v = 0$. Then we can define another 1-parameter subgroup $\lambda'(t) = \lambda(t)^n t^{-e}$, where $\det(\lambda(t)) = t^e$, such that 23 $\det(\lambda') = 1$ and $\lambda' \in SL(V)$. Since v is SL(V)-semistable, we have $val(\lambda'(t) \cdot v) < 0$. It follows that

$$\operatorname{val}(\lambda'(t)\cdot v) = \operatorname{val}(\lambda(t)^d t^{-e} \cdot v) = n \operatorname{val}(\lambda(t)\cdot v) - ed \le 0.$$

The slope function 26

24

25

27 28

33

35 36

37

$$\mu(\lambda(t), v) = \frac{d \operatorname{val}(\det(\lambda(t)))}{\operatorname{val}(\lambda(t) \cdot v)} = \frac{de}{\operatorname{val}(\lambda(t) \cdot v)} \ge n.$$

We get symmrk $^{G}(v) = n$.

Proof of Corollary 10. It suffices to prove that if v is SL(V)-semistable, then v is $SL(V)^d$ -semistable. Let us assume v is SL(V)-semistable, then by Proposition 25 and Theorem 8, 32

$$rk^G(v) = symmrk^G(v) = n.$$

It follows from Proposition 24 that v is $SL(V)^d$ -semistable.

5. G-stable rank for ideals and log canonical threshold

5.1. G-stable rank for ideals. Let $X = \operatorname{Spec}(R)$ be a nonsingular irreducible complex affine algebraic variety of dimension n, and $\mathfrak{a} \subset R$ be a nonzero ideal, and let $P \in V(\mathfrak{a})$ be a closed point, \mathscr{O}_P be the local ring at P and \mathfrak{m}_P be the maximal ideal corresponding to P.

Definition 26 ([11]). Functions $x_1, \dots, x_n \in \mathcal{O}_P$ are a system of local parameters at P if each $x_i \in \mathfrak{m}_P$, and the images of x_1, \dots, x_n form a basis of the vector space $\mathfrak{m}_P/\mathfrak{m}_P^2$.

Let $T = \{x_1, x_2, \dots, x_n\}$ be a system of local parameters at P. Let $\mathbb{C}\{x_1, x_2, \dots, x_n\}$ be the ring of convergent power series in x_1, x_2, \ldots, x_n . The ring \mathcal{O}_P is contained in $\mathbb{C}\{x_1, x_2, \ldots, x_n\}$. If y_1, y_2, \ldots, y_n is any system of local parameters, then $\mathbb{C}\{x_1, x_2, \dots, x_n\} = \mathbb{C}\{y_1, y_2, \dots, y_n\}$. For any $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{C}\{x_1, x_2, \dots, x_n\}$ $\mathbb{Z}^n_{>0}$, we have a natural action of \mathbb{C}^* on $\mathbb{C}\{x_1, x_2, \cdots, x_n\}$ by $t \cdot x_i = t^{\lambda_i} x_i$ for any $t \in \mathbb{C}^*$.

Definition 27. Let $T = \{x_1, x_2, \dots, x_n\}$ be a system of local parameters at P and $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{Z}_{\geq 0}^n$ a tuple of non-negative integers. Let $f \in \mathbb{C}\{x_1, x_2, \dots, x_n\}$ be a convergent power series. We define the $\frac{3}{5}$ valuation of f with respect to T by $\frac{4}{5}$ (13) $\operatorname{val}_{\lambda}^{T}(f) = \max\{k | f(t^{\lambda_1}x_1, t^{\lambda_2}x_2, \dots, t^{\lambda_n}x_n) = t^k g(x_1, \dots, x_n, t), \text{ for some } g \in \mathbb{C}\{x_1, \dots, x_n, t\}\}.$

$$val_{\lambda}^{T}(f) = \max\{k|f(t^{\lambda_1}x_1, t^{\lambda_2}x_2, \cdots, t^{\lambda_n}x_n) = t^kg(x_1, \cdots, x_n, t), \text{ for some } g \in \mathbb{C}\{x_1, \cdots, x_n, t\}\}$$

Let $\mathfrak{a} \subset R$ be a nonzero ideal as before, the *order* of \mathfrak{a} with respect to this system of local parameters T and $\lambda \in \mathbb{Z}_{>0}^n$ is defined as

$$\operatorname{ord}_{\lambda}^{T}(\mathfrak{a}) = \min\{\operatorname{val}_{\lambda}^{T}(f)|f \in \mathfrak{a}\}.$$

Remark 28. If \mathfrak{a} is generated by f_1, \dots, f_r , then 11

$$\operatorname{ord}_{\boldsymbol{\lambda}}^T(\mathfrak{a}) = \min\{\operatorname{val}_{\boldsymbol{\lambda}}^T(f_i)|i=1,\cdots,r\}.$$

Indeed, it is clear that $\min\{\operatorname{val}_{\lambda}^T(f)|f\in\mathfrak{a}\}\leq \min\{\operatorname{val}_{\lambda}^T(f_i)|i=1,\cdots,r\}$. On the other hand, if $f\in\mathfrak{a}$ computes $\operatorname{ord}_{\lambda}^{T}(\mathfrak{a})$, then we can write $f = \sum_{i} a_{i} f_{i}$, for some $a_{i} \in R$, we have $\operatorname{val}_{\lambda}^{T}(f) = \operatorname{val}_{\lambda}^{T}(\sum_{i} a_{i} f_{i}) \geq \min\{\operatorname{val}_{\lambda}^{T}(a_{i} f_{i}) | i = 1, \dots, r\} \geq \min\{\operatorname{val}_{\lambda}^{T}(f_{i}) | i = 1, \dots, r\}.$

Definition 29. Assume $T = \{x_1, \dots, x_n\}$ is a system of local parameters at P and $\lambda = \{\lambda_1, \dots, \lambda_n\} \in \mathbb{Z}_{>0}^n$, we define the *slope* function $\mu_P(\lambda, \mathfrak{a})$ at *P* as

$$\mu_P(\lambda, \mathfrak{a}) = \frac{\sum_{i=1}^n \lambda_i}{\operatorname{ord}_{\lambda}^T(\mathfrak{a})}.$$

The *T-stable rank* of a at *P* is the infimum of the slope function $\mu_P(\lambda, \mathfrak{a})$ with respect to the tuple $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_n) \in \mathbb{Z}_{>0}^n$

rk^T(P, a) =
$$\inf_{\lambda} \mu_P(\lambda, a) = \inf_{\lambda} \frac{\sum_{i=1}^n \lambda_i}{\operatorname{ord}_{\lambda}^T(a)}$$
.

The G-stable rank of \mathfrak{a} is defined by taking the infimum of T-stable rank with respect to all system of local parameters T at P,

rk^G(P, a) =
$$\inf_{T}$$
 (rk^T(P, a)).

29

37 38

If $P \notin V(\mathfrak{a})$, we define $\operatorname{rk}^G(P,\mathfrak{a}) = \infty$, we write $\operatorname{rk}^G(\mathfrak{a})$ and $\operatorname{rk}^T(\mathfrak{a})$ if P is known in the context. In the following example, we see that an ideal a can have different T-stable rank with respect to different system of local parameters T at a point P.

Example 30. Let $R = \mathbb{C}[x,y]$, $T = \{x,y\}$ and assume $\mathfrak{a} = (x^2 + 2xy + y^2)$ is a principle ideal generated by a polynomial $f(x,y) = x^2 + 2xy + y^2$, P = (0,0) is the origin. Let $\lambda = (\lambda_1, \lambda_2) \in \mathbb{Z}^2_{\geq 0}$, then we have 36

$$\operatorname{rk}^{T}(f) = \inf_{\lambda} \frac{\lambda_{1} + \lambda_{2}}{\min(2\lambda_{1}, \lambda_{1} + \lambda_{2}, 2\lambda_{2})} = 1$$

Let us choose a different system of local parameters $T' = \{u = x + y, v = x - y\}$, then $\mathfrak{a} = (u^2)$, and $f(u,v) = u^2$, then 41

$$\operatorname{rk}^{T'}(f) = \inf_{\lambda} \frac{\lambda_1 + \lambda_2}{2\lambda_1} = \frac{1}{2}$$

In fact, $lct_P(u^2) = \frac{1}{2}$, and by Theorem 12, we have $lct_P(\mathfrak{a}) \leq rk^G(\mathfrak{a})$, therefore we get $rk^G(f) = \frac{1}{2}$.

Example 31. Let $\mathfrak{a} = (x^2y, y^2z, z^2x) \subset \mathbb{C}[x, y, z], T = \{x, y, x\}, P = (0, 0, 0),$ then we get

$$\operatorname{rk}^{T}(\mathfrak{a}) = \inf_{\lambda} \frac{\lambda_{1} + \lambda_{2} + \lambda_{3}}{\min(2\lambda_{1} + \lambda_{2}, 2\lambda_{2} + \lambda_{3}, 2\lambda_{3} + \lambda_{1})} = 1$$

1 The ideal $\mathfrak{a} = (x^2y, y^2z, z^2x)$ is a monomial ideal and we will see later that for a monomial ideal \mathfrak{a} , we have rk $G(\mathfrak{a}) = \operatorname{lct}_P(\mathfrak{a})$. Using the fact that $\operatorname{lct}_P(\mathfrak{a}) = 1$, we obtain $\operatorname{rk}^G(\mathfrak{a}) = 1$.

Remark 32. We have a short exact sequence

25

47

where K is a normal subgroup of the group $\operatorname{Aut}(\mathbb{C}\{x_1,\cdots,x_n\})$ of local holomorphic automorphisms. The morphism $\operatorname{Aut}(\mathbb{C}\{x_1,\cdots,x_n\})\to\operatorname{GL}(n)$ is given by computing the Jacobian matrix at $(0,\cdots,0)$. Furthermore, this sequence splits, we have $\operatorname{Aut}(\mathbb{C}\{x_1\cdots,x_n\})=K\rtimes\operatorname{GL}(n)$.

By Remark 32, there is an action of GL(n) on the set of system of local parameters. Assume T = $\{x_1, \dots, x_n\}$ is a system of local parameters at *P*. For $g \in GL(n)$, $g \cdot T$ is another system of local parameters. We say a system of local parameters $T = \{x_1, \dots, x_n\}$ is good for \mathfrak{a} if $\mathrm{rk}^G(P, \mathfrak{a}) = \mathrm{rk}^{g \cdot T}(P, \mathfrak{a})$ for some $g \in GL(n)$. In other words, to compute the G-stable rank of \mathfrak{a} , it is enough to consider all systems of local parameters obtained from T by actions of GL(n).

Example 33. Let $f(x,y) = x + y^2 \in \mathbb{C}[x,y]$, P = (0,0), we take $T = \{x,y\}$. It can be shown that $\mathrm{rk}^T(f) = \frac{3}{2}$. However, if we choose another system of local parameters $T' = \{u = x + y^2, v = y\}$, then f(u, v) = u, and $\operatorname{rk}^{T'}(f) = 1$. Indeed, this system of local parameters is optimal, in other words, we can compute the G-stable rank in this system of local parameters, and we have $\operatorname{rk}^G(f) = 1$.

Proposition 34. If a is homogeneous in local parameters $T = \{x_1, \dots, x_n\}$, then T is good for a.

Proof. Since a is a homogeneous ideal, we can find a set of generators which are homogeneous polynomials. By Remark 28, it is enough to assume that \mathfrak{a} is generated by a single homogeneous polynomial f. Let $g \in K \subseteq \operatorname{Aut}(\mathbb{C}\{x_1, \dots, x_n\})$, we can write the action of g on T as following

$$g(x_i) = x_i + p_i(x_1, \cdots, x_n),$$

where $p_i \in \mathbb{C}\{x_1 \cdots, x_n\}$ with no constant and degree 1 terms. Since f is a homogeneous polynomial, we 27 28

$$\operatorname{val}_{\lambda}^{T}(f(g(x_1),\cdots,g(x_n)) \leq \operatorname{val}_{\lambda}^{T}(f(x_1,\cdots,x_n)).$$

Let T' be the system of local parameters obtained from T by the action of g, then we have 30

$$\frac{\sum_{i=1}^{n} \lambda_i}{\operatorname{ord}_{\lambda}^{T'}(f)} \ge \frac{\sum_{i=1}^{n} \lambda_i}{\operatorname{ord}_{\lambda}^{T}(f)}.$$

By Lemma 32, given any $h \in \text{Aut}(\mathbb{C}\{x_1, \dots, x_n\})$, we can decompose the action of h into an action of K following by an action of GL(n). By inequality (19), in the system of local parameters obtained by the action of K from T, we have larger slope than the slope computed in T, hence to compute the G-stable rank of f, it suffices to consider the action of GL(n). This shows that T is good for \mathfrak{a} .

37 **Corollary 35.** If $f \in \mathbb{C}[x_1, \dots, x_n]$ is a homogeneous polynomial of degree $d \geq 2$ and f has isolated singularity at $P = (0, \dots, 0)$. Then $\operatorname{rk}^G(f) = \frac{n}{d}$.

Proof. By Corollary 34, the system of local parameters $T = \{x_1, \dots, x_n\}$ is good for f, therefore we only need to consider the group action of GL(n).

We claim that f is SL(n)-semistable in the sense of Definition 4. Indeed, since f has an isolated singularity at origin, $\frac{\partial f}{\partial x_1}, \cdots, \frac{\partial f}{\partial x_n}$ only have a common zero at origin. By [9], chapter 13, their resultant $\operatorname{Res}(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n})$ is nonzero and invariant under the action of $\operatorname{SL}(n)$. Now assume there is a one parameter subgroup $\lambda : \mathbb{G}_m \to \mathrm{SL}(n)$, such that 46

$$\lim_{t\to 0} \lambda(t) \cdot v = 0.$$

Then the resultant $\operatorname{Res}(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n})$ is 0, which is impossible. This proves the claim.

By the claim that f is SL(n)-semistable, the corollary follows immediately from Proposition 2.6 in

5.2. Relation to log canonical threshold. Let $X = \operatorname{Spec}(R)$ be a nonsingular irreducible complex affine \mathfrak{g} variety, $\mathfrak{g} \subset R$ is an ideal, $P \in V(\mathfrak{g})$. If $\mathfrak{g} = (f_1, \dots, f_r) \subseteq R$ is a nonzero ideal, recall the Definition 11, the

variety,
$$u \in X$$
 is an ideal, $I \in V(\mathfrak{a})$. If $u = (f_1, \dots, f_r) \subseteq X$ is a nonzero ideal, recall g is integrable around g .

10 (20)
$$|ct_P(\mathfrak{a})| = \sup\{s > 0 | \frac{1}{(\sum_{i=0}^r |f_i|^2)^s} \text{ is integrable around } P\}.$$

Theorem 12 says that the log canonical threshold of an ideal is less than or equal to the G-stable rank of that ideal

$$14 (21) lct_P(\mathfrak{a}) \le rk^G(P,\mathfrak{a}).$$

Proof of Theorem 12. Let s > 0 be such that $\frac{1}{(\sum_{i=0}^{r} |f_i|^2)^s}$ is integrable around P, then there is a neighborhood U_P of P, such that

$$\int_{U_P} \frac{dV}{(\sum_{i=0}^r |f_i|^2)^s} < C < \infty,$$

for some constant C. Choose a system of local parameters $T = \{x_1, \dots, x_n\}$ at P, let $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n_{\geq 0}$, then let $t \in \mathbb{C}^*$ act on the coordinates by $x_i \to t^{\lambda_i} x_i$. We denote $t \cdot U_P$ for the image of U_P under this action. If |t| < 1, we have $t \cdot U_P \subset U_P$, therefore

$$\int_{t \cdot U_P} \frac{dV}{(\sum_{i=0}^r |f_i|^2)^s} < \int_{U_P} \frac{dV}{(\sum_{i=0}^r |f_i|^2)^s} < C$$

Let $y_i = t^{-\lambda_i} x_i$ for $i = 1, \dots, n$, then we have

(23)
$$\int_{t \cdot U_P} \frac{dx_1 d\bar{x}_1 \cdots dx_n d\bar{x}_n}{(\sum_{i=0}^r |f_i(x_1, \dots, x_n)|^2)^s} = \int_{U_P} \frac{|t|^2 \sum_{i=1}^n \lambda_i dy_1 d\bar{y}_1 \cdots dy_n d\bar{y}_n}{(\sum_{i=1}^r |f_i(t^{\lambda_1} y_1, \dots, t^{\lambda_n} y_n)|^2)^s} < C$$

Recall the Definition 27 for the valuation (13) and order of an ideal (14), we can write

$$\sum_{i=0}^{r} |f_i(t^{\lambda_1} y_1, \cdots, t^{\lambda_n} y_n)|^2 = |t|^{2 \min_i (\text{val}_{\lambda}^T(f_i))} (\sum_{i=1}^{r} |\tilde{f}_i(y_1, \cdots, y_n, t)|^2)$$

$$=|t|^{2\operatorname{ord}_{\lambda}^{T}(\mathfrak{a})}(\sum_{i=1}^{r}|\tilde{f}_{i}(y_{1},\cdots,y_{n},t)|^{2}),$$

for some $\tilde{f}_i(y_1, \dots, y_n, t) \in \mathbb{C}\{y_1, y_2, \dots, y_n, t\}$. In particular, we know that $\sum_{i=1}^r |\tilde{f}_i(y_1, \dots, y_n, 0)|^2$ is not constantly zero in U_P . So we can find a point $Q \in U_P$ such that $0 < \sum_{i=1}^r |\tilde{f}_i(Q,0)|^2 < B$ for some constant B>0. By the continuity, there is a neighborhood U_Q such that $Q\in U_Q\subset U_P$ and some $\varepsilon>0$, such that $0 < \sum_{i=1}^{r} |\tilde{f}_i(y_1, \dots, y_n, t)|^2 < B$ for any $(y_1, \dots, y_n) \in U_Q$ and $0 \le t < \varepsilon$. We can write integral (23) as

$$\int_{U_{P}} \frac{|t|^{2\sum_{i=1}^{n} \lambda_{i}} dy_{1} d\bar{y}_{1} \cdots dy_{n} d\bar{y}_{n}}{|t|^{2\operatorname{ord}_{\lambda}^{T}(\mathfrak{a})} (\sum_{i=1}^{r} |\tilde{f}_{i}(y_{1}, \cdots, y_{n}, t)|^{2})^{s}} = \int_{U_{P}} \frac{|t|^{2(\sum_{i=1}^{n} \lambda_{i} - s \operatorname{ord}_{\lambda}^{T}(\mathfrak{a}))} dV}{(\sum_{i=1}^{r} |\tilde{f}_{i}(y_{1}, \cdots, y_{n}, t)|^{2})^{s}} < C.$$
Therefore we get
$$|t|^{2(\sum_{i=1}^{n} \lambda_{i} - s \operatorname{ord}_{\lambda}^{T}(\mathfrak{a}))} \int_{U_{P}} \frac{dV}{(U_{P})^{2}} = \int_{U_{P}} \frac{|t|^{2(\sum_{i=1}^{n} \lambda_{i} - s \operatorname{ord}_{\lambda}^{T}(\mathfrak{a}))} dV}{(U_{P})^{2}} < C.$$

Therefore we get

18

19

26

27

28

29 30

31

32 33 34

35

$$|t|^{2(\sum_{i=1}^n \lambda_i - s \operatorname{ord}_{\lambda}^T(\mathfrak{a}))} \int_{U_Q} \frac{dV}{B^s} = \int_{U_Q} \frac{|t|^{2(\sum_{i=1}^n \lambda_i - s \operatorname{ord}_{\lambda}^T(\mathfrak{a}))} dV}{B^s} < \int_{U_P} \frac{|t|^{2(\sum_{i=1}^n \lambda_i - s \operatorname{ord}_{\lambda}^T(\mathfrak{a}))} dV}{(\sum_{i=1}^r |\tilde{f}_i(y_1, \dots, y_n, t)|^2)^s} < C$$

```
for all t \in [0, \varepsilon), where \varepsilon > 0. Since \int_{U_Q} \frac{dV}{B^s} > 0, we must have
```

 $\sum_{i=1}^n \lambda_i - s \operatorname{ord}_{\lambda}^T(\mathfrak{a}) \geq 0.$

2 3 4 5 6 7 8 9 10 Hence we get $s \leq \frac{\sum_{i=1}^{n} \lambda_i}{\operatorname{ord}_{\lambda}^{T}(\mathfrak{a})}$. This holds for any system of local coordinates and $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}_{\geq 0}^n$, therefore

$$lct_P(\mathfrak{a}) \leq rk^G(P,\mathfrak{a}).$$

This completes the proof of Theorem 12.

Example 36. Let $f = x_1^{u_1} + x_2^{u_2} + \dots + x_n^{u_n} \in \mathbb{C}[x_1, \dots, x_n], P = (0, \dots, 0)$ be the origin. It was shown in [8] that $lct_P(f) = min(1, \sum_{i=1}^n \frac{1}{u_i})$. However, we will show that $rk^G(f) = \sum_{i=1}^n \frac{1}{u_i}$. So we get $lct_P(f) \le rk^G(f)$. If n = 3, $u_1 = u_2 = u_3 = 2$, then we have $f = x_1^2 + x_2^2 + x_3^2$ and $lct_P(f) = 1 < rk^G(f) = \frac{3}{2}$.

Suppose $\mathfrak{a} = (m_1, \dots, m_r) \subset \mathbb{C}[x_1, \dots, x_n]$ is a proper nonzero ideal generated by monomials $\{m_1, \dots, m_r\}$ and let $P = (0, \dots, 0)$ be the origin. Given $u = (u_1, \dots, u_n) \in \mathbb{Z}_{>0}^n$, we write $x^u = x_1^{u_1} \cdots x_n^{u_n}$. The *Newton Polyhedron* of \mathfrak{a} is 17

18 (25)
$$P(\mathfrak{a}) = \text{convex hull } (\{u \in \mathbb{Z}^n_{\geq 0} | x^u \in \mathfrak{a}\}).$$

19 It was shown in [8] that

32

33 34

35 36

37

41 42

43

45

46

$$\operatorname{lct}_{P}(\mathfrak{a}) = \max\{v \in \mathbb{R}_{\geq 0} | (1, 1, \dots, 1) \in v \cdot P(\mathfrak{a}) \}.$$

In other words, $lct_P(\mathfrak{a})$ is equal to the largest ν such that $\sum_{i=1}^n \lambda_i \geq \nu \cdot \min_{u \in P(\mathfrak{a})} \langle u, \lambda \rangle$ for any $\lambda = 1$ 23 $(\lambda_1, \dots, \lambda_n) \in \mathbb{Z}_{>0}^n$, where we use the standard inner product $\langle u, \lambda \rangle = \sum_{i=1}^n u_i \lambda_i$.

Theorem 13 says that the log canonical threshold is equal to the G-stable rank for monomial ideals. More precisely, suppose $\mathfrak{a} \subset \mathbb{C}[x_1, \cdots, x_n]$ is a proper nonzero ideal generated by monomials and $P = (0, \cdots, 0)$ is the origin. Then

$$\frac{27}{28} (27) \qquad \qquad \operatorname{lct}_{P}(\mathfrak{a}) = \operatorname{rk}^{G}(\mathfrak{a}).$$

Proof of Theorem 13. Let $\mathfrak{a}=(m_1,\cdots,m_r)$ and $\{m_i=x_1^{l_{i1}}x_2^{l_{i2}}\cdots x_n^{l_{in}}\}_{i=1,\cdots,r}$ be a set of generators, where $l_i = (l_{i1}, \dots, l_{in}) \in \mathbb{Z}_{>0}^n$, we have

$$\begin{split} & \operatorname{lct}_{P}(\mathfrak{a}) = \max\{v \in \mathbb{R}_{\geq 0} | (1, \cdots, 1) \in v \cdot P(\mathfrak{a}) \} \\ &= \max\{v \in \mathbb{R}_{\geq 0} | \sum_{j} \lambda_{j} \geq v \cdot \min_{u \in P(\mathfrak{a})} \langle u, \lambda \rangle, \forall \lambda \in \mathbb{Z}_{\geq 0}^{n} \} \\ &= \max\{v \in \mathbb{R}_{\geq 0} | \sum_{j} \lambda_{j} \geq v \cdot \min_{i} \langle l_{i}, \lambda \rangle, \forall \lambda \in \mathbb{Z}_{\geq 0}^{n} \} \\ &= \max\{v \in \mathbb{R}_{\geq 0} | v \leq \frac{\sum_{j} \lambda_{j}}{\min_{i} (\sum_{j} l_{ij} \lambda_{j})}, \forall \lambda \in \mathbb{Z}_{\geq 0}^{n} \}. \end{split}$$

In this system of local parameters $T = \{x_1, \dots, x_n\}$, we have $\operatorname{ord}_{\lambda}^T(\mathfrak{a}) = \min_i(\sum_j l_{ij}\lambda_j)$, therefore we get 40

$$\begin{split} \mathrm{lct}_{P}(\mathfrak{a}) &= \max\{ v \in \mathbb{R}_{\geq 0} | v \leq \frac{\sum_{i} \lambda_{i}}{\mathrm{ord}_{\lambda}^{T}(\mathfrak{a})}, \forall \lambda \in \mathbb{Z}_{\geq 0}^{n} \} \\ &= \max\{ v \in \mathbb{R}_{\geq 0} | v \leq \mathrm{rk}^{T}(\mathfrak{a}) \} = \mathrm{rk}^{T}(\mathfrak{a}). \end{split}$$

Since log canonical threshold does not depend on the local coordinates, hence we have

$$lct_P(\mathfrak{a}) = rk^G(\mathfrak{a}).$$

This completes the proof of Theorem 13.

- Example 37. Suppose $\mathfrak{a} = (x_1^{u_1}, \dots, x_n^{u_n})$ and $P = (0, \dots, 0)$, then $lct_P(\mathfrak{a}) = \sum_{i=1}^n \frac{1}{u_i}$. Therefore we also have $rk^G(\mathfrak{a}) = \sum_{i=1}^n \frac{1}{u_i}$.
- 5.3. Some properties of G-stable rank for ideals. Some results for log canonical threshold can be found
 in [8]. Here, we also prove similar results for the G-stable rank of ideals.
- **Proposition 38.** If $\mathfrak{a} \subseteq \mathfrak{b}$ are nonzero ideals on X, then we have $lct_P(\mathfrak{a}) \leq lct_P(\mathfrak{b})$ and $rk^G(P,\mathfrak{a}) \leq rk^G(P,\mathfrak{b})$.
- Proof. The first inequality was shown in [8]. If $P \notin V(\mathfrak{b})$, it is trivial. Assume $P \in V(\mathfrak{b})$, let T be a system of local parameters at P and $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}_{\geq 0}^n$. Since $\mathfrak{a} \subseteq \mathfrak{b}$, we have $\operatorname{ord}_{\lambda}^T(\mathfrak{b}) \leq \operatorname{ord}_{\lambda}^T(\mathfrak{a})$, therefore $\mu_P(\lambda, \mathfrak{a}) \leq \mu_P(\lambda, \mathfrak{b})$, it follows immediately that $\operatorname{rk}^G(P, \mathfrak{a}) \leq \operatorname{rk}^G(P, \mathfrak{b})$.
- **Proposition 39.** We have $lct_P(\mathfrak{a}^r) = \frac{lct_P(\mathfrak{a})}{r}$ and $rk^G(P,\mathfrak{a}^r) = \frac{rk^G(P,\mathfrak{a})}{r}$ for every $r \ge 1$.
- Proof. The first claim was shown in [8] and the second claim follows from the fact that $\operatorname{ord}_{\lambda}^{T}(\mathfrak{a}^{r}) = r \cdot \operatorname{ord}_{\lambda}^{T}(\mathfrak{a})$ and Definition 29.
- **Proposition 40.** If \mathfrak{a} and \mathfrak{b} are ideals of X, then

$$\frac{1}{\mathrm{lct}_P(\mathfrak{a} \cdot \mathfrak{b})} \leq \frac{1}{\mathrm{lct}_P(\mathfrak{a})} + \frac{1}{\mathrm{lct}_P(\mathfrak{b})}, \quad \frac{1}{\mathrm{rk}^G(P,\mathfrak{a} \cdot \mathfrak{b})} \leq \frac{1}{\mathrm{rk}^G(P,\mathfrak{a})} + \frac{1}{\mathrm{rk}^G(P,\mathfrak{b})}.$$

Proof. The first inequality was shown in [8], we show the second inequality. Let T be a system of local parameters at P and $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}_{>0}^n$, then

$$\operatorname{ord}_{\lambda}^{T}(\mathfrak{a} \cdot \mathfrak{b}) = \operatorname{ord}_{\lambda}^{T}(\mathfrak{a}) + \operatorname{ord}_{\lambda}^{T}(\mathfrak{b}).$$

Therefore, we have

18

19

23

24

26 27

29 30 31

32 33

39

40

$$\sup_{T,\lambda} \frac{\operatorname{ord}_{\lambda}^{T}(\mathfrak{a} \cdot \mathfrak{b})}{\sum \lambda_{i}} = \sup_{T,\lambda} \left(\frac{\operatorname{ord}_{\lambda}^{T}(\mathfrak{a})}{\sum \lambda_{i}} + \frac{\operatorname{ord}_{\lambda}^{T}(\mathfrak{b})}{\sum \lambda_{i}} \right)$$
$$\leq \sup_{T,\lambda} \frac{\operatorname{ord}_{\lambda}^{T}(\mathfrak{a})}{\sum \lambda_{i}} + \sup_{T,\lambda} \frac{\operatorname{ord}_{\lambda}^{T}(\mathfrak{b})}{\sum \lambda_{i}}.$$

The following two propositions are from [8]. A lot of evidence suggests the same results for G-stable rank of ideals, we give them as conjectures.

Proposition 41. If $H \subset X$ is a nonsingular hypersurface such that $\mathfrak{a} \cdot \mathscr{O}_H$ is nonzero, then $lct_P(\mathfrak{a} \cdot \mathscr{O}_H) \leq lct_P(\mathfrak{a})$.

Proposition 42. If \mathfrak{a} and \mathfrak{b} are ideals on X, then

$$lct_P(\mathfrak{a} + \mathfrak{b}) \leq lct_P(\mathfrak{a}) + lct_P(\mathfrak{b})$$

- $\stackrel{\mathsf{41}}{=}$ for every $P \in X$.
- Conjecture 43. If $H \subset X$ is a nonsingular hypersurface such that $\mathfrak{a} \cdot \mathscr{O}_H$ is nonzero, then $\operatorname{rk}^G(P, \mathfrak{a} \cdot \mathscr{O}_H) \leq \operatorname{rk}^G(P, \mathfrak{a})$ for any $P \in H$.
- Conjecture 44. Let $\mathfrak a$ and $\mathfrak b$ be two nonzero proper ideals of X, then for any point $P \in X$, we have
- $\operatorname{rk}^{G}(P, \mathfrak{a} + \mathfrak{b}) \leq \operatorname{rk}^{G}(P, \mathfrak{a}) + \operatorname{rk}^{G}(P, \mathfrak{b}).$

6. Acknowledgements

I would like to thank Harm Derksen for direction and discussion, and Visu Makam for comments on an earlier draft of this paper.

References

- [1] Pierre Comon, Gene Golub, Lek-Heng Lim, Bernard Mourrain, Symmetric tensors and symmetric tensor rank, SIAM J. Matrix Anal. Appl. 2008, 30, 1254-1279.
- [2] Harm Derksen, The G-stable rank for tensors, arXiv:2002.08435.
- [3] Jordan S. Ellenberg, Dion Gijswijt, On large subsets of \mathbb{F}_n^n with no three-term arithmetic progression, Ann. of Math. (2) 185 (2017), no. 1, 339-343. 11
- [4] Shmuel Friedland, Remarks on the symmetric rank of symmetric tensors, SIAM Journal on Matrix Analysis and Applications, 12 37(1):320-337, 2016.
- 13 [5] Zhi Jiang, Improved explicit upper bounds for the Cap Set Problem, arXiv:2103.06481.
- [6] David Kazhdan, Alexander Polishchuk, Linear subspaces of minimal codimension in hypersurfaces, arXiv:2107.08080.
- 15 [7] George R. Kempf, Instability in invariant theory, Ann. of Math. (2) 108 (1978), no. 2, 299-316.
- [8] Mircea Mustață, Impanga Lectures Notes on Log Canonical Thresholds, Notes by Tomasz Szemberg in Contributations to 16 Algebraic Geometry, Editor: Piotr Pragacz, EMS Series of Congress Reports. 17
- [9] Israel M. Gelfand, Mikhail M. Kapranov, Andrei V. Zelevinsky, Discriminants, Resultants, and Multidimensional Determi-18 nants, Boston, Birkhauser, 1994.
- 19 [10] Anna Seigal, Lower bounds on the rank and symmetric rank of real tensors, arXiv: 2202.11740.
- [11] Igor R. Shafarevich, Basic Algebraic Geometry 1, Springer-Verlag, Berlin, Heidelberg, 2013.
- [12] Yaroslav Shitov, A counterexample to Comon's conjecture, SIAM Journal on Applied Algebra and Geometry, Vol.2, Iss.3.
 - [13] Yaroslav Shitov, Comon's conjecture over the reals, viXra: 2009.0134.
- [14] Terence Tao, A symmetric formulation of the Croot-Lev-Pach-Ellenberg-Gijswijt capset bound (2016), available at 23 https://terrytao.wordpress.com/2016/05/18/. blog post. 24
 - [15] Xinzhen Zhang, Zheng-Hai Huang, Liqun Qi, Comon's conjecture, rank decomposition, and symmetric rank decomposition of symmetric tensors, SIAM Journal on Matrix Analysis and Applications, 37(4):1719–1728, 2016.
- [16] Baodong Zheng, Riguang Huang, Xiaoyu Song, Jinli Xu, On Comon's conjecture over arbitrary fields, Linear Algebra and its Applications, 587:228-242, 2020. 27

28 29

25

ANN ARBOR, MI, USA

30

Email address: zhijiang@umich.edu

47

40 41