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G-STABLE RANK OF SYMMETRIC TENSORS AND LOG CANONICAL THRESHOLD

ZHI JIANG

ABSTRACT. Shitov recently gave counterexamples over the real and complex field to Comon’s conjecture
that the symmetric tensor rank and tensor rank of a symmetric tensor are the same. In this paper we show
that an analog of Comon’s conjecture for the G-stable rank introduced by Derksen is true: the symmetric
G-stable rank and G-stable rank of a symmetric tensor are the same over perfect fields. We also show that the
log-canonical threshold of a complex singularity is bounded by the G-stable rank of the defining ideal.

1. Introduction

An order d tensor is a vector in a tensor product of d vector spaces. The are several generalizations of the
rank of a matrix to tensors of order ≥ 3, for example the tensor rank, border rank, sub-rank, slice rank
and G-stable rank. A simple tensor in V1 ⊗V2 ⊗·· ·⊗Vd is a tensor of the form v1 ⊗ v2 ⊗·· ·⊗ vd , where
vi ∈Vi. The tensor rank of T ∈V1 ⊗V2 ⊗·· ·⊗Vd is the smallest number of simple tensors that sum up to
T . The G-stable rank of a tensor was introduced by Derksen in [2]. The slice rank and G-stable rank have
been used to find bounds for the cap set problem (see [2], [3], [5], [14]).

If V1 =V2 = · · ·=Vd =V then there is a natural action of the symmetric group Sd on V⊗d =V ⊗V ⊗
·· ·⊗V . A tensor invariant under this action is called a symmetric tensor of order d. The Waring rank or
symmetric rank of a symmetric tensor T ∈V⊗d is the smallest number d such that T can be written as
a sum of d tensors of the form v⊗d = v⊗ v⊗·· ·⊗ v. It is clear that the tensor rank is less than or equal
to the symmetric rank. It was conjectured by Comon [1] that the symmetric rank and tensor rank of a
symmetric tensor are equal. Sufficient conditions were given in [4] under which Comon’s conjecture is
true. Comon’s conjecture was proved when the rank of a tensor is less than its order [15] [16]. However,
Shitov gave counterexamples over the real [12] and complex field [13]. It is also proved in [10] that there
is an order 6 real tensor whose rank and symmetric rank differ. In this paper, we study the notion of
G-stable rank of a tensor. The G-stable rank of a tensor is defined in terms of geometric invariant theory
and the notion of stability for algebraic group actions on tensors. It is also natural to define a symmetric
G-stable rank for a symmetric tensor. One main result of this paper is that the symmetric G-stable rank
and G-stable rank of a symmetric tensor are the same over perfect fields.

In algebraic geometry and singularity theory, the log canonical threshold is an important invariant
of singularities. We will show that the symmetric G-stable rank and the log canonical threshold are
closely related. We extend the notion of G-stable rank to ideals in a coordinate ring of a smooth complex
irreducible affine variety. In this context, we show that the log canonical threshold is less than or equal to
the G-stable rank. In the case of monomial ideals in the polynomial ring we show equality.

1.1. Stability of tensors. Let K be a perfect field and G be a reductive algebraic group over K. Suppose
ρ : G → GL(W ) is a rational representation of G. Let Ov,Ov,Gv denote the orbit, orbit-closure and
stabilizer of v respectively. We have the following notions of stability:
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Definition 1. We say v ∈W is:

• G-unstable, if 0 ∈Ov;
• G-semistable, if 0 /∈Ov;
• G-polystable, if v ̸= 0 and Ov is closed;
• G-stable, if v is G-polystable and dimGv = dim(kernel of ρ).

We often omit the prefix G if G is clear in the context. The subset of G-unstable points is called the
null cone. A 1-parameter subgroup of an algebraic group G is a homomorphism of algebraic groups
λ : Gm → G, where Gm is the multiplicative group. For any integer m, we define the multiple of λ by
m, denoted by m ·λ , which is also a 1-parameter subgroup with (m ·λ )(t) = (λ (t))m. A 1-parameter
subgroup is indivisible if it is not a multiple of any other 1-parameter subgroup with factor m ≥ 2. It
follows from the Hilbert-Mumford criterion that v is G-unstable iff there is a 1-parameter subgroup
λ : Gm → G, such that

lim
t→0

λ (t) · v = 0.

Example 2. Let W = Kn be an n dimensional vector space. Fix a basis of W and let p ∈W be a point
with coordinates p = (x1,x2, · · · ,xn). Consider the action of Gm on p by

t · (x1,x2, · · · ,xn) = (t−1x1, tx2, · · · , txn)

We note that any 1-parameter subgroup of Gm is of the form λk(t) = tk for some integer k ∈ Z. If x1 ̸= 0
and (x2,x3, · · · ,xn) ̸= 0, then

lim
t→0

λk(t) · (x1,x2, · · · ,xn) = lim
t→0

(t−kx1, tkx2, · · · , tkxn)

does not exist for all k ̸= 0, hence p is Gm-semistable. One can also check that in this case the orbit Op is
closed, therefore p is also Gm-stable.

If x1 = 0, by taking k = 1, we have limt→0 λ1(t) ·(x1,x2, · · · ,xn) = limt→0(0, tx2, · · · , txn) = 0. Similarly,
if (x2,x3, · · · ,xn) = 0, by taking k =−1, we have limt→0 λ−1(t) · (x1,x2, · · · ,xn) = limt→0(tx1,0, · · · ,0) =
0. Therefore p = (x1,x2, · · · ,xn) is Gm-unstable if x1 = 0 or (x2,x3, · · · ,xn) = 0.

Let V be a finite dimensional vector space over K, we consider the action of the group of product
of special linear groups SL(V )d = SL(V )×SL(V )× ·· ·×SL(V ) on the tensor product space V⊗d =
V ⊗V ⊗·· ·⊗V . In this paper, we are interested in the stability of tensors in V⊗d under the action of SL(V )d .
By Definition 1, a tensor v ∈V⊗d is SL(V )d-unstable if there is a 1-parameter subgroup λ : Gm → SL(V )d ,
such that limt→0 λ (t) · v = 0. If no such 1-parameter subgroup exists, then v is SL(V )d-semistable.

Let G be a reductive algebraic group over K. By a G-scheme X we mean a separated, finite type scheme
X over K as well as a morphism G×X → X mapping (g,x) to g · x, such that g · (h · x) = (gh) · x, for all
g,h ∈ G and for all x ∈ X . A morphism f : X →Y between two G-schemes X and Y is G-equivariant if for
all g ∈ G and x ∈ X , we have f (g ·x) = g · f (x). A subscheme S of a G-scheme X is called a G-subscheme
if S is a G-scheme and the immersion S ↪→ X is G-equivariant.

Throughout this paper, we will work over a perfect field K. In [7], Kempf proved a K-rational version
of the Hilbert-Mumford criterion:

Theorem 3 ([7], Corollary 4.3). Let G be a reductive algebraic group. Suppose that X is a G-scheme and
x ∈ X is a K-point. Assume S is a closed G-subscheme of X which does not contain x and S meets the
closure of the orbit G · x. Then there exits a K-rational 1-parameter subgroup λ : Gm → G, such that

lim
t→0

λ (t) · x ∈ S.
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If G = SL(V )d , X =V⊗d , then by Theorem 3, v is unstable if and only if 0 is in the closure of the orbit
of v, i.e. 0 ∈ SL(V )d · v.

A tensor T ∈ V⊗d is called symmetric if it is invariant under the action of symmetric group Sd . Let
DdV ⊆V⊗d be the space of symmetric tensors. As a representation of GL(V ), this is the space of divided
powers, which is isomorphic to the d-th symmetric power SdV if the characteristic of K is 0 or > d.

It is interesting to look at the diagonal action of SL(V ) on DdV via the diagonal embedding:

(1) ∆ : SL(V ) ↪→ SL(V )d.

Definition 4. A symmetric tensor v ∈ DdV is SL(V )-unstable if there is a 1-parameter subgroup λ : Gm →
SL(V ), such that

lim
t→0

λ (t) · v = 0.

Otherwise we say v is SL(V )-semistable.

1.2. G-stable rank for tensors. In [2], Derksen introduced G-stable rank for tensors. Suppose the base
field K is perfect. If λ : Gm → GLn is a 1-parameter subgroup, then we can view λ (t) as an invertible n×n
matrix whose entries lie in the ring K[t, t−1] of Laurent polynomials. We say that λ (t) is a polynomial
1-parameter subgroup of GLn if all these entries lie in the polynomial ring K[t]. Consider the action of
the group G = GL(V1)×GL(V2)×·· ·×GL(Vd) on the tensor product space W =V1 ⊗V2 ⊗·· ·⊗Vd . A
1-parameter subgroup λ : Gm → G can be written as

λ (t) = (λ1(t), · · · ,λd(t)),

where λi(t) is a 1-parameter subgroup of GL(Vi) for all i. We say that λ (t) is polynomial if and only if
λi(t) is a polynomial 1-parameter subgroup for all i.

The t-valuation val(a(t)) of a polynomial a(t) ∈ K[t] is the biggest integer n such that a(t) = tnb(n)
for some b(t) ∈ K[t]. For a(t),b(t) ∈ K[t], the t-valuation val

(a(t)
b(t)

)
of the rational function a(t)

b(t) ∈ K(t)

is val
(a(t)

b(t)

)
= val(a(t))− val(b(t)). For a tuple u(t) = (u1(t),u2(t), · · · ,ud(t)) ∈ K(t)d , we define the

t-valuation of u(t) as

(2) val(u(t)) = min
i
{val(ui(t))|1 ≤ i ≤ d}.

If λ is a 1-parameter subgroup of G and v ∈ W is a tensor, then we have λ (t) · v ∈ K(t)⊗W . We
view K(t)⊗W as a vector space over K(t) and define the t-valuation val(λ (t) · v) as in (2). Assume
val(λ (t) · v)> 0, then for for any α = (α1,α2, · · · ,αd) ∈ Rd

>0, we define the slope

(3) µα(λ (t),v) =
∑

d
i=1 αi val(det(λi(t)))

val(λ (t) · v)
.

The G-stable rank for v ∈W is the infimum of the slope with respect to all such 1-parameter subgroups.
More precisely:

Definition 5 ([2], Theorem 2.4). If α ∈ Rd
>0, then the G-stable rank rkG

α(v) is the infimum of µα(λ (t),v)
where λ (t) is a polynomial 1-parameter subgroup of G = GL(V1)×·· ·×GL(Vn) and val(λ (t) · v)> 0. If
α = (1,1, · · · ,1), we simply write rkG(v).

Remark 6. In Definition 1.3 of the original paper [2], the G-stable rank is defined as the infimum of
the slope µα(g(t),v) over a more general family of group elements g(t) ∈ G(K[[t]]) = GL(V1,K[[t]])×
GL(V2,K[[t]])× ·· · ×GL(Vn,K[[t]]) with val(g(t) · v) > 0, where GL(Vi,K[[t]]) is the group of K[[t]]-
endomorphisms of the space K[[t]]⊗K Vi. It is then proved in [2] Theorem 2.4 that to compute the G-stable
rank, it suffices to consider all polynomial 1-parameter subgroups. For the purpose of this paper, we use
the latter as our definition of G-stable rank.
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Let V be a finitely dimensional vector space over K. Let DdV ⊂ V⊗d be the space of all symmetric
tensors. Assume the group GL(V ) acts on DdV via the diagonal embedding: GL(V ) ↪→ GL(V )d .

Definition 7. Let v ∈ DdV be a symmetric tensor, the symmetric G-stable rank symmrkG(v) of v is the
infimum of µ(λ (t),v) = d val(det(λ (t)))

val(λ (t)·v) , where λ (t) is a polynomial 1-parameter subgroup of GL(V ) and
val(λ (t) · v)> 0.

Since any 1-parameter subgroup of GL(V ) is also a 1-parameter subgroup of GL(V )d via the diagonal
embedding, we have symmrkG(v)≥ rkG(v) for any v ∈ DdV . It turns out that the other inequality is also
true,

Theorem 8. Let v ∈ DdV be a symmetric tensor, then we have

symmrkG(v) = rkG(v).

Example 9. Suppose that V = K2, and v = e2⊗e1⊗e1+e1⊗e2⊗e1+e1⊗e1⊗e2 ∈V⊗3, where {e1,e2}

is the standard basis of V = K2. Let λ (t) =
(

t 0
0 1

)
be a polynomial 1-parameter subgroup of GL(K2).

Then λ (t) · v = t2v, det(λ (t)) = t, the slope is

µ(λ (t),v) = 3
val(det(λ (t)))
val(λ (t) · v)

=
3
2
.

Therefore we have symmrkG(v) ≤ 3
2 . It was proved in [2] that rkG(v) = 3

2 . Hence by the fact
symmrkG(v)≥ rkG(v) we have symmrkG(v) = 3

2 .

A 1-parameter subgroup of SL(V ) is also a 1-parameter subgroup of SL(V )d via the diagonal embed-
ding. It follows that if a symmetric tensor v ∈ DdV is SL(V )-unstable, then v is also SL(V )d-unstable.
Equivalently, if v is SL(V )d-semistable, then v is also SL(V )-semistable. It follows from Theorem 8 that
the converse direction is also true:

Corollary 10. Let v ∈ DdV be a symmetric tensor, then v is SL(V )d-semistable if and only if it is
SL(V )-semistable.

1.3. G-stable rank for ideals and log canonical threshold. Let V be an n-dimensional vector space
over a perfect field K. By choosing a basis of V and a dual basis {x1,x2, . . . ,xn} of V ⋆, we have an
isomorphism of algebras SV ⋆ ∼= K[x1, · · · ,xn], where SV ⋆ is the symmetric algebra on the vector space
V ⋆. We have defined the symmetric G-stable rank for symmetric tensors, it is natural to extend this idea
to polynomials and more generally to ideals in the polynomial ring K[x1, · · · ,xn]. Furthermore, let X
be a smooth irreducible affine variety with coordinate ring K[X ], and let a⊂ K[X ] be an ideal. We can
define the G-stable rank rkG(P,a) for the ideal a at a point P ∈V (a). We postpone the precise definition
of G-stable rank for ideals to Section 5. It turns out that the G-stable rank rkG(P,a) of an ideal a at P is
closely related to the log canonical threshold lctP(a) of the ideal a at the point P ∈V (a).

Log canonical threshold is an invariant of singularities in algebraic geometry, [8] gives a comprehensive
introduction to this subject. Let K = C be the complex field. Let H ⊂ Cn be a hypersurface defined by a
polynomial f ∈ C[x1, · · · ,xn], and let P ∈ H be a closed point. The log canonical threshold lctP( f ) of f at
the point P tells us how singular f is at the point P. More precisely, lctP( f ) is a rational number bounded
above by 1, and equal to 1 if P is a smooth point of H.

There are several equivalent ways to define the log canonical threshold, here we give an analytic
definition, which we will use later.
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Definition 11. Let X be a smooth irreducible affine variety. Let a= ( f1, · · · , fr)⊂ C[X ] be an ideal, and
P ∈V (a) is a closed point. The log canonical threshold lctP(a) of the ideal a at P is

(4) lctP(a) = sup
{

s > 0
∣∣∣ 1
(∑r

i=0 | fi|2)s is integrable around P
}
.

The log canonical threshold lctP( f ) of a polynomial f ∈ C[X ] is the log canonical threshold of the
principle ideal a = ( f ). We have the following relation between the log canonical threshold and the
G-stable rank:

Theorem 12. In the situation of Definition 11, the log canonical threshold of a is less than or equal to the
G-stable rank of a at P:

(5) lctP(a)≤ rkG(P,a).

When a is a monomial ideal, i.e. a is generated by monomials, the equality holds.

Theorem 13. Suppose a ⊂ C[x1, · · · ,xn] is a proper nonzero ideal generated by monomials and P =
(0, · · · ,0) is the origin. Then we have

(6) lctP(a) = rkG(P,a).

Our results indicate that the G-stable rank for tensors is a useful tool for attacking the stability of tensors.
Corollary 10 shows the equivalence of SL(V )d-semistability and SL(V )-semistability for symmetric
tensors, one can ask the same question for stability, i.e. is the subset of SL(V )d-stable symmetric tensors
the same as the subset of SL(V )-stable symmetric tensors? On the other hand, the G-stable rank for
ideals gives a numerical upper bound for the log canonical threshold, this provides a different perspective
for the study of complex singularities. In the mean time, we noticed that [6] defined the same notion
for homogeneous polynomials and it was used to give a sharp bound on the change of the slice rank of
polynomials under field extensions.

2. Kempf’s theory of optimal subgroups

Let G be a reductive algebraic group over a perfect field K. In our case, G is one of SL(V )d,SL(V ),GL(V )d

or GL(V ), depend on the situation. Let Γ(G) denote the set of all 1-parameter subgroups of G. In [7],
Kempf provided a way to approach the boundary of an orbit. Following [7], we have the definition:

Definition 14. Let X be a G-scheme over a perfect field K and let x ∈ X be a K-point. We define |X ,x| to
be the set of all 1-parameter subgroups of G such that limt→0 λ (t) ·x exists in X . Assume S is a G-invariant
closed sub-scheme of X not containing x, we define a subset |X ,x|S ⊂ |X ,x| by

(7) |X ,x|S = {λ ∈ |X ,x| | lim
t→0

λ (t) · x ∈ S}.

Remark 15. If S∩G · x ̸=∅, then by Theorem 3, there exists a 1-parameter subgroup λ (t) ∈ Γ(G), such
that limt→0 λ (t) · x ∈ S. Hence |X ,x|S ̸= ∅. If X = V⊗d , S = 0 and v ∈ V⊗d is SL(V )d-unstable, then
|V⊗d,v|{0} ̸=∅.

Let λ ∈ |X ,x| be a 1-parameter subgroup of G, we get a morphism φλ : A1 → X by φλ (t) = λ (t) · x if
t ̸= 0 and φλ (0) = limt→0 λ (t) ·x. Assume S is a G-invariant closed sub-scheme of X not containing x, the
inverse image φ

−1
λ

(S) is an effective divisor supported inside t = 0. Let aS,x(λ ) denote the degree of the
divisor φ

−1
λ

(S) for λ ∈ |X ,x|. Note that we have a natural conjugate action of G on the set of 1-parameter
subgroups Γ(G) by (g ·λ )(t) = gλ (t)g−1, where g ∈ G, λ ∈ Γ(G).

Definition 16. A length function ∥ · ∥ is a non-negative real-valued function on Γ(G) such that
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(1) ∥g ·λ∥= ∥λ∥ for any λ ∈ Γ(G) and g ∈ G.
(2) For any maximal torus T ⊆ G, we have Γ(T )⊆ Γ(G), the restriction of ∥ · ∥ on Γ(T ) is integral

valued and extends to a norm on the vector space Γ(T )⊗ZR.

Remark 17. Such a length function exists. Let T be a maximal torus of G. Let N be the normalizer of T .
Then the Weyl group with respect to T is defined by W = N/T . By the fact that Γ(G)/G ∼= Γ(T )/W , it
suffices to define a W -invariant norm on Γ(T )⊗ZR. Since W is a finite group, any norm on Γ(T )⊗ZR
and then average over W will work.

Remark 18. In the original paper [7], Kempf defined a length function ∥ · ∥ that satisfies a different
condition (2): for any maximal torus T of G, there is a positive definite integral-valued bilinear form ( , )
on Γ(T ), such that (λ ,λ ) = ∥λ∥2 for any λ in Γ(T ). But the proof in [7] of the theorem below is also
valid for our slightly weaker definition of length function.

Theorem 19 (Kempf [7]). Let X be an affine G-scheme over a perfect field K. Let x ∈ X be a K-point.
Assume S is an G-invariant closed sub-scheme not containing x such that S∩G · x ̸= ∅. Fix a length
function ∥ · ∥ on Γ(G), then we have

(1) The function aS,x(λ )

∥λ∥ has a maximum positive value BS,x on the set of non-trivial 1-parameter
subgroups in |X ,x|.

(2) Let ΛS,x be the set of indivisible 1-parameter subgroups λ ∈ |X ,x| such that aS,x(λ ) = BS,x · ∥λ∥,
then we have
(a) ΛS,x ̸=∅.
(b) For λ ∈ ΛS,x, Let P(λ ) = {g ∈ G| limt→0 λ (t) · g ·λ (t)−1 exists}, then P(λ ) is a parabolic

subgroup and independent of λ . We denote it by PS,x.
(c) Any maximal torus of PS,x contains a unique member of ΛS,x.

3. G-stable rank and symmetric G-stable rank

Let V be an n dimensional vector space over K, fix a maximal torus T of GL(V ), we have an isomorphism
Γ(T ) ∼= Zn. Any 1-parameter subgroup λ of the maximal torus T is given by a tuple of n integers
(ν1, · · · ,νn), we define a function on Γ(T )∼= Zn by

(8) ∥λ∥=
n

∑
i=1

|νi|.

This function extends linearly to a norm on the vector space Γ(T )⊗ZR. The Weyl group of GL(V ) with
respect to T is the symmetric group Sn. It is clear that the function is invariant under the action of Sn by
permutation, therefore by Remark 17, it defines a length function on Γ(GL(V )). Let G = GL(V )d , fix a
maximal torus Ti ⊂ GL(V ) for each component of GL(V )d , then T = T1 ×·· ·×Td is a maximal torus of
G. We have Γ(T )∼= (Zn)d , Let λ = (λ1, · · · ,λd) be a 1-parameter subgroup of T , where

λi = (λi,1, · · · ,λi,n), λi, j ∈ Z for all j

is a tuple of n integers. We define a function on Γ(T ) by

(9) ∥λ∥=
d

∑
i=1

∥λi∥,

where ∥λi∥= ∑
n
j=1 |λi, j|. This extends to a length function on Γ(G) = Γ(GL(V )d).

Let G = GL(V )d , X =V⊗d and S = {0}. Recall the definition of t-valuation in equation (2).
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G-STABLE RANK OF SYMMETRIC TENSORS AND LOG CANONICAL THRESHOLD 7

Lemma 20. Let v ∈ DdV ⊂V⊗d be a symmetric tensor, and G = GL(V )d acts on V⊗d in the usual way.
If λ (t) is a 1-parameter subgroup of G, then

(1) |X ,v|= {λ ∈ Γ(G) | val(λ (t) · v)≥ 0}.
(2) |X ,v|{0} = {λ ∈ Γ(G) | val(λ (t) · v)> 0}.
(3) a{0},v(λ ) = val(λ (t) · v) for λ ∈ |X ,v|.

Proof. This follows immediately from the definition. □

Lemma 21. Let v ∈ DdV ⊂V⊗d be a symmetric tensor, then the function val(λ (t)·v)
∥λ∥ : Γ(G)→R attains its

maximal value at some 1-parameter subgroup λ ∈ Γ(GL(V )d). There exists a maximal torus T ⊂ GL(V )d ,
such that λ ∈ Γ(T ) and under the isomorphism Γ(T d) ∼= (Zn)d , we can write λ = (λ1, · · · ,λd), where
λi = (λi,1, · · · ,λi,n) such that λi, j ∈ Z and λi, j ≥ 0 for all 1 ≤ i ≤ d,1 ≤ j ≤ n, in other words, λ is a
polynomial 1-parameter subgroup.

Proof. By Theorem 19, the maximal value of val(λ (t)·v)
∥λ∥ exists. Let T ⊂ G be a maximal torus and λ ∈ Γ(T )

such that the function attains its maximum at λ . Assume λ is of the form in the lemma and λi, j < 0 for
some i and j. If we replace λi, j by −λi, j, val(λ (t) ·v) never decreases and ∥λ∥ does not change. Therefore
by the maximality of val(λ (t)·v)

∥λ∥ , the value val(λ (t)·v)
∥λ∥ does not change after the replacement. Hence without

loss of generality we can assume all λi, j ≥ 0. □

Recall that for a tensor v ∈V⊗d and a polynomial 1-parameter subgroup λ of G = GL(V )d such that
val(λ (t) · v)> 0, we have the slope function

(10) µ(λ (t),v) =
∑

d
i=1 val(det(λi(t)))

val(λ (t) · v)
.

Let λ = (λ1, · · · ,λd) ∈ Γ(G) be a polynomial 1-parameter subgroup of G = GL(V )d , then by Lemma
21, ∑

d
i=1 val(det(λi(t))) is the restriction of the length function defined by equation (9). Let Sd be the

symmetric group acting on G = GL(V )d by permuting the d components. Then the length function
defined by equation (9) is invariant under the action of Sd . From now on, fix this length function on Γ(G).
We have a corollary following from Theorem 19:

Corollary 22. Let v ∈ DdV ⊂V⊗d be a symmetric tensor. Let Λ{0},v be the set of indivisible 1-parameter

subgroups λ ∈ |V⊗d,v| such that val(λ (t)·v)
∥λ∥ attains the maximum value. Then we have

(1) Λ{0},v is invariant under Sd .
(2) P{0},v is Sd invariant. In other words, P{0},v = Pd ⊂ GL(V )d for some parabolic subgroup

P ⊂ GL(V ).

Proof.

(1) It is clear that val(λ (t)·v)
∥λ∥ is Sd invariant. Indeed, Let σ ∈ Sd , since v ∈ DdV is a symmetric tensor

and ∥ · ∥ is Sd invariant, we have

val((σλ )(t) · v)
∥σλ∥

=
val((σλ )(t) · (σv))

∥σλ∥
=

val(σ(λ (t) · v))
∥σλ∥

=
val(λ (t) · v)

∥λ∥
.

Therefore if λ ∈ Λ{0},v, so is σ(λ ).
(2) Since G = GL(V )d , the parabolic subgroup P{0},v is a product of parabolic subgroups of GL(V ),

the symmetric group Sd acts on P{0},v by permuting the components. Let λ ∈ Λ{0},v, for any
σ ∈ Sd , we have

σ(P{0},v) = P(σ(λ )) = P{0},v.
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G-STABLE RANK OF SYMMETRIC TENSORS AND LOG CANONICAL THRESHOLD 8

We used the fact that P{0},v = P(λ ) is independent of λ ∈ Λ{0},v and σ(λ ) ∈ Λ{0},v. So P{0},v is
Sd invariant and we can find a parabolic subgroup P ⊂ GL(V ) such that P{0},v = Pd .

□

Let T ⊂ P ⊂ GL(V ) be a maximal torus, then T d is a maximal torus of Pd = P{0},v. By (2.c) in Theorem
19 and Lemma 21, there is a polynomial 1-parameter subgroup λ = (λ1, · · · ,λn) of T d ⊂ GL(V )d , such
that the slope function

µ(λ (t),v) =
∑

d
i=1 val(det(λi(t)))

val(λ (t) · v)
=

∥λ∥
val(λ (t) · v)

has a minimum value at λ . The minimal value of µ(λ (t),v) is by definition the G-stable rank rkG(v) of v.
In rest of the section, we fix such a maximal torus T ⊂ GL(V ). Let

(11) λ = (λ1, · · · ,λd)

be a polynomial 1-parameter subgroup of T d ⊂ GL(V )d , then

(12) γ = Π
d
i=1λi

is a polynomial 1-parameter subgroup of GL(V ). Furthermore, γ acts on v ∈ DdV via the diagonal
embedding GL(V ) ↪→ GL(V )d . We have the following lemma:

Lemma 23. For any symmetric tensor v ∈ DdV and polynomial 1-parameter subgroup λ of T d ⊂ GL(V )d

as in (11), let γ be the polynomial 1-parameter subgroup defined in (12), we have val(γ(t) · v) ≥ d ·
val(λ (t) · v).

Proof. Let C = val(λ (t) · v), we define a subspace W of V⊗ as following

W = {w ∈V⊗d|val(σ(λ (t)) ·w)≥C,∀σ ∈ Sd}.

Since val(σ(λ (t)) · v) = val(σ(λ (t) · v)) = val(λ (t) · v) =C, we have v ∈W . For any σ ∈ Sd , it is clear
that σ(λ (t)) ·W ⊂ tCK[t] ·W . We can write

γ(t) · v = (Πd
i=1λi, · · · ,Πd

i=1λi) · v
= (λ1,λ2, · · · ,λd)(λ2,λ3, · · · ,λd,λ1) · · ·(λd,λ1, · · · ,λd−1) · v

= (λ1,λ2, · · · ,λd)σ(λ1,λ2, · · · , · · · ,λd) · · ·σd−1(λ1,λ2, · · · ,λd) · v

= λσ(λ ) · · ·σd−1(λ ) · v,

where σ ∈ Sd satisfies σ(1) = 2,σ(2) = 3, · · · ,σ(d) = 1. Therefore γ(t) · v ∈ tdCK[t] ·W , hence we get
val(γ(t) · v)≥ dC = d ·val(λ (t) · v). □

Next we prove that the symmetric G-stable rank is the same as the G-stable rank for symmetric tensors.

Proof of Theorem 8. Let T be the chosen maximal torus of GL(V ) as above. Let λ = (λ1, · · · ,λd) be
a polynomial 1-parameter subgroup of T d ⊂ GL(V )d such that the slope function µ(λ (t),v) attains its
minimum value. In other words, λ computes the G-stable rank rkG(v) of v:

rkG(v) =
∑

d
i=1 val(det(λi(t)))

val(λ (t) · v)
.

Let γ = Πd
i=1λi as above, then we have

symmrkG(v)≤ ∑
d
i=1 val(det(γ(t)))

val(γ(t) · v)
≤ d ∑

d
i=1 val(det(λi(t)))
d ·val(λ (t) · v)

= rkG(v).
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G-STABLE RANK OF SYMMETRIC TENSORS AND LOG CANONICAL THRESHOLD 9

On the other hand, it is clear that symmrkG(v)≥ rkG(v). Therefore symmrkG(v) = rkG(v), this completes
the proof. □

4. Stability of symmetric tensors

As a result of Theorem 8, we prove Corollary 10, which says that for a symmetric tensor v ∈ DdV , v
is SL(V )d-semistable if and only if v is SL(V )-semistable. It is clear that SL(V )d-semistability implies
SL(V )-semistability. To prove the other direction, we will use a result which relates semistability with
G-stable rank.

Proposition 24 ([2], Proposition 2.6). Suppose that α = ( 1
n1
, · · · 1

nd
) where ni = dimVi. For v ∈V1 ⊗V2 ⊗

·· ·⊗Vd we have rkG
α(v)≤ 1. Moreover, rkG

α(v) = 1 if and only if v is semistable with respect to the group
H = SL(V1)×SL(V2)×·· ·×SL(Vd).

If v ∈ DdV is a symmetric tensor, α = (1,1, · · · ,1) and n = dimV , then by the above proposition,
rkG(v) = n if and only if v is SL(V )d-semistable. We have a similar result for symmetric G-stable rank.

Proposition 25. For a symmetric tensor v ∈ DdV , we have symmrkG(v)≤ n, where n = dimV . Moreover,
symmrkG(v) = n if and only if v is SL(V )-semistable.

Proof. The first statement is clear from Theorem 8. If symmrkG(v) = n, by Proposition 24, we have
rkG(v) = n and v is SL(V )d-semistable, hence v is SL(V )-semistable. On the other hand, assume v is
SL(V )-semistable. Let λ be a polynomial 1-parameter subgroup of GL(V ) such that limt→0 λ (t) · v = 0.
Then we can define another 1-parameter subgroup λ ′(t) = λ (t)nt−e, where det(λ (t)) = te, such that
det(λ ′) = 1 and λ ′ ∈ SL(V ). Since v is SL(V )-semistable, we have val(λ ′(t) · v)≤ 0. It follows that

val(λ ′(t) · v) = val(λ (t)dt−e · v) = nval(λ (t) · v)− ed ≤ 0.

The slope function

µ(λ (t),v) =
d val(det(λ (t)))

val(λ (t) · v)
=

de
val(λ (t) · v)

≥ n.

We get symmrkG(v) = n. □

Proof of Corollary 10. It suffices to prove that if v is SL(V )-semistable, then v is SL(V )d-semistable. Let
us assume v is SL(V )-semistable, then by Proposition 25 and Theorem 8,

rkG(v) = symmrkG(v) = n.

It follows from Proposition 24 that v is SL(V )d-semistable. □

5. G-stable rank for ideals and log canonical threshold

5.1. G-stable rank for ideals. Let X = Spec(R) be a nonsingular irreducible complex affine algebraic
variety of dimension n, and a⊂ R be a nonzero ideal, and let P ∈V (a) be a closed point, OP be the local
ring at P and mP be the maximal ideal corresponding to P.

Definition 26 ([11]). Functions x1, · · · ,xn ∈ OP are a system of local parameters at P if each xi ∈mP, and
the images of x1, · · · ,xn form a basis of the vector space mP/m

2
P.

Let T = {x1,x2, · · · ,xn} be a system of local parameters at P. Let C{x1,x2, . . . ,xn} be the ring of
convergent power series in x1,x2, . . . ,xn. The ring OP is contained in C{x1,x2, . . . ,xn}. If y1,y2, . . . ,yn is
any system of local parameters, then C{x1,x2, . . . ,xn}=C{y1,y2, . . . ,yn}. For any λ = (λ1,λ2, · · · ,λn) ∈
Zn
≥0, we have a natural action of C∗ on C{x1,x2, · · · ,xn} by t · xi = tλixi for any t ∈ C∗.
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G-STABLE RANK OF SYMMETRIC TENSORS AND LOG CANONICAL THRESHOLD 10

Definition 27. Let T = {x1,x2, · · · ,xn} be a system of local parameters at P and λ =(λ1,λ2, · · · ,λn)∈Zn
≥0

a tuple of non-negative integers. Let f ∈ C{x1,x2, · · · ,xn} be a convergent power series. We define the
valuation of f with respect to T by

(13) valT
λ
( f ) = max{k| f (tλ1x1, tλ2x2, · · · , tλnxn) = tkg(x1, · · · ,xn, t), for some g ∈ C{x1, · · · ,xn, t}}.

Let a⊂ R be a nonzero ideal as before, the order of a with respect to this system of local parameters T
and λ ∈ Zn

≥0 is defined as

(14) ordT
λ
(a) = min{valT

λ
( f )| f ∈ a}.

Remark 28. If a is generated by f1, · · · , fr, then

ordT
λ
(a) = min{valT

λ
( fi)|i = 1, · · · ,r}.

Indeed, it is clear that min{valT
λ
( f )| f ∈ a} ≤ min{valT

λ
( fi)|i = 1, · · · ,r}. On the other hand, if f ∈ a

computes ordT
λ
(a), then we can write f = ∑i ai fi, for some ai ∈ R, we have valT

λ
( f ) = valT

λ
(∑i ai fi) ≥

min{valT
λ
(ai fi)|i = 1, · · · ,r} ≥ min{valT

λ
( fi)|i = 1, · · · ,r}.

Definition 29. Assume T = {x1, · · · ,xn} is a system of local parameters at P and λ = {λ1, · · · ,λn} ∈ Zn
≥0,

we define the slope function µP(λ ,a) at P as

(15) µP(λ ,a) =
∑

n
i=1 λi

ordT
λ
(a)

.

The T -stable rank of a at P is the infimum of the slope function µP(λ ,a) with respect to the tuple
λ = (λ1,λ2, · · · ,λn) ∈ Zn

≥0,

(16) rkT (P,a) = inf
λ

µP(λ ,a) = inf
λ

∑
n
i=1 λi

ordT
λ
(a)

.

The G-stable rank of a is defined by taking the infimum of T -stable rank with respect to all system of
local parameters T at P,

(17) rkG(P,a) = inf
T
(rkT (P,a)).

If P /∈V (a), we define rkG(P,a) = ∞, we write rkG(a) and rkT (a) if P is known in the context. In the
following example, we see that an ideal a can have different T -stable rank with respect to different system
of local parameters T at a point P.

Example 30. Let R =C[x,y], T = {x,y} and assume a= (x2 +2xy+y2) is a principle ideal generated by
a polynomial f (x,y) = x2 +2xy+ y2, P = (0,0) is the origin. Let λ = (λ1,λ2) ∈ Z2

≥0, then we have

rkT ( f ) = inf
λ

λ1 +λ2

min(2λ1,λ1 +λ2,2λ2)
= 1

Let us choose a different system of local parameters T ′ = {u = x+ y,v = x− y}, then a = (u2), and
f (u,v) = u2, then

rkT ′
( f ) = inf

λ

λ1 +λ2

2λ1
=

1
2

In fact, lctP(u2) = 1
2 , and by Theorem 12, we have lctP(a)≤ rkG(a), therefore we get rkG( f ) = 1

2 .

Example 31. Let a= (x2y,y2z,z2x)⊂ C[x,y,z], T = {x,y,x}, P = (0,0,0), then we get

rkT (a) = inf
λ

λ1 +λ2 +λ3

min(2λ1 +λ2,2λ2 +λ3,2λ3 +λ1)
= 1
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G-STABLE RANK OF SYMMETRIC TENSORS AND LOG CANONICAL THRESHOLD 11

The ideal a= (x2y,y2z,z2x) is a monomial ideal and we will see later that for a monomial ideal a, we have
rkG(a) = lctP(a). Using the fact that lctP(a) = 1, we obtain rkG(a) = 1.

Remark 32. We have a short exact sequence

(18) 1 → K → Aut(C{x1, · · · ,xn})→ GL(n)→ 1,

where K is a normal subgroup of the group Aut(C{x1, · · · ,xn}) of local holomorphic automorphisms.
The morphism Aut(C{x1, · · · ,xn}) → GL(n) is given by computing the Jacobian matrix at (0, · · · ,0).
Furthermore, this sequence splits, we have Aut(C{x1 · · · ,xn}) = K ⋊GL(n).

By Remark 32, there is an action of GL(n) on the set of system of local parameters. Assume T =
{x1, · · · ,xn} is a system of local parameters at P. For g∈GL(n), g ·T is another system of local parameters.
We say a system of local parameters T = {x1, · · · ,xn} is good for a if rkG(P,a) = rkg·T (P,a) for some
g ∈ GL(n). In other words, to compute the G-stable rank of a, it is enough to consider all systems of local
parameters obtained from T by actions of GL(n).

Example 33. Let f (x,y)= x+y2 ∈C[x,y], P=(0,0), we take T = {x,y}. It can be shown that rkT ( f )= 3
2 .

However, if we choose another system of local parameters T ′ = {u = x+ y2,v = y}, then f (u,v) = u,
and rkT ′

( f ) = 1. Indeed, this system of local parameters is optimal, in other words, we can compute the
G-stable rank in this system of local parameters, and we have rkG( f ) = 1.

Proposition 34. If a is homogeneous in local parameters T = {x1, · · · ,xn}, then T is good for a.

Proof. Since a is a homogeneous ideal, we can find a set of generators which are homogeneous polynomi-
als. By Remark 28, it is enough to assume that a is generated by a single homogeneous polynomial f . Let
g ∈ K ⊆ Aut(C{x1, · · · ,xn}), we can write the action of g on T as following

g(xi) = xi + pi(x1, · · · ,xn),

where pi ∈ C{x1 · · · ,xn} with no constant and degree 1 terms. Since f is a homogeneous polynomial, we
have

valT
λ
( f (g(x1), · · · ,g(xn))≤ valT

λ
( f (x1, · · · ,xn)).

Let T ′ be the system of local parameters obtained from T by the action of g, then we have

(19)
∑

n
i=1 λi

ordT ′
λ
( f )

≥ ∑
n
i=1 λi

ordT
λ
( f )

.

By Lemma 32, given any h ∈ Aut(C{x1, · · · ,xn}), we can decompose the action of h into an action of K
following by an action of GL(n). By inequality (19), in the system of local parameters obtained by the
action of K from T , we have larger slope than the slope computed in T , hence to compute the G-stable
rank of f , it suffices to consider the action of GL(n). This shows that T is good for a. □

Corollary 35. If f ∈ C[x1, · · · ,xn] is a homogeneous polynomial of degree d ≥ 2 and f has isolated
singularity at P = (0, · · · ,0). Then rkG( f ) = n

d .

Proof. By Corollary 34, the system of local parameters T = {x1, · · · ,xn} is good for f , therefore we only
need to consider the group action of GL(n).

We claim that f is SL(n)-semistable in the sense of Definition 4. Indeed, since f has an isolated
singularity at origin, ∂ f

∂x1
, · · · , ∂ f

∂xn
only have a common zero at origin. By [9], chapter 13, their resultant

Res( ∂ f
∂x1

, · · · , ∂ f
∂xn

) is nonzero and invariant under the action of SL(n). Now assume there is a one parameter
subgroup λ : Gm → SL(n), such that

lim
t→0

λ (t) · v = 0.
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G-STABLE RANK OF SYMMETRIC TENSORS AND LOG CANONICAL THRESHOLD 12

Then the resultant Res( ∂ f
∂x1

, · · · , ∂ f
∂xn

) is 0, which is impossible. This proves the claim.
By the claim that f is SL(n)-semistable, the corollary follows immediately from Proposition 2.6 in

[2] □

5.2. Relation to log canonical threshold. Let X = Spec(R) be a nonsingular irreducible complex affine
variety, a⊂ R is an ideal, P ∈V (a). If a= ( f1, · · · , fr)⊆ R is a nonzero ideal, recall the Definition 11, the
log canonical threshold lctP(a) of the ideal a at point P is

(20) lctP(a) = sup{s > 0| 1
(∑r

i=0 | fi|2)s is integrable around P}.

Theorem 12 says that the log canonical threshold of an ideal is less than or equal to the G-stable rank
of that ideal

(21) lctP(a)≤ rkG(P,a).

Proof of Theorem 12. Let s> 0 be such that 1
(∑r

i=0 | fi|2)s is integrable around P, then there is a neighborhood
UP of P, such that ∫

UP

dV
(∑r

i=0 | fi|2)s <C < ∞,

for some constant C. Choose a system of local parameters T = {x1, · · · ,xn} at P, let λ = (λ1, · · · ,λn) ∈
Zn
≥0, then let t ∈ C∗ act on the coordinates by xi → tλixi. We denote t ·UP for the image of UP under this

action. If |t|< 1, we have t ·UP ⊂UP, therefore

(22)
∫

t·UP

dV
(∑r

i=0 | fi|2)s <
∫

UP

dV
(∑r

i=0 | fi|2)s <C

Let yi = t−λixi for i = 1, · · · ,n, then we have

(23)
∫

t·UP

dx1dx̄1 · · ·dxndx̄n

(∑r
i=0 | fi(x1, · · · ,xn)|2)s =

∫
UP

|t|2∑
n
i=1 λidy1dȳ1 · · ·dyndȳn

(∑r
i=1 | fi(tλ1y1, · · · , tλnyn)|2)s <C

Recall the Definition 27 for the valuation (13) and order of an ideal (14), we can write
r

∑
i=0

| fi(tλ1y1, · · · , tλnyn)|2 = |t|2mini(valT
λ
( fi))(

r

∑
i=1

| f̃i(y1, · · · ,yn, t)|2)

= |t|2ordT
λ
(a)(

r

∑
i=1

| f̃i(y1, · · · ,yn, t)|2),

for some f̃i(y1, · · · ,yn, t) ∈ C{y1,y2, · · · ,yn, t}. In particular, we know that ∑
r
i=1 | f̃i(y1, · · · ,yn,0)|2 is not

constantly zero in UP. So we can find a point Q ∈UP such that 0 < ∑
r
i=1 | f̃i(Q,0)|2 < B for some constant

B > 0. By the continuity, there is a neighborhood UQ such that Q ∈UQ ⊂UP and some ε > 0, such that
0 < ∑

r
i=1 | f̃i(y1, · · · ,yn, t)|2 < B for any (y1, · · · ,yn) ∈UQ and 0 ≤ t < ε . We can write integral (23) as

(24)
∫

UP

|t|2∑
n
i=1 λidy1dȳ1 · · ·dyndȳn

|t|2ordT
λ
(a)(∑r

i=1 | f̃i(y1, · · · ,yn, t)|2)s
=
∫

UP

|t|2(∑n
i=1 λi−sordT

λ
(a))dV

(∑r
i=1 | f̃i(y1, · · · ,yn, t)|2)s

<C.

Therefore we get

|t|2(∑
n
i=1 λi−sordT

λ
(a))
∫

UQ

dV
Bs =

∫
UQ

|t|2(∑n
i=1 λi−sordT

λ
(a))dV

Bs <
∫

UP

|t|2(∑n
i=1 λi−sordT

λ
(a))dV

(∑r
i=1 | f̃i(y1, · · · ,yn, t)|2)s

<C
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for all t ∈ [0,ε), where ε > 0. Since
∫

UQ
dV
Bs > 0, we must have

n

∑
i=1

λi − sordT
λ
(a)≥ 0.

Hence we get s ≤ ∑
n
i=1 λi

ordT
λ
(a)

. This holds for any system of local coordinates and λ = (λ1, · · · ,λn) ∈ Zn
≥0,

therefore
lctP(a)≤ rkG(P,a).

This completes the proof of Theorem 12. □

Example 36. Let f = xu1
1 +xu2

2 + · · ·+xun
n ∈C[x1, · · · ,xn], P= (0, · · · ,0) be the origin. It was shown in [8]

that lctP( f ) = min(1,∑n
i=1

1
ui
). However, we will show that rkG( f ) = ∑

n
i=1

1
ui

. So we get lctP( f )≤ rkG( f ).
If n = 3, u1 = u2 = u3 = 2, then we have f = x2

1 + x2
2 + x2

3 and lctP( f ) = 1 < rkG( f ) = 3
2 .

Suppose a=(m1, · · · ,mr)⊂C[x1, · · · ,xn] is a proper nonzero ideal generated by monomials {m1, · · · ,mr}
and let P = (0, · · · ,0) be the origin. Given u = (u1, · · · ,un) ∈ Zn

≥0, we write xu = xu1
1 · · ·xun

n . The Newton
Polyhedron of a is

(25) P(a) = convex hull ({u ∈ Zn
≥0|xu ∈ a}).

It was shown in [8] that

(26) lctP(a) = max{ν ∈ R≥0|(1,1, · · · ,1) ∈ ν ·P(a)}.

In other words, lctP(a) is equal to the largest ν such that ∑
n
i=1 λi ≥ ν ·minu∈P(a)⟨u,λ ⟩ for any λ =

(λ1, · · · ,λn) ∈ Zn
≥0, where we use the standard inner product ⟨u,λ ⟩= ∑

n
i=1 uiλi.

Theorem 13 says that the log canonical threshold is equal to the G-stable rank for monomial ideals. More
precisely, suppose a⊂ C[x1, · · · ,xn] is a proper nonzero ideal generated by monomials and P = (0, · · · ,0)
is the origin. Then

(27) lctP(a) = rkG(a).

Proof of Theorem 13. Let a= (m1, · · · ,mr) and {mi = xli1
1 xli2

2 · · ·xlin
n }i=1,··· ,r be a set of generators, where

li = (li1, · · · , lin) ∈ Zn
≥0, we have

lctP(a) = max{ν ∈ R≥0|(1, · · · ,1) ∈ ν ·P(a)}

= max{ν ∈ R≥0|∑
j

λ j ≥ ν · min
u∈P(a)

⟨u,λ ⟩,∀λ ∈ Zn
≥0}

= max{ν ∈ R≥0|∑
j

λ j ≥ ν ·min
i
⟨li,λ ⟩,∀λ ∈ Zn

≥0}

= max{ν ∈ R≥0|ν ≤
∑ j λ j

mini(∑ j li jλ j)
,∀λ ∈ Zn

≥0}.

In this system of local parameters T = {x1, · · · ,xn}, we have ordT
λ
(a) = mini(∑ j li jλ j), therefore we get

lctP(a) = max{ν ∈ R≥0|ν ≤ ∑i λi

ordT
λ
(a)

,∀λ ∈ Zn
≥0}

= max{ν ∈ R≥0|ν ≤ rkT (a)}= rkT (a).

Since log canonical threshold does not depend on the local coordinates, hence we have

lctP(a) = rkG(a).

This completes the proof of Theorem 13. □
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Example 37. Suppose a= (xu1
1 , · · · ,xun

n ) and P = (0, · · · ,0), then lctP(a) = ∑
n
i=1

1
ui

. Therefore we also
have rkG(a) = ∑

n
i=1

1
ui

.

5.3. Some properties of G-stable rank for ideals. Some results for log canonical threshold can be found
in [8]. Here, we also prove similar results for the G-stable rank of ideals.

Proposition 38. If a⊆ b are nonzero ideals on X, then we have lctP(a)≤ lctP(b) and rkG(P,a)≤ rkG(P,b).

Proof. The first inequality was shown in [8]. If P /∈V (b), it is trivial. Assume P ∈V (b), let T be a system
of local parameters at P and λ = (λ1, · · · ,λn) ∈ Zn

≥0. Since a⊆ b, we have ordT
λ
(b)≤ ordT

λ
(a), therefore

µP(λ ,a)≤ µP(λ ,b), it follows immediately that rkG(P,a)≤ rkG(P,b). □

Proposition 39. We have lctP(ar) = lctP(a)
r and rkG(P,ar) = rkG(P,a)

r for every r ≥ 1.

Proof. The first claim was shown in [8] and the second claim follows from the fact that ordT
λ
(ar) =

r ·ordT
λ
(a) and Definition 29. □

Proposition 40. If a and b are ideals of X, then

1
lctP(a ·b)

≤ 1
lctP(a)

+
1

lctP(b)
,

1
rkG(P,a ·b)

≤ 1
rkG(P,a)

+
1

rkG(P,b)
.

Proof. The first inequality was shown in [8], we show the second inequality. Let T be a system of local
parameters at P and λ = (λ1, · · · ,λn) ∈ Zn

≥0, then

ordT
λ
(a ·b) = ordT

λ
(a)+ordT

λ
(b).

Therefore, we have

sup
T,λ

ordT
λ
(a ·b)

∑λi
= sup

T,λ

(
ordT

λ
(a)

∑λi
+

ordT
λ
(b)

∑λi

)

≤ sup
T,λ

ordT
λ
(a)

∑λi
+ sup

T,λ

ordT
λ
(b)

∑λi
.

□

The following two propositions are from [8]. A lot of evidence suggests the same results for G-stable
rank of ideals, we give them as conjectures.

Proposition 41. If H ⊂ X is a nonsingular hypersurface such that a ·OH is nonzero, then lctP(a ·OH)≤
lctP(a).

Proposition 42. If a and b are ideals on X, then

lctP(a+b)≤ lctP(a)+ lctP(b)

for every P ∈ X.

Conjecture 43. If H ⊂ X is a nonsingular hypersurface such that a ·OH is nonzero, then rkG(P,a ·OH)≤
rkG(P,a) for any P ∈ H.

Conjecture 44. Let a and b be two nonzero proper ideals of X, then for any point P ∈ X, we have

rkG(P,a+b)≤ rkG(P,a)+ rkG(P,b).
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