ON REGULARITY BOUNDS AND LINEAR RESOLUTIONS OF TORIC ALGEBRAS OF GRAPHS

RIMPA NANDI† AND RAMAKRISHNA NANDURI∗

Abstract. Let G be a simple graph. In this article we show that if G is connected and $R(I(G))$ is normal, then $\text{reg}(R(I(G))) \leq \alpha_0(G)$, where $\alpha_0(G)$ the vertex cover number of G. As a consequence, every normal König connected graph G, $\text{reg}(R(I(G))) = \text{mat}(G)$, the matching number of G. For a gap-free graph G, we give various combinatorial upper bounds for $\text{reg}(R(I(G)))$. As a consequence we give various sufficient conditions for the equality of $\text{reg}(R(I(G)))$ and $\text{mat}(G)$. Finally we show that if G is a chordal graph such that $K[G]$ has q-linear resolution ($q \geq 4$), then $K[G]$ is a hypersurface, which proves the conjecture of Hibi-Matsuda-Tsuchiya [12, Conjecture 0.2], affirmatively for chordal graphs.

1. Introduction

Let G be a finite simple graph with vertex set $V(G) = \{x_1, x_2, \ldots, x_n\}$ and edge set $E(G) = \{e_1, e_2, \ldots, e_m\}$. Let $S = K[x_1, \ldots, x_n]$ and $R = K[T_1, \ldots, T_m]$ be polynomial rings, where K is a field. Define a homomorphism $\phi : S \to R$, $\phi(T_i) = x_{i1}x_{i2}$ where $e_i = \{x_{i1}, x_{i2}\} \in E(G)$.

Then the ker(ϕ) is known as the toric ideal of G and denote by I_G and $K[G] = R/I_G$ is known as the toric algebra of G. It is well-known that I_G is a homogeneous ideal of S generated by the binomials corresponding to the even closed walks of the graph G (see [19 Proposition 3.1]). For the edge ideal $I(G)$ in S, the Rees algebra of $I(G)$ is defined as $R(I(G)) := \bigoplus_{j \geq 0} I(G)^j t^j$. Then $R(I(G))$ is a standard graded K-algebra with $\text{deg}(x_i) = 1$ and $\text{deg}(t) = -1$. Finding the Castelnuovo-Mumford regularity (simply regularity), minimal free resolutions, Betti numbers of $K[G]$ and $R(I(G))$ in terms of the combinatorial data of G is an active area of research in recent times. Many authors gave various bounds

† Supported by the CSIR-UGC research fellowship, India.

∗ Supported by NBHM grant No:2/48(24)/2016/NBHM(R.P)/R & D II/4237, India.

AMS Classification 2010: 05E40, 13D02, 13H10, 52B20.
for the regularities $\text{reg}(K[G]), \text{reg}(R(I(G)))$ and Betti numbers $\beta_{i,j}(K[G]), \beta_{i,j}(R(I(G)))$ in terms of the combinatorial invariants of G. See for example [19, 16, 17, 8, 5, 2, 4, 9, 10, 12, 14, 15, 18]. In [10], J. Herzog and T. Hibi showed that if $R(I(G))$ is normal, then $\text{mat}(G) \leq \text{reg}(R(I(G))) \leq \text{mat}(G) + 1$, where $\text{mat}(G)$ the matching number of G and they raised a question to characterize all the graphs G, such that $\text{reg}(R(I(G))) = \text{mat}(G)$. In this work, we give various sufficient conditions to have the equality of $\text{reg}(R(I(G)))$ and $\text{mat}(G)$. We show that if G is connected and $R(I(G))$ is normal, then $\text{reg}(R(I(G))) \leq \alpha_0(G)$, where $\alpha_0(G)$ is the vertex cover number of G(Theorem 2.1). This gives that if G is König, then $\text{reg}(R(I(G))) = \text{mat}(G)$, which recovers a result of Y. Cid-Ruiz [4, Theorem 4.2]. In the section 3, we give various upper bounds for the regularity of Rees algebras of gap-free graphs. In [13], D. Meister gave various characterizations of minimal triangulations of a gap-free graph G, where minimal triangulation means the smallest chordal graph on the vertex set $V(G)$ and contains G as a subgraph. Using this minimal triangulation, we show that

$$\text{reg}(R(I(G))) \leq \min \left\{ \left\lceil \left\lfloor \frac{|V(G) \setminus U| + 1}{2} \right\rfloor \right\rfloor + 1 \mid U \in \mathcal{U}_G \right\},$$

see the section 3 for the definition of \mathcal{U}_G. As a consequence of this sharp upper bound we give various sufficient conditions for the equality of $\text{reg}(R(I(G)))$ and $\text{mat}(G)$. If U_0 is a maximal independent set in G such that $V(G) \setminus U_0$ is a minimal vertex cover of maximal cardinality, then we show that

$$\text{reg}(R(I(G))) \leq \left\lceil \frac{|V(G) \setminus U_0| + 1}{2} \right\rceil + 1.$$

H. Ohsugi and T. Hibi gave necessary and sufficient conditions for a simple connected graph G, $K[G]$ has 2-linear resolution, see [17, Theorem 4.6]. Later in [12], T. Hibi, K. Matsuda and A. Tsuchiya gave a conjecture about the linear resolutions of $K[G]$.

Conjecture 1.1. [12, Conjecture 0.2] The toric algebra of a finite connected simple graph with a q-linear resolution, where $q \geq 3$, is a hypersurface.

They proved this conjecture positively for any graph G with $q = 3$, see [12, Theorem 0.1]. Recently, A. Tsuchiya, in [18] proved the above conjecture affirmatively for connected bipartite graphs. Tsuchiya achieved this by studying the h^*-polynomial of the edge polytope \mathcal{P}_G of G, $h^*(\mathcal{P}_G, t)$(see section 2) and the degree of $h^*(\mathcal{P}_G, t)$ is a lower bound for the $\text{reg}(K[G])$. In this work, we prove the above conjecture affirmatively for
the chordal connected graphs. First we identify the primitive walks in G, if $K[G]$ has q-linear resolution, where $q \geq 4$. Then by using the degree of $h^*(\mathcal{P}_G, t)$, we achieve that $K[G]$ is a hypersurface.

Now we give sectionwise description. In the section 2 we recall all the definitions and notations needed for the rest of the article. In section 3, for a gap-free graph G, we give various upper bounds for $\text{reg}(R(I(G)))$ and sufficient conditions for the equality of $\text{reg}(R(I(G)))$ and $\text{mat}(G)$. In the final section 4 we prove the Hibi-Matsuda-Tsuchiya conjecture for the chordal graphs.

2. Preliminaries

In this section we recall some definitions and notations required throughout the paper. Let G be a graph on the vertex set $V(G) = \{v_1, \ldots, v_n\}$ and edge set $E(G) = \{e_1, \ldots, e_m\}$. We say that G is a gap-free graph if its complement G^c does not contain any induced 4-cycle. The graph G is said to be chordal, if G has no induced cycle of length ≥ 4. A subset $M \subseteq E(G)$, is called a matching if for any $e, e' \in M$, we have $e \cap e' = \emptyset$. The matching number of G denoted by $\text{mat}(G)$, is defined as the cardinality of the maximal matching in G. Recall that a set $S \subseteq V(G)$, is called a vertex cover of G, if for every $e \in E(G)$, there exists a $v \in S$ such that $v \in e$. A vertex cover S is called a minimal vertex cover, if no proper subset of S is a vertex cover of G. The vertex cover number of G, denoted by $\alpha_0(G)$, is the minimal cardinality of minimal vertex cover of G.

Let $S = K[x_1, \ldots, x_n]$ be the polynomial ring over a field K and I be a homogeneous ideal of S. It is known that S/I has a minimal graded free resolution over S (see [3])

$$0 \to \oplus_j S(-j)^{\beta_{p,j}(S/I)} \to \cdots \to \oplus_j S(-j)^{\beta_{1,j}(S/I)} \to S \to S/I \to 0,$$

where $\beta_{i,j}(S/I)$ is known as $(i,j)^{th}$ graded Betti number of S/I. We say that S/I has a q-linear resolution if $\beta_{i,j}(S/I) = 0$ for all $1 \leq i \leq p$ and for all $j \neq q + i - 1$. That is, the minimal graded free resolution is of the shape:

$$0 \to S(-q - p + 1)^{\beta_{p,q+p-1}(S/I)} \to \cdots \to S(-q)^{\beta_{1,q}(S/I)} \to S^{\beta_{0,0}(S/I)} \to S/I \to 0,$$

The Castelnuovo-Mumford regularity or simply regularity of S/I is denoted and defined as

$$\text{reg}(S/I) := \max\{j - i \mid \beta_{i,j}(S/I) \neq 0\}.$$
For $e = \{v_i, v_j\} \in E(G)$, we set $\rho(e) := e_i + e_j \in \mathbb{R}^n$. The edge polytope of G, denote by \mathcal{P}_G, is defined as the convex hull of $\{\rho(e_1), \rho(e_2), \ldots, \rho(e_q)\}$, where e_1, \ldots, e_n denote the standard unit vectors in \mathbb{R}^n. Recall the following definitions from [11]. The h-polynomial of \mathcal{P}_G, denoted by $h^*(\mathcal{P}_G,t)$, is defined as the polynomial

$$h^*(\mathcal{P}_G,t) := (1 - t)^{d+1} \left(1 + \sum_{i=1}^{\infty} |i\mathcal{P}_G \cap \mathbb{Z}^n| t^i\right),$$

where $d = \dim(\mathcal{P}_G)$, $i\mathcal{P}_G = \{ia \mid a \in \mathcal{P}_G\}$. The degree of $h^*(\mathcal{P}_G,t)$ is simply denoted as $\deg(\mathcal{P}_G)$. The codegree of \mathcal{P}_G is defined as $\text{codeg}\mathcal{P}_G := d + 1 - \deg(\mathcal{P}_G)$. Note that $\text{codeg}(\mathcal{P}_G) = \min\{r \in \mathbb{N} : \text{int}(r\mathcal{P}_G) \cap \mathbb{Z}^n \neq \emptyset\}$, where $\text{int}(\mathcal{P}_G)$ is the relative interior of \mathcal{P}_G in \mathbb{R}^n.

Now recall the following definitions from [20] or [8]. Let

$$\mathcal{A}' = \{e_i + e_j + e_{n+1} \mid v_i \text{ is adjacent to } v_j\} \cup \{e_i \mid 1 \leq i \leq n\} \subset \mathbb{R}^{n+1},$$

where $e_1, e_2, \ldots, e_n, e_{n+1}$ are the standard unit vectors in \mathbb{R}^{n+1}. The Rees cone, $\mathbb{R}_+\mathcal{A}'$ of G, is the cone generated by \mathcal{A}', that is

$$\mathbb{R}_+\mathcal{A}' = \left\{ \sum_i a_i \alpha_i \mid a_i \in \mathbb{R}_+, \alpha_i \in \mathcal{A}' \right\}.$$

Note that $\mathbb{R}_+\mathcal{A}'$ is a finitely generated rational cone of dimension $n + 1$(see [6]). Also by [21 Theorem 4.11], it has a unique irreducible representation:

\begin{equation}
\mathbb{R}_+\mathcal{A}' = H_{e_1}^+ \cap H_{e_2}^+ \cap \cdots \cap H_{e_{n+1}}^+ \cap H_{l_1}^+ \cap \cdots \cap H_{l_r}^+
\end{equation}

where each l_k is in \mathbb{Z}^{n+1}, the nonzero entries of each l_k are relatively prime and none of the closed half spaces mentioned above can be omitted from the intersection, and $H_l^+ = \{\alpha \in \mathbb{R}^{n+1} \mid \langle l, \alpha \rangle \geq 0\}$ for any $l \in \mathbb{R}^{n+1}$, \langle , \rangle is a standard inner product on \mathbb{R}^{n+1}. We can always assume $l_k = -e_{n+1} + \sum_{v_i \in C_k} e_i, 1 \leq k \leq s \leq r$, where C_1, \ldots, C_s are the all minimal vertex covers of G (see [7 Lemma 3.1]).

Now we prove that the vertex cover number of G is an upper bound for the regularity of $R(I(G))$.

Theorem 2.1. Let G be a connected graph and $\alpha_0(G)$ denotes the vertex cover number of G. If $R(I(G))$ is normal, then $\text{reg}(R(I(G))) \leq \alpha_0(G)$.
Proof. We have \(R(I(G)) \) standard graded \(K \)-algebra with the grading \(\deg(x_i) = 1 \) and \(\deg(t) = -1 \). As \(R(I(G)) \) is normal therefore by the Danilov-Stanley [3, Theorem 6.3.5] formula its canonical module is given by

\[
\omega_{R(I(G))} = \left\{ x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n} t^{a_{n+1}} \mid a = (a_i) \in (\mathbb{R}_+ A')^0 \cap \mathbb{Z}^{n+1} \right\}.
\]

Let \(a = (a_1, \ldots, a_{n+1}) \) be an arbitrary element in \((\mathbb{R}_+ A')^0 \cap \mathbb{Z}^{n+1}\). Then by the equation (1) we have

\[
a_i \geq 1 \text{ and } -a_{n+1} + \sum_{v_i \in C_k} a_i \geq 1
\]

where \(C_k \) is a minimal vertex cover of \(G \).

Suppose \(m = x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n} t^{a_{n+1}} \) be an element in \(\omega_{R(I(G))} \), then

\[
\deg(m) = a_1 + a_2 + \cdots + a_n - a_{n+1}
\]

\[
= \sum_{v_i \in V \setminus C_k} a_i + \sum_{v_i \in C_k} a_i - a_{n+1}
\]

\[
\geq \sum_{v_i \in V \setminus C_k} a_i + 1,
\]

\[
= |V(G) \setminus C_k| + 1.
\]

Thus \(\deg(m) \geq |V(G) \setminus C_k| + 1 \) for all \(k = 1, \ldots, s \). This implies that

\[
\deg(m) \geq \max_{1 \leq k \leq s} |V(G) \setminus C_k| + 1
\]

\[
= |V(G)| - \min_{1 \leq k \leq s} |C_k| + 1
\]

\[
= |V(G)| - \alpha_0(G) + 1, \quad \text{where } \alpha_0(G) = \min_{1 \leq k \leq s} |C_k|, \text{ the vertex cover number of } G.
\]

This gives that \(a(R(I(G))) = -\min\{j \mid (\omega_{R(I)})_j \neq 0\} \leq -(|V(G)| - \alpha_0(G) + 1) \). Since \(R(I(G)) \) is normal and hence \(R(I(G)) \) is Cohen-Macaulay, therefore

\[
\reg(R(I(G))) = a(R(I(G))) + \dim(R(I(G))) \leq -|V(G)| + \alpha_0(G) - 1 + |V(G)| + 1 = \alpha_0(G).
\]

\[\square\]

Corollary 2.2. Suppose \(G \) is a connected graph with at least two edges and \(R(I(G)) \) is normal. If \(G \) is König, then \(\reg(R(I(G))) = \mat(G) = \alpha_0(G) \).

Proof. From [10, Theorem 2.2], we have \(\mat(G) \leq \reg(R(I(G))) \). Now apply Theorem 2.1 \[\square\]
As a consequence of the Theorem 2.1, we can recover a result of Y. Cid-Ruiz.

Corollary 2.3 ([4], Theorem 4.2). Let G be a bipartite graph. Then $\text{reg}(R(I(G))) = \text{mat}(G)$.

Proof. The result follows from the Corollary 2.2 and the fact that every bipartite graph is König. □

Now we give an example of a graph G such that G is not König and $\text{reg}(R(I(G))) \neq \text{mat}(G)$.

Example 2.4. Let G be the graph on 5 vertices $\{x_1, x_2, x_3, x_4, x_5\}$ and edges $E(G) = \{\{x_1, x_2\}, \{x_1, x_3\}, \{x_1, x_4\}, \{x_2, x_3\}, \{x_4, x_5\}\}$. Then G is normal and $\text{mat}(G) = 2$. The vertex cover number of G, $\alpha_0(G) = 3$. Thus G is not König. Now by using CoCoA [1], we can compute the regularity, $\text{reg}(R(I(G))) = 3 \neq \text{mat}(G)$.

Now we give an example of a graph G such that G is König and $\text{reg}(R(I(G))) = \text{mat}(G)$.

Example 2.5. Let G be the graph on 6 vertices $\{x_1, x_2, x_3, x_4, x_5, x_6\}$ and edges $E(G) = \{\{x_1, x_2\}, \{x_1, x_3\}, \{x_1, x_4\}, \{x_2, x_3\}, \{x_2, x_5\}, \{x_2, x_6\}\}$. Note that G is normal, $\text{mat}(G) = 2 = \alpha_0(G)$. Thus G is König. By using CoCoA [1], we have $\text{reg}(R(I(G))) = 2$.

3. Bounds for the regularity of Rees algebras of gap-free graphs

In this section we give new bounds for the regularity of Rees algebras of a gap-free graph. As a consequence we give some sufficient conditions for the equality of regularity of Rees algebra and the matching number of G.

Recall the following results form [13]. Define a family \mathcal{U}_G of maximal independent sets of G in the following way.

$U \in \mathcal{U}_G$ if and only if U satisfies the following three conditions:

1. U is a maximal independent set in G.
2. $\{v \in V(G) \mid d_G(v) \leq 1\} \subseteq U$, where $d_G(v)$ denotes the degree of v in G.
3. If there is a vertex $w \in V(G) \setminus U$, satisfying $|N_G(w) \cap U| = 1$ and $V(G) \setminus U \subseteq N_G[w]$, then there is no vertex $v \in U$ such that $N_G(v) = V(G) \setminus U$, where $N_G(w) = \{u \in V(G) \mid \{u, w\} \in E(G)\}$ and $N_G[w] = N_G(w) \cup \{w\}$.

Theorem 3.1 ([13] Lemma 8, Theorem 10). Let G be a gap-free graph with at least two edges and $U \in \mathcal{U}_G$. Then
(1) $H_U := G \cup F_U$ is a minimal chordal graph (known as the minimal triangulation of G), where $F_U = \{uv \notin E(G) \mid u, v \in V(G) \setminus U\}$. Moreover H_U is co-chordal and gap-free.

(2) A graph H on the vertex set $V(G)$ is a minimal triangulation of G if and only if there is some $U \in \mathcal{U}_G$ such that $H = H_U$.

(3) H_U is a split graph and $(U, V(G) \setminus U)$ is a split partition for H_U.

Now we prove a new upper bound for the Rees algebra of a gap-free graph.

Proposition 3.2. Let $G = (V(G), E(G))$ be a gap-free graph and $|E(G)| > 1$. Then

(i) $\text{reg}(R(I(G)))) \leq \min \left\{ \left\lceil \frac{|V(G)\setminus U| + 1}{2} \right\rceil + 1 \mid U \in \mathcal{U}_G \right\}$.

(ii) Suppose U is a maximal independent set in G such that $V(G) \setminus U$ is a maximal clique in H_U. Then $\text{reg}(R(I(G)))) \leq \left\lceil \frac{|V(G)\setminus U|}{2} \right\rceil + 1$.

Proof. (i) Let $U \in \mathcal{U}_G$. We show that $\text{reg}(R(I(G)))) \leq \frac{|V(G)\setminus U|}{2} + 1$. We have G is gap-free implies that both $R(I(G))$ and $R(I(H_U))$ are normal. We have $R(I(G)) \subseteq R(I(H_U))$. Therefore by [10] Corollary 1.3, we have $\text{reg}(R(I(G)))) \leq \text{reg}(R(I(H_U))))$. By [10] Theorem 2.2, $\text{reg}(R(I(H_U)))) \leq \text{mat}(H_U) + 1$. Thus $\text{reg}(R(I(G)))) \leq \text{mat}(H_U) + 1$. By using the Theorem 3.1, we have H_U is a split graph with split partition $(U, V(G) \setminus U)$. This implies that $\text{mat}(H_U) = \left\lceil \frac{|V(G)\setminus U|}{2} \right\rceil$ or $\left\lceil \frac{|V(G)\setminus U| + 1}{2} \right\rceil$ accordingly $K_{V(G)\setminus U}$ is a maximal clique or not. Thus we have

$$\text{reg}(R(I(G)))) \leq \text{mat}(H_U) + 1 \leq \left\lceil \frac{|V(G)\setminus U| + 1}{2} \right\rceil + 1.$$

(ii) By the assumption we get $U \in \mathcal{U}_G$. Since $V(G) \setminus U$ is a maximal clique in H_U, we have $\text{mat}(H_U) = \left\lceil \frac{|V(G)\setminus U|}{2} \right\rceil$. Now by using [10] Corollary 1.3, Theorem 2.2, we get

$$\text{reg}(R(I(H_U)))) \leq \text{reg}(R(I(H_U)))) \leq \text{mat}(H_U) + 1 \leq \left\lceil \frac{|V(G)\setminus U|}{2} \right\rceil + 1,$$

as required. \qed

The following corollary is an immediate consequence of the above proposition.

Corollary 3.3. Let $G = (V(G), E(G))$ be a gap-free graph and $|E(G)| > 1$. Let U_0 be a maximal independent set in G such that $V(G) \setminus U_0$ is a minimal vertex cover of maximal cardinality. Then

$$\text{reg}(R(I(G)))) \leq \left\lceil \frac{|V(G)\setminus U_0| + 1}{2} \right\rceil + 1.$$
Corollary 3.4. Let $G = (V(G), E(G))$ be a gap-free graph and $|E(G)| > 1$. If

$$\min \{|V(G) \setminus U| : U \in \mathcal{U}_G\} \leq 2 \text{mat}(G) - 3,$$

then $\text{reg}(R(I(G))) = \text{mat}(G)$.

Proof. The assumption implies that $\min \left\{\left\lceil \frac{|V(G) \setminus U| + 1}{2} \right\rceil + 1 \mid U \in \mathcal{U}_G\right\} \leq \text{mat}(G)$. Therefore form the Proposition 3.2, we have $\text{reg}(R(I(G))) \leq \text{mat}(G)$. Now the assertion follows from [10, Theorem 2.2]. □

Corollary 3.5. Let G be a gap-free graph and $|E(G)| > 1$ and $\alpha_0(G)$ denotes the vertex cover number of G. Suppose $I(G)$ is unmixed. Then $\text{reg}(R(I(G))) \leq \left\lceil \frac{\alpha_0(G) + 1}{2} \right\rceil + 1$. Furthermore, if $\alpha_0(G) \leq 2 \text{mat}(G) - 3$, then $\text{reg}(R(I(G))) = \left\lceil \frac{\alpha_0(G) + 1}{2} \right\rceil + 1 = \text{mat}(G)$.

The following example shows that the bound in the Proposition 3.2 is sharp.

Example 3.6. Let G be a graph with $V(G) = \{x_1, x_2, x_3, x_4, x_5, x_6\}$ and

$$E(G) = \{\{x_1, x_2\}, \{x_2, x_3\}, \{x_3, x_4\}, \{x_4, x_5\}, \{x_5, x_6\}, \{x_4, x_6\}, \{x_3, x_6\}, \{x_2, x_4\}, \{x_2, x_6\}\}.$$

Then G is a gap-free graph with $\text{mat}(G) = 3$ and vertex cover number $\alpha_0(G) = 3$. Note that $U = \{x_1, x_3, x_5\}$ is a maximal independent set in G and $U \in \mathcal{U}_G$. Also $V(G) \setminus U$ is a minimal vertex cover of minimal cardinality. Therefore $\left\lceil \frac{|V(G) \setminus U| + 1}{2} \right\rceil + 1 = 3$. Now by using the CoCoA [1], we get $\text{reg}(R(I(G))) = 3$. Thus

$$\text{reg}(R(I(G))) = \left\lceil \frac{|V(G) \setminus U| + 1}{2} \right\rceil + 1 = \min \left\{\left\lceil \frac{|V(G) \setminus W| + 1}{2} \right\rceil + 1 \mid W \in \mathcal{U}_G\right\} = 3.$$

Therefore the upper bound in the Proposition 3.2 is sharp.

4. Linear resolution of toric algebras of chordal graphs

Throughout this section we will assume that $G = (V(G), E(G))$ is a chordal graph. Let I_G be the toric ideal associated to the graph G. From [5] we have the characterization of primitive walks of a graph G, which generates the ideal I_G.

Lemma 4.1. ([5, Lemma 3.1]) An even walk of length $2q$ is primitive if it is one of the following:

1. An even cycle
2. $\{C_1, C_2\}$, where C_1 and C_2 are odd cycles with exactly one common vertex,
(3) \(\{C_1, p_1, C_2, p_2, \ldots, C_h, P_h\} \) where \(p_i \)'s are paths of length \(\geq 1 \) and \(C_i \)'s are odd cycles such that \(C_i(\mod h) \) and \(C_{i+1}(\mod h) \) are vertex disjoint for each\(i. \)

We will show that if \(I_G \) has a \(q \)-linear resolution for \(q \geq 4 \) then all the primitive walks of \(G \) are of type (3).

Lemma 4.2. Let \(G \) be a chordal graph. Suppose \(I_G \) has \(q \)-linear resolution. Then all the primitive walks of \(G \) are type (3) only.

Proof. We show that \(G \) does not have a primitive walk of type (1) and type (2). Let \(W_{2q} \) be an even closed walk of length \(2q \). Suppose \(W_{2q} \) is of type (1), that is \(W_{2q} = C_{2q} \). But \(G \) is chordal, so it can not contain any induced cycle of length \(\geq 4 \), which forces existence of some chord \(e \in E(G) \) of \(C_{2q} \) such that \(e \) will divide \(C_{2q} \) into two cycles, \(C_1 \) and \(C_2 \) of length \(< 2q \).

(a) If \(C_1, C_2 \) both are even cycles, then they will be primitive walk of smaller length, which will be present in the minimal generating set of \(I_G \), which implies that \(I_G \) is generated by elements of degree smaller than \(q \), which is a contradiction, as \(I_G \) has \(q \)-linear resolution.

(b) Suppose \(C_1, C_2 \) both are odd cycles. We can assume that \(C_1 \) is larger than \(C_2 \). Then length of \(C_1 \geq q + 1 \), if \(q \) is even and \(\geq q + 2 \) if \(q \) is odd. As \(q \geq 4 \), length of \(C_1 \geq 5 \). But \(G \) is chordal, so \(C_1 \) should have some chord, say \(e' \), which will divide \(C_1 \) into two even cycles of length \(< 2q \). Therefore using the same argument as (a), we can conclude.

Next suppose that \(W_{2q} \) is of type (2), which implies that \(W_{2q} \) is the union of two odd cycles \(C_3 \) and \(C_4 \) of length \(q \geq 5 \), having exactly one common vertex. As \(G \) is chordal so both \(C_3 \) and \(C_4 \) should have chords \(e_1 \) and \(e_2 \), which will divide them into smaller cycles of even length. Then using case (b), we can derive our result. \(\square \)

Lemma 4.3. Let \(G \) be a chordal graph. Suppose \(I_G \) has \(q \)-linear resolution. Then all the primitive walks of \(G \) are of the form \(C_1 p C_2 \), where \(C_1, C_2 \) are 3-cycles and \(p \) is a path in \(G \).

Proof. Let \(W_{2q} \) be an even closed walk of length \(2q \). From the proof of the Lemma 4.2, if \(I_G \) has \(q \)-linear resolution, then \(G \) has primitive walks of type (3) only. That is \(W_{2q} \) is of the form \(C_1 p_1 C_2 p_2 \ldots C_h p_h \), where \(C_i \)'s are odd cycles of length \(\geq 3 \). But if \(C_i \) is a cycle of length \(\geq 4 \), then we can proceed as in the proof of the Lemma 4.2, we can conclude.
that C_i is a 3-cycle only. Next we will show that in each such W_{2q} only two 3-cycle will be present. That is, we show that $h = 2$.

If possible, suppose there are more than two 3-cycle in W_{2q}, then $h \geq 3$ and p_h connects C_1 and C_h. Then the paths p_1, p_2, \ldots, p_h will form another cycle C' of length $< 2q$ as shown in the above figure. If C' is of length 3, which implies that $h = 3$, then C' and C_i share exactly one common vertex for each $i = 1, 2, 3$. Then $\{C', C_i\}$ generates a primitive walk of length 6 $< 2q$, which is contradiction. Suppose C' is of length ≥ 4. By the construction, length of $(C') < 2q$. As G is chordal, C' should have a chord. Then using same kind of argument as in Lemma 4.3, we can get another primitive walk of length $< 2q$. Again we get a contradiction. Thus we can conclude that I_G has q-linear resolution then I_G will be generated by primitive binomials coming from the even walk W_{2q}, where W_{2q} is of the form $C_1p_1C_2$. □

Lemma 4.4. Let G be a connected graph. If G contains two disjoint even walks of length $2q$ of the form $C_1p_1C_2$ and $C'_1p'_1C'_2$, where, C'_1, C'_2, C_1, C_2 are 3-cycles, then $\deg \mathcal{R}_G \geq q$.

Proof. Suppose G_{2q} and G'_{2q} denote the walks $C_1p_1C_2$ and $C'_1p'_1C'_2$ respectively. Let $E(C_1) = \{e_1, e_2, e_3\}, E(p_1) = \{e_4, e_5, \ldots, e_q\}, E(C_2) = \{e_{q+1}, e_{q+2}, e_{q+3}\}$ and $E(C'_1) = \{e'_1, e'_2, e'_3\}, E(p_1) = \{e'_4, e'_5, \ldots, e'_{q}\}, E(C'_2) = \{e'_{q+1}, e'_{q+2}, e'_{q+3}\}$, where $e_i = \{v_{i-1}, v_i\}$ and $e'_i = \{v'_{i-1}, v'_i\}$ for $4 \leq i \leq q$.

![Diagram](image-url)
Let G' be a graph on the vertex set $V(G') = \{v_1, v_2, \ldots, v_{q+2}, v'_1, v'_2, \ldots, v'_{q+2}\}$ with edge set $E(G') = E(G_{2q}) \cup E(G'_{2q})$. Then by [20, Proposition 10.4.1], we have

$$\dim P_G = |V(G')| - C_0(G') - 1 = 2q + 4 - 1 = 2q + 3,$$

where $C_0(G')$ is the number of bipartite components of G' which is zero.

Suppose that q is even. Consider

$$v = \frac{1}{3} \left[\rho(e_1) + \rho(e_3) + \rho(e'_1) + \rho(e'_3) + \rho(e_{q+1}) + \rho(e_{q+3}) + \rho(e'_{q+1}) + \rho(e'_{q+3}) \right] +$$

$$\frac{2}{3} \left[\rho(e_2) + \rho(e'_2) + \rho(e_{q+2}) + \rho(e'_{q+2}) \right] +$$

$$\frac{1}{3} \left[\rho(e_4) + \rho(e_6) + \cdots + \rho(e_q) + \rho(e'_4) + \rho(e'_6) + \cdots + \rho(e'_q) \right] +$$

$$\frac{2}{3} \left[\rho(e_5) + \rho(e_7) + \cdots + \rho(e_{q-1}) + \rho(e'_5) + \rho(e'_7) + \cdots + \rho(e'_{q-1}) \right]$$

$$= e_1 + e_2 + \cdots + e_{2q+4}$$

$$\in \text{int}((q + 3)P_{G'}) \cap \mathbb{Z}^{2q+4}.$$

Therefore we get $\text{codeg}(P_{G'}) \leq q + 3$, which implies that

$$\deg(P_{G'}) = \dim(P_{G'}) + 1 - \text{codeg}(P_{G'}) \geq 2q + 4 - q - 3 = q + 1 \geq q.$$

Now assume that q is odd. Consider

$$v = \frac{1}{3} \left[\rho(e_1) + \rho(e_3) + \rho(e'_1) + \rho(e'_3) \right] +$$

$$\frac{2}{3} \left[\rho(e_2) + \rho(e'_2) \right] +$$

$$\frac{1}{3} \left[\rho(e_4) + \rho(e_6) + \cdots + \rho(e_q) + \rho(e'_4) + \rho(e'_6) + \cdots + \rho(e'_q) \right] +$$

$$\frac{2}{3} \left[\rho(e_5) + \rho(e_7) + \cdots + \rho(e_{q-1}) + \rho(e'_5) + \rho(e'_7) + \cdots + \rho(e'_{q-1}) \right] +$$

$$\frac{1}{6} \left[\rho(e_{q+1}) + \rho(e_{q+3}) + \rho(e'_{q+1}) + \rho(e'_{q+3}) \right] +$$

$$\frac{5}{6} \left[\rho(e_{q+2}) + \rho(e'_{q+2}) \right]$$

$$= e_1 + e_2 + \cdots + e_{2q+4}$$

$$\in \text{int}((q + 2)P_{G'}) \cap \mathbb{Z}^{2q+4}.$$

Thus we get $\text{codeg}(P_{G'}) \leq q + 2$, which gives that

$$\deg(P_{G'}) = \dim(P_{G'}) + 1 - \text{codeg}(P_{G'}) \geq 2q + 4 - q - 2 = q + 2 \geq q.$$
As G' is a subgraph of G, therefore by [15, Lemma 1.3] we have $\deg(P_G) \geq \deg(P_{G'}) \geq q$. \hfill \Box

Now we prove our main theorem.

Theorem 4.5. Let G be a connected chordal graph. If I_G has q-linear resolution, then G has exactly one primitive walk of length $2q$ of type C_1pC_2, where C_1, C_2 are 3-cycles and p is a path in G.

Proof. Suppose G contains two even walk of length $2q$ of the form $G_{2q} = C_1p_1C_2$ and $G'_{2q} = C'_1p'_1C'_2$. Suppose G_{2q} and G'_{2q} are disjoint. Then by the Lemma 4.4 we have $\deg(P_G) \geq q$. Now by [12, Corollary 3.4] this implies that $\text{reg}(K[G]) \geq q$. This is a contradiction because $\text{reg}(K[G]) = q - 1$. Therefore G_{2q} and G'_{2q} are not disjoint.

Case 1: Assume G_{2q} and G'_{2q} share exactly one common vertex, v.

(i) $v \in C_1/C_2/C'_1/C'_2$

Without loss of generality we can assume that $v \in C_1$. Then v divides the path p'_1 into two parts p_2 and p_3 (as shown in the above figure), then we get another primitive walk $C'_1p_2C_1$ of length $< 2q$, which gives a contradiction. Note that the same argument is true if the length of the path p_2 or p_3 is zero.

(ii) Assume $v \in P_1$ and $v \in P'_1$.

Suppose v divides the path P_1 into P_2, P_3 and P'_1 into P'_2, P'_3. Then we get 4 other primitive walks:

$$W_1 = C_1p_2p'_3C'_2, \quad W_2 = C_1p_2p'_2C'_1, \quad W_3 = C_2p_3p'_3C'_2, \quad W_4 = C_2p_3p'_2C'_1.$$

As I_G has q-linear resolution, all these four walks should be of length $2q$. Let $\ell(p)$ denotes the length of a path p.

Thus we obtain

\[\ell(p_2) + \ell(p'_2) = \ell(p_2) + \ell(p'_2) = \ell(p_3) + \ell(p'_3) = \ell(p_1) = q - 3, \]

which implies that \(\ell(p_2) = \ell(p_3) = \ell(p'_2) = \ell(p'_3) = \frac{q-2}{2} \). This implies that \(q \) should be an odd number and \(v \) should divide the paths \(p_1 \) and \(p'_1 \) into two equal parts, as shown in the above figure.

Now consider the graph \(G' \) with vertex set \(V(G') = \{v_1, v_2, \ldots, v_{q-3} = v, \ldots, v_{q+2}, v'_1, v'_2, \ldots, v'_q = v'_1, \ldots, v'_{q+2}\} \) and edge set \(E(G') = E(W_1) \cup E(W_2) \cup E(W_3) \cup E(W_4) \). Then \(G' \) is a connected subgraph of \(G \) with \(\dim(G') = 2q + 3 - 1 = 2q + 2 \). Note that the vertices of \(G' \) are labelled as in the same pattern as in the figure in the proof of the Lemma 4.4.

Consider the vector

\[
\begin{align*}
\mathbf{w} &= \frac{1}{2} \sum_{i=4}^{q} [\rho(e_i) + \rho(e'_i)] + \frac{3}{4} [\rho(e_2) + \rho(e_2) + \rho(e_{q+2}) + \rho(e'_{q+2})] + \\
&\quad \frac{1}{4} [\rho(e_1) + \rho(e'_1) + \rho(e_3) + \rho(e'_3) + \rho(e_{q+1}) + \rho(e'_{q+1}) + \rho(e_{q+3}) + \rho(e'_{q+3})] \\
&= e_1 + e_2 + \cdots + e_{2q+3} \\
&\in \text{int} \left((q+2) \mathcal{P}_{G'} \right) \cap \mathbb{Z}^{2q+3}.
\end{align*}
\]
This implies that \(\text{codeg}(\mathcal{P}_{G'}) \leq q+2 \) and hence \(\text{deg}(\mathcal{P}_G) \geq \text{deg}(\mathcal{P}_{G'}) \geq 2q+2-q-2 = q \). This is a contradiction because \(\text{reg}(K[G]) = q-1 \).

Case 2: \(G_{2q} \) and \(G'_{2q} \) share more than one vertex.

Suppose they share at least two common vertices say \(v_1, v_2 \). Then we have four possibilities:

(a) \(v_1 \in C_1/C_2/C'_1/C'_2 \) and \(v_2 \in p_1, p'_1 \),
(b) \(v_2 \in C_1/C_2/C'_1/C'_2 \) and \(v_1 \in p_1, p'_1 \),
(c) \(v_1, v_2 \in C_1/C_2/C'_1/C'_2 \),
(d) \(v_1, v_2 \in p_1, p'_1 \).

The possibilities (a), (b), (c) fall under case 1(i) above. So we can use the same argument.

Now suppose \(v_1, v_2 \in p_1, p'_1 \), then by using the same argument as in (ii), we can say that these two vertices should divide \(p_1 \) and \(p'_1 \) into two equal paths, which is absurd. \(\square \)

Corollary 4.6. Suppose \(G \) is a chordal graph. If \(I_G \) has \(q \)-linear resolution, then \(K[G] \) is a hypersurface.

Proof. Let \(G_1, \ldots, G_s \) be the connected components of \(G \). Then each \(G_i \) is a chordal connected graph. If \(I_G \) has \(q \)-linear resolution, then there exists only one \(j \) such that \(I_{G_j} \neq 0 \). That is, \(K[G_i] \) are polynomial algebras for all \(i \neq j \). As \(K[G] \cong K[G_1] \otimes_K K[G_2] \otimes_K \cdots \otimes_K K[G_s] \), this implies that \(K[G_j] \) has \(q \)-linear resolution. Therefore by the Theorem \(\square \) we get that \(K[G_j] \) is a hypersurface. This implies that \(K[G] \) is a hypersurface. \(\square \)

References

Department of Mathematics, Indian Institute of Technology Kharagpur, West Bengal, INDIA - 721302.

E-mail address: rimpanandi30@maths.iitkgp.ac.in

Department of Mathematics, Indian Institute of Technology Kharagpur, West Bengal, INDIA - 721302.

E-mail address: nanduri@maths.iitkgp.ac.in