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In this paper, we are concerned with the analysis of two-transistor circuits. Applying
technique for the numerical verification, we prove rigorously the existence of five solutions
in a two-transistor circuit. The system of equations for a transistor circuit is obtained as
nonlinear equations, therefore Krawczyk’s method is applied for proving the existence of
a solution.
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1. Introduction

One of the most fundamental problems on the analysis of a transistor circuit
(shown in Fig. 1 and hereafter referred to an m-transistor circuit) composed of m

transistors, linear passive resistors and dc sources is to find the maximum number of
solutions of the circuit equation. It was once proposed by the Technical Committee
on Nonlinear Circuits and Systems of the IEEE Circuits and Systems Society as a
challenging problem. Since nonlinear elements are only transistors, the maximum
number of solutions depends on the value of m. It is well known that the solution
is unique if m = 0 or m = 1. However, in spite of long-term efforts we still have no
definite answer even for a simple case of m = 2. The difficulties of the problem can
be seen from [1]–[3].

Concerning a two-transistor circuit, by the well-known theorem [4], [5], it has
been believed for a long time that the maximum number of solutions is three. The
proof [4], [5] given by Lee was too complicated to fully understand. Afterwards it
was numerically demonstrated [6]–[8] that several two-transistor circuits have five
solutions. Though the possibility of five solutions was numerically predicted [6]–[8],
i.e., the existence of solutions was actually shown only by using a circuit simulator,
it is not a mathematically guaranteed counter example. The purpose of this paper
is to show the existence of five solutions rigorously by using numerical computations
with guaranteed accuracy. This implies that Lee’s theorem is inaccurate.

For reference we will briefly describe the background of the problem. Since
Nielsen and Willson gave a striking theorem [9] on the uniqueness of a solution of
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Fig. 1. m-transistor circuit

m-transistor circuits, many papers were published on the existence of a solution, the
uniqueness of a solution [9]–[11], and the number of solutions [12]–[15]. The circuit
equation for an m-transistor circuit can be written in general as F (x)+Ax=b, where
x = [x1, x2, . . . , x2m]T is a variable vector, F (x) = [f1(x1), f2(x2), . . . , f2m(x2m)]T

is a nonlinear function vector, and A = [aij ] and b = [bi] are a constant matrix
and a column vector, respectively. Note that fi(xi) (i = 1, 2, . . . , 2m) is a nonlinear
function of the variable xi only. The functions fi and parameters aij and bi depends
on the modelling of a transistor. The typical model of a transistor is the Ebers–Moll
model where fi(xi) = K(eβixi − 1) (K,βi > 0) and therefore fi(xi) is a monotone-
increasing function and aij and bi are subject to some circuit theoretic restrictions
(see Section 3).

The number of solutions depends on various factors such as types of tran-
sistors (bipolar junction transistor (BJT) or MOS transistor (MOST)), modelling
of a transistor (Ebers–Moll or Gummel–Poon), and the charactersitics of a non-
linear function fi (exponential function, piecewise-linear function, etc.) in tran-
sistor models. After the incorrect Lee’s theorem, Goldgeisser et al. [6] and Shou
et al. [7] showed several circuits possessing five solutions for a MOST circuit and
a BTJ circuit respectively by using circuit simulator model. Recently Claus pro-
posed a new analysis method [8] for a two-transistor circuit. Based on this method,
Claus showed another MOST circuit and an Ebers–Moll BJT circuit possessing
five solutions.

Jitsumatsu and Nishi showed [15] that two-transistor circuits where a tran-
sistor is represented by the Ebers–Moll model have at most five solutions if fi are
assumed to have ideal diode charactersitics. Jitsumatsu and Nishi also showed [14]
that the maximum number of solutions of the two-dimensional nonlinear equa-
tion exi + ai1x1 + ai2x2 = bi (i = 1, 2) is exactly five if there is no restriction on
the real coefficients aij and bi. Therefore, the value “five” may incidentally be a
plausable value as the maximum number of solutions for two-transistor circuits,
though there is no close relation among the above results. Nishi also shows [13]
that on the assumption that only the first and the second derivatives, f ′

i and f ′′
i ,
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are positive, then three-transistor circuits can possess infinitely many solutions
(cf. the Nielsen–Willson theorem [9] is obtained on the assumption that only the
first derivative f ′

i is positive).
Consequently, although there has been much research on this topic, the solution

for m-transistor circuits is far from complete.

2. Numerical verification of a solution for a system of nonlinear equa-
tions

Let R, F, IR and IF be, respectively, the set of real numbers, the set of float-
ing point numbers, the set of intervals on real number, i.e., IR = {[x, x] | x ≤ x,

x, x ∈ R}, and the set of intervals on floating point number, i.e., IF = {[x, x] ∈ IR |
x, x ∈ F}. In the following we assume that floating point operations on F fulfill the
IEEE 754 standard for binary floating point numbers [16].

In IEEE 754 some kinds of rounding modes are defined including rounding
downwards and rounding upwards, and these two rounding modes are important
for rigorous numerical verification. In the following, Round down and Round up

mean changing the rounding mode to rounding downwards and to rounding upwards
respectively.

Consider the numerical verification for a solution of a system of nonlinear
equations:

f(x) = 0, (1)

where f : R
n → R

n is continuously differentiable. We can apply Krawczyk’s method
which is known as one of efficient methods to prove the existence of a solution for
a system of nonlinear equations [17]–[19]. First, we will introduce Krawczyk’s
method.

For an interval X ∈ IF
n of which the center is c ∈ F

n, an interval matrix M ∈
IF

n×n and an interval mapping K ∈ IF
n, which is called the Krawczyk operator,

are defined as

M = E − L−1F ′(X), (2)

K(X) = c − L−1f(c) + M(X − c) (3)

respectively, where E is the n × n unit matrix, L ∈ F
n×n is an approximate

matrix of f ′(c) ∈ F
n×n, and F ′(X) ∈ IF

n×n is an interval inclusion of f ′(X), i.e.,
f ′(X) ⊆ F ′(X). Then the following is well-known:

Lemma 1. If the condition

K(X) ⊂ X (4)

holds, then there exists a unique solution x∗ ∈ R
n of the nonlinear equations (1) in

the interval X.
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Suppose that an approximate solution x̃ ∈ F
n of (1) is obtained by some

appropriate method. To prove numerically that a true solution exists near x̃, we
generate an interval X̃ ∈ IF

n as

X̃ = x̃ + I, (5)

where I ∈ IF
n is defined as

I =

⎛
⎜⎜⎜⎝

[−1, 1]
[−1, 1]

...
[−1, 1]

⎞
⎟⎟⎟⎠e, (6)

and e ∈ F is chosen as

e = 2‖L̃−1f(x̃)‖∞, (7)

where L̃−1 ∈ F
n×n is an approximate inverse matrix of f ′(x̃) and ‖x‖∞ denotes the

infinity norm

‖x‖∞ = max
1≤i≤n

|xi|. (8)

Using the Krawczyk operator (3), we define the operator H ∈ IF
n as

H = K(X̃) − x̃

= K(x̃ + I) − x̃

= −L̃−1f(x̃) + (E − L̃−1F ′(x̃ + I))I. (9)

Then the condition (4) is equivalent to

H ⊂ I. (10)

We therefore see by Lemma 1 that if the condition (10) holds, then the interval
X̃ contains a true solution of the nonlinear equation (1). So we will check using
numerical computations with guaranteed accuracy whether the condition (10) is
satisfied or not.

We now implement Krawczyk’s method by interval arithmetic on doubles
satisfying IEEE 754 standard. Assume that f(x̃) ∈ IF

n and F ′(x̃ + I) ∈ IF
n×n

are calculated in advance as intervals with guaranteed accuracy as

f(x̃) ⊆ [fc − fr, fc + fr] (11)

and

F ′(x̃ + I) ⊆ [F ′
c − F ′

r, F
′
c + F ′

r] (12)
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respectively, where fc ∈ F
n, F ′

c ∈ F
n×n are the center of the intervals, and fr ∈ F

n,
F ′

r ∈ F
n×n are the radius of the intervals. From (9), we need to calculate −L̃−1f(x̃)

and E + (−L̃−1)F ′(x̃ + I) at first. By applying the interval arithmetic these values
are calculated as follows respectively:

Round down
r = (−L−1)fc + (−|L−1|)fr

Round up

r = (−L−1)fc + |L−1|fr

(13)

Round down
M = E + (−L−1)F ′

c + (−|L−1|)F ′
r

Round up

M = E + (−L−1)F ′
c + |L−1|F ′

r

(14)

then −L̃−1f(x̃) ⊆ [r, r] and E + (−L̃−1)F ′(x̃ + I) ⊆ [M,M ] hold. Next we have
to implement the calculation of (E − L̃−1F ′(x̃ + I))I. Since I is given by (6), this
part can be realized as

Round up

Mmax = max{|M |, |M |}
q = Mmaxe

(15)

and (E − L̃−1F ′(x̃ + I))I ⊆ [−q, q] holds. Finally we calculate the value of opera-
tor H as

Round down

H = r + (−q)
Round up

H = r + q

(16)

From this algorithm, rigorous range of H can be evaluated, and the following
result holds:

H ⊂ [H,H ]. (17)

Therefore, by collecting the above results, Krawczyk’s method is implemented by
the following algorithm:
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Algorithm 1.

Round down
r = (−L−1)fc + (−|L−1|)fr

M = E + (−L−1)F ′
c + (−|L−1|)F ′

r

Round up

r = (−L−1)fc + |L−1|fr

M = E + (−L−1)F ′
c + |L−1|F ′

r

Mmax = max{|M |, |M |}
q = Mmaxe

H = r + q
Round down

H = r + (−q)

3. Application of Krawczyk’s method to numerical verification of solu-
tions of two-transistor circuits

We will examine the flip-flop circuit [8] shown in Fig. 2 by using numerical
computations with guaranteed accuracy. As a result, we will rigorously prove that
the circuit has five solutions with certainty.

Fig. 2. Flip-flop circuit

The Ebers–Moll model of the transistor in Fig. 3 (a) is represented in Fig. 3 (b).
The terminal currents Ii (i = 1, 2, 3, 4) of transistors are given as

[−Ik+1

−Ik+2

]
=

[
1 −αr

−αf 1

][
fk+1(Vk+1)
fk+2(Vk+2)

]
,

[
fk+1(Vk+1)
fk+2(Vk+2)

]
=

⎡
⎢⎣

Is

αf

(
e

Vk+1
VT − 1

)
Is

αr

(
e

Vk+2
VT − 1

)
⎤
⎥⎦ (k = 0, 1).

(18)
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(a) Transistor (b) Ebers–Moll model (c) 4-port N

Fig. 3. Ebers–Moll model and 4-port N

The linear 4-port N obtained from the total circuit by removing two transistors is
depicted in Fig. 3 (c). Then the charactersitics of N can be represented by using
the conductance matrix G of the 4-port as:

I = GV + J (19)

where I = [I1, I2, I3, I4]T, V = [V1, V2, I3, I4]T,

G =

⎡
⎢⎢⎣

2Gb + Gc −(Gb + Gc) −2Gb Gb

−(Gb + Gc) Gb + Gc Gb 0
−2Gb Gb 2Gb + Gc −(Gb + Gc)
Gb 0 −(Gb + Gc) Gb + Gc

⎤
⎥⎥⎦,

J =

⎡
⎢⎢⎣

GcVcc

GbVs − GcVcc

GcVcc

GbVs − GcVcc

⎤
⎥⎥⎦,

(20)

Gb = 1/Rb and Gc = 1/Rc. Substituting (18) into (19), we have the circuit equation
as follows:

Tf(V ) + GV + J = 0, (21)

where

T =

⎡
⎢⎢⎣

1 −αr 0 0
−αf 1 0 0

0 0 1 −αr

0 0 −αf 1

⎤
⎥⎥⎦, f(V ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Is

αf

(
e

V1
VT − 1

)
Is

αr

(
e

V2
VT − 1

)
Is

αf

(
e

V3
VT − 1

)
Is

αr

(
e

V4
VT − 1

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (22)
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Let the values of Rb, Rc and Vcc be 10 kΩ, 5 kΩ and −5V respectively and let
the parameters of transistors be chosen as αf = 0.99, αr = 0.5. The dc source value
Vs is chosen as a parameter. We consider the following two cases: (a) Is = 10−9 (A),
VT = 0.053 (V), (b) Is = 10−6 (A), VT = 0.102 (V).

On the first step, we calculate approximate solutions of the equation (21) for
various values of Vs by usual numerical calculation. We then obtain the bifurcation
diagrams in Figs. 4 (for cases (a)) and 5 (for cases (b)), respectively. The approx-
imate solutions of V1 for Vs = Vs0, for example, can be found as the intersection
of the curves of V1 and the vertical line Vs = Vs0. Seeing these bifurcation dia-
grams, in cases (b), we may surmise that for values in the interval [−0.46,−0.39]
of Vs, there exist five solutions of the equation (21). However, this is not logically
correct in most cases. We will proceed to prove the existence of solutions in the
4-dimensional space.

Fig. 4. Bifurcation diagrams for the case (a)

Fig. 5. Bifurcation diagrams for the case (b)

On the second step, we will examine whether five solution surely exist by ap-
plying Krawczyk’s method to the nonlinear equation (21). We choose the parameter
Vs as Vs = −0.64 (V) for case (a) and Vs = −0.44 (V) for case (b) for which five
solutions are expected from Figs. 4 and 5. For each approximate solution obtained
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previously, we generate the interval by (5) and attempt a numerical verification
of the solution by applying the operator H and verifying that the condition (10)
is satisfied.

Tables 1 and 2 show the final results. These tables show that five verified
solutions are obtained for each cases of (a) and (b). Thus we rigorously proved that
the circuit shown in Fig. 2 have at least five operating points.

Table 1. Verified solutions of case (a) on Vs = −0.64 (V)

No. V1 V2 V3 V4

#1 [0.7423164 , 0.7423165 ] [0.6198872 , 0.6198873 ] [0.7035896 , 0.7035897 ] [−0.7218072 ,−0.7218071 ]
#2 [0.7355125 , 0.7355126 ] [0.5755529 , 0.5755530 ] [0.7199016 , 0.7199017 ] [−0.0033359 ,−0.0033358 ]
#3 [0.7292896 , 0.7292897 ] [0.4714551 , 0.4714552 ] [0.7292896 , 0.7292897 ] [0.4714551 , 0.4714552 ]
#4 [0.7199016 , 0.7199017 ] [−0.0033359 ,−0.0033358 ] [0.7355125 , 0.7355126 ] [0.5755529 , 0.5755530 ]
#5 [0.7035896 , 0.7035897 ] [−0.7218072 ,−0.7218071 ] [0.7423164 , 0.7423165 ] [0.6198872 , 0.6198873 ]

Table 2. Verified solutions of case (b) on Vs = −0.44 (V)

No. V1 V2 V3 V4

#1 [0.7288801 , 0.7288802 ] [0.5163018 , 0.5163019 ] [0.6190239 , 0.6190240 ] [−1.3666412 ,−1.3666411 ]
#2 [0.7081693 , 0.7081694 ] [0.4034650 , 0.4034651 ] [0.676678 , 0.676679 ] [−0.2082450 ,−0.2082449 ]
#3 [0.6952142 , 0.6952143 ] [0.2462035 , 0.2462036 ] [0.6952142 , 0.6952143 ] [0.2462035 , 0.2462036 ]
#4 [0.676678 , 0.676679 ] [−0.2082450 ,−0.2082449 ] [0.7081693 , 0.7081694 ] [0.4034650 , 0.4034651 ]
#5 [0.6190239 , 0.6190240 ] [−1.3666412 ,−1.3666411 ] [0.7288801 , 0.7288802 ] [0.5163018 , 0.5163019 ]

4. Conclusion

We have shown rigorously the existence of five solutions in a two-transistor
circuit by applying numerical computations with guaranteed accuracy. From this
result, we proved surely that the maximum number of solutions for two-transistor
circuits is at least five.

References

[ 1 ] L. Kronenberg, L. Trajkovic and W. Mathis, Finding dc operating points: Limitations of
topological and determinant criteria. Proc. of International Symposium on Nonlinear Theory
and Its Applications (NOLTA 2000), Dresden, Germany, 2000, 209–212.

[ 2 ] L. Kronenberg, L. Trajkovic and W. Mathis, Analysis of feedback structures and effect on
multiple dc operating points. European Circuit Theory and Design Conference, Stresa, Italy,
1999, 683–686.

[ 3 ] L. Kronenberg, W. Mathis and L. Trajkovic, Limitations of criteria for testing transistor
circuits for multiple dc operating points. Proc. 43rd Midwest Symposium on Circuits and
Systems (MWSCAS 2000), Lansing, MI, 2000, 1156–1159.

[ 4 ] B.G. Lee and A.N. Willson, Number of dc solutions of two-transistor circuits containing
feedback structures. Dissertation, Los Angeles, CA: Univ. of Calif., Los Angeles, El. Eng.
Dept., 1982.

[ 5 ] B.G. Lee and A.N. Willson, All two-transistor circuits possess at most three dc operating
equilibrium points. Proc. 26th Midwest Symp. Circuits and Systems, Puebla, Mexico, 1983,
504–507.

[ 6 ] L.B. Goldgeisser and M.M. Green, Some two-transistor circuits possess more than three
operation points. Proc. IEEE International Symposium on Circuits and Systems, 1999,
1002–1006.



336 Y. Nakaya, T. Nishi, S. Oishi and M. Claus

[ 7 ] X. Shou, L.B. Goldgeisser and M.M. Green, A methodology for constructing two-transistor
multistable circuits. Proc. IEEE International Symposium on Circuits and Systems, 2001,
377–380.

[ 8 ] M. Claus, Geometrical analysis of two-transistor circuits with more than three operating

points. Proc. of European Conference on Circuit Theory and Design (ECCTD 2005), 2005.
[ 9 ] R. Nielsen and A.N. Willson, A fundamental result concerning the topology of transistor

circuits with multiple equilibria. Proc. IEEE, 68 (1980), 196–208.
[10] T. Nishi and L.O. Chua, Topological criteria for nonlinear resistive circuits containing con-

trolled sources to have a unique solution. IEEE Trans. on Circuits and Systems, CAS-31
(1984), 722–741.

[11] M. Fosseprez, M. Hasler and C. Schnetzer, On the number of solutions of piecewise linear
resistive circuits. IEEE Trans. Circuits and Systems, 36 (1989), 393–402.

[12] T. Nishi and Y. Kawane, On the number of solutions of nonlinear resistove circuits. IEICE
Trans. on Fundamentals, E74 (1991).

[13] T, Nishi, A transistor circuit can possess infinitely many solutions under the assumption
that the first and the second derivatives of the v−i curves of nonlinear resistors are positive.
Proc. ISCAS ’96, Atlanta, 1996.

[14] Y. Jitsumatsu and T. Nishi, Maximum number of solutions for a kind of nonlinear simul-
taneous equations with two variables. IEICE Transactions on Fundamentals, 82-A (1999),
1175–1176 (in Japanese).

[15] Y. Jitsumatsu and T. Nishi, On the number of solutions for a class of piecewise-linear
equations related to transistor circuits. IEICE Trans. on Fundamentals, E84-A (2001),
2221–2229.

[16] ANSI/IEEE 754-1985, Standard for Binary Floating-Point Arighmetic. 1985.
[17] R. Krawczyk, Newton-Algorithm zur Bestimmung von Nullstellen mit Fehleshranken. Com-

puting, 4 (1969), 187–201.
[18] R.E. Moore, A test for existence of solutions for non-linear systems. SIAM J. Numerical

Analysis, 14 (1977), 611–615.
[19] A. Neumaier, Interval methods for systems of equations. Encyclopedia of Mathematics and

Its Applications, Cambridge University Press, 1990.


