Open Access
Translator Disclaimer
2014 On a state model for the $\mathrm{SO}(2n)$ Kauffman polynomial
Carmen Caprau, David Heywood, Dionne Ibarra
Involve 7(4): 547-563 (2014). DOI: 10.2140/involve.2014.7.547

Abstract

François Jaeger presented the two-variable Kauffman polynomial of an unoriented link L as a weighted sum of HOMFLY-PT polynomials of oriented links associated with L. Murakami, Ohtsuki and Yamada (MOY) used planar graphs and a recursive evaluation of these graphs to construct a state model for the sl(n)-link invariant (a one-variable specialization of the HOMFLY-PT polynomial). We apply the MOY framework to Jaeger’s work, and construct a state summation model for the SO(2n) Kauffman polynomial.

Citation

Download Citation

Carmen Caprau. David Heywood. Dionne Ibarra. "On a state model for the $\mathrm{SO}(2n)$ Kauffman polynomial." Involve 7 (4) 547 - 563, 2014. https://doi.org/10.2140/involve.2014.7.547

Information

Received: 10 April 2013; Revised: 24 October 2013; Accepted: 27 October 2013; Published: 2014
First available in Project Euclid: 20 December 2017

zbMATH: 1297.57027
MathSciNet: MR3239759
Digital Object Identifier: 10.2140/involve.2014.7.547

Subjects:
Primary: 57M27
Secondary: 57M15 , 57M27

Keywords: Graphs , invariants for knots and links , Kauffman polynomial

Rights: Copyright © 2014 Mathematical Sciences Publishers

JOURNAL ARTICLE
17 PAGES


SHARE
Vol.7 • No. 4 • 2014
MSP
Back to Top