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We study commutative ring structures on the integral span of rooted trees and
n-dimensional skew shapes. The multiplication in these rings arises from the
smash product operation on monoid representations in pointed sets. We interpret
these as Grothendieck rings of indecomposable monoid representations over
F1 — the “field” of one element. We also study the base-change homomorphism
from 〈t〉-modules to k[t]-modules for a field k containing all roots of unity, and
interpret the result in terms of Jordan decompositions of adjacency matrices of
certain graphs.

1. Introduction

In this paper we consider commutative ring structures on the integral spans of
rooted trees and n-dimensional skew shapes. The product in these rings arises
by first interpreting the corresponding combinatorial structure as a representation
of a monoid in pointed sets, and then using the smash product, which defines a
symmetric monoidal structure on the category of such representations. We proceed
to explain the construction in greater detail.

To a monoid A, one may associate a category Mod(A)F1 of “representations
of A over the field of one element”, whose objects are finite pointed sets with an
action of A. The terminology comes from the general yoga of F1, where pointed
sets are viewed as vector spaces over F1, and monoids are viewed as nonadditive
analogues of algebras; see [Chu et al. 2012; Lorscheid 2018]. Given Mod(A)F1 ,
their categorical coproduct M ⊕ N is given by the wedge sum M ∨ N and the
product by the Cartesian product M × N (equipped with diagonal A-action). One
may also consider a reduced version of the Cartesian product — the smash product
M ∧ N, with A-action a(m ∧ n)= am ∧ an, which while not a categorical product,
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defines a symmetric monoidal structure on Mod(A)F1 . The product ∧ is distributive
over ⊕; i.e.,

M ∧ (K ⊕ L)' (M ∧ K )⊕ (M ∧ L).

In certain cases, objects of Mod(A)F1 have a pleasant interpretation in terms of
familiar combinatorial structures. For example, when A is 〈t〉, the free monoid on
one generator t , we may associate to M ∈Mod(〈t〉)F1 a graph 0M which encodes
the action of t on M. The vertices of 0M correspond to the nonzero elements
of M (where the base-point plays the role of zero), and the directed edges join
m ∈ M to t ·m. The possible connected graphs arising this way, corresponding
to indecomposable representations, are easily seen to be of two types — rooted
trees and wheels (please note that the term wheel is also used in the graph theory
literature to describe a different type of graph). See Figure 1.

Given indecomposable M, N ∈Mod(〈t〉)F1 (corresponding to a tree or wheel),
one can ask how 0M∧N can be computed from 0M and 0N . We give the answer in
Section 3A, in the form of a simple algorithm, and show that 0M∧N corresponds to
the tensor product of graphs 0M ⊗0N in the sense of [Weichsel 1962].

In a similar vein, n-dimensional skew shapes can be interpreted as representations
of 〈x1, . . . , xn〉— the free commutative monoid on n generators x1, . . . , xn . We
illustrate this for n = 2, where the shape S

determines a module over the free commutative monoid on two generators 〈x1, x2〉,
whose nonzero elements correspond to the boxes in the diagram. The generator
x1 acts by moving one box to the right, and x2 by moving one box up, until the
edge of the diagram is reached, and by 0 beyond that. Connected skew shapes yield
indecomposable representations of 〈x1, . . . , xn〉, and we may once again ask how
to decompose MS ∧MT into

⊕
i MUi , where Ui are connected skew shapes. The

answer is given in Section 4A, where we prove the following theorem:

Theorem 1.1. If S1 and S2 are n-dimensional skew shapes, then

MS1 ∧MS2 =

⊕
t∈Zn

MS1∩(S2+t).

In other words, the Ui are those skew shapes that occur in the intersection of one
shape with a translate of the other.

Our results may be phrased in a more structured way as follows. Given a
monoid A and a monoidal subcategory C ⊂ (Mod(A)F1,∧), we may consider the
split Grothendieck ring K split(C). Elements of K split(C) may be identified with
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formal integer linear combinations
∑

ai [Mi ] of isomorphism classes of [Mi ] ∈

Iso(C), subject to the relations

[M ⊕ N ] ∼ [M] + [N ],

with multiplication induced by the smash product. In our examples, K split(C)
consists of integer linear combinations of trees/wheels or skew shapes. The results
of this paper amount to an explicit combinatorial description of the product in
K split(C).

Structures over F1 may be base-changed to those over a field (or any commutative
ring) k. We denote this functor by ⊗F1k. Then A⊗F1 k is the monoid algebra k[A],
and for M ∈Mod(A)F1 , M ⊗F1 k is the k[A]-module spanned over k by elements
of M. Since k[A] is a k-bialgebra, its category of modules monoidal. The functor
⊗F1k is monoidal, and so induces a ring homomorphism

8k : K
sp
0 (Mod(A)F1)→ Ksp

0 (Modk[A]).

We study this homomorphism in Section 3B in the simple case of the monoid
A= 〈t〉, in which case generators of Ksp

0 (Mod(k[t])) can be identified with Jordan
blocks. Understanding 8k in this case reduces to computing the Jordan form of the
adjacency matrices of the trees/wheels above. We show the image of 8k is spanned
by nilpotent Jordan blocks and cyclotomic diagonal matrices.

1A. Outline of paper. In Section 2 we recall basic facts regarding monoids and
the category Mod(A)F1 and define the split Grothendieck ring Ksp

0 (Mod(A)F1).
In Section 3A we consider the example of A = 〈t〉— the free monoid on one
generator, and identify the product in Ksp

0 (Mod(〈t〉)F1) with the graph tensor prod-
uct of trees/wheels. In Section 3B we consider the base-change homomorphism
8k :K

sp
0 (Mod(〈t〉)F1)→Ksp

0 (Modk[t]) and describe its image in terms of the Jordan
decomposition of the adjacency matrix of the corresponding graph. Section 4A
is devoted to the example of A = Pn = 〈x1, . . . , xn〉— the free commutative
monoid on n generators, and a certain subcategory of Mod(Pn)F1 corresponding
to n-dimensional skew shapes. We give an explicit description of the product in
Ksp

0 (Mod(Pn)F1) in terms of intersections of skew shapes.

2. Monoids and their modules

A monoid A will be a semigroup with identity 1A and zero 0A (i.e., the absorbing
element). We require

1A · a = a · 1A = a, 0A · a = a · 0A = 0A for all a ∈ A.

Monoid homomorphisms are required to respect the multiplication as well as the
special elements 1A, 0A.
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Example 2.1. Let F1 = {0, 1}, with

0 · 1= 1 · 0= 0 · 0= 0 and 1 · 1= 1.

We call F1 the field with one element.

Example 2.2. Let

Pn := 〈x1, . . . , xn〉 = {x
r1
1 xr2

2 · · · x
rn
n | r = (r1, r2, . . . , rn) ∈ Zn

≥0} ∪ {0};

i.e., Pn is the set of monomials in x1, . . . , xn , with the usual multiplication. We
will often write elements of Pn in multi-index notation as xr , r ∈ Zn

≥0, in which
case the multiplication is written as

xr
· x s
= xr+s .

We identify x0 with 1. Pn has a natural Zn
≥0-grading obtained by setting deg(xi )= ei ,

where ei is the i-th standard basis vector in Zn.

F1 and Pn are both commutative monoids.

2A. The category Mod(A)F1 .

Definition 2.3. Let A be a monoid. An A-module is a pointed set (M, 0M) (with
0M ∈ M denoting the base-point), equipped with an action of A. More explicitly,
an A-module structure on (M, 0M) is given by a map

A×M→ M, (a,m)→ a ·m,
satisfying

(a·b)·m=a·(b·m), 1·m=m, 0·m=0M , a·0M=0M for all a,b,∈A, m∈M.

A morphism of A-modules is given by a pointed map f : M→ N compatible
with the action of A, i.e., f (a ·m)= a · f (m). The A-module M is said to be finite
if M is a finite set, in which case we define its dimension to be dim(M)= |M | − 1
(we do not count the base-point, since it is the analogue of 0). We say that N ⊂ M
is an A-submodule if it is a (necessarily pointed) subset of M preserved by the
action of A. The monoid A always possesses the module 0 := {0}, which will
be referred to as the zero module. If A has no zero-divisors, it possesses a trivial
module 1 := F1, on which all nonzero elements of A act by the identity (this arises
via the augmentation homomorphism A→ F1 sending all nonzero elements to 1).

Note. This structure is called an A-act in [Kilp et al. 2000] and an A-set in [Chu
et al. 2012].

We denote by Mod(A)F1 the category of finite A-modules. It is the F1 analogue
of the category of finite-dimensional representations of an algebra. Note that for
M ∈Mod(A)F1 , EndMod(A)F1

(M) := HomMod(A)F1
(M,M) is a monoid (in general
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noncommutative). An F1-module is simply a pointed set, and will be referred to as
a vector space over F1. Thus, an A-module structure on M ∈ F1-mod amounts to a
monoid homomorphism A→ EndF1-mod(M).

Given a morphism f : M→ N in Mod(A)F1 , we define the image of f to be

Im( f ) := {n ∈ N | there exists m ∈ M such that f (m)= n}.

For M ∈Mod(A)F1 and an A-submodule N ⊂ M, the quotient of M by N, denoted
by M/N, is the A-module

M/N := M\N ∪ {0},

i.e., the pointed set obtained by identifying all elements of N with the base-point,
equipped with the induced A-action.

We recall some properties of Mod(A)F1 , following [Kilp et al. 2000; Chu et al.
2012; Szczesny 2014], where we refer the reader for details:

(1) For M, N ∈Mod(A)F1 , we have |HomMod(A)F1
(M, N )|<∞

(2) The zero A-module 0 is an initial, terminal, and hence zero object of Mod(A)F1 .

(3) Every morphism f : M→ N in CA has a kernel ker( f ) := f −1(0N ).

(4) Every morphism f : M→ N in CA has a cokernel coker( f ) := M/ Im( f ).

(5) The coproduct of a finite collection {Mi }, i ∈ I in Mod(A)F1 exists and is given
by the wedge sum ∨

i∈I

Mi =
∐

Mi/∼,

where ∼ is the equivalence relation identifying the base-points. We will denote the
coproduct of {Mi } by ⊕

i∈I

Mi .

(6) The product of a finite collection {Mi }, i ∈ I , in Mod(A)F1 exists and is given
by the Cartesian product

∏
Mi , equipped with the diagonal A-action. It is clearly

associative. It is however not compatible with the coproduct in the sense that
M × (N ⊕ L) 6' M × N ⊕M × L .

(7) The category Mod(A)F1 possesses a reduced version M ∧ N of the Cartesian
product M × N, called the smash product:

M ∧ N := M × N/M ∨ N,

where M and N are identified with the A-submodules {(m, 0N )} and {(0M , n)} of
M×N respectively. The smash product inherits the associativity from the Cartesian
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product, and is compatible with the coproduct — i.e.,

M ∧ (N ⊕ L)' M ∧ N ⊕M ∧ L .

It defines a symmetric monoidal structure on Mod(A)F1, with unit F1 (i.e., M∧F1'M).

(8) Mod(A)F1 possesses small limits and colimits.

(9) Given M in Mod(A)F1 and N ⊂ M, there is an inclusion-preserving correspon-
dence between flags N ⊂ L ⊂ M in Mod(A)F1 and A-submodules of M/N given
by sending L to L/N. The inverse correspondence is given by sending K ⊂ M/N
to π−1(K ), where π : M→ M/N is the canonical projection. This correspondence
has the property that if N ⊂ L ⊂ L ′ ⊂ M, then (L ′/N )/(L/N )' L ′/L .

These properties suggest that Mod(A)F1 has many of the properties of an abelian
category, without being additive. It is an example of a quasiexact and belian
category in the sense of [Deitmar 2012] and a protoabelian category in the sense of
[Dyckerhoff and Kapranov 2012]. Let Iso(Mod(A)F1) denote the set of isomorphism
classes in Mod(A)F1 , and [M] the isomorphism class of M ∈Mod(A)F1 .

We will regard Mod(A)F1 as a symmetric monoidal category with respect to ∧
and unit F1.

Definition 2.4. (1) We say that M ∈Mod(A)F1 is indecomposable if it cannot be
written as M = N ⊕ L for nonzero N , L ∈Mod(A)F1 .

(2) We say M ∈Mod(A)F1 is irreducible or simple if it contains no proper sub-
modules (i.e., those different from 0 and M).

It is clear that every irreducible module is indecomposable. We have the following
analogue of the Krull–Schmidt theorem [Szczesny 2014]:

Proposition 2.5. Every M ∈Mod(A)F1 can be uniquely decomposed (up to reorder-
ing) as a direct sum of indecomposable A-modules.

Remark 2.6. Suppose M =
⊕k

i=1 Mi is the decomposition of an A-module into
indecomposables, and N ⊂ M is a submodule. It then immediately follows that
N =

⊕
(N ∩Mi ).

2B. Monoid algebras. We now recall a few facts regarding monoid algebras fol-
lowing [Steinberg 2016]. Let k be a field. The monoid algebra k[A] consists of
linear combinations of nonzero elements of A with coefficients in k; i.e.,

k[A] =
{∑

caa
∣∣ a ∈ A, a 6= 0, ca ∈ k

}
,

with product induced from the product in A, extended k-linearly. The monoid
algebra k[A] is a bialgebra, with coproduct

1 : k[A] → k[A]⊗ k[A]
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determined by
1(a)= a⊗ a, a ∈ A.

The category Modk[A] of k[A]-modules is therefore symmetric monoidal under the
operation of tensoring over k.

There is a base-change functor

⊗F1k :Mod(A)F1 →Modk[A] (1)

to the category of k[A]-modules defined by setting

M ⊗F1 k :=
⊕

m∈M,m 6=0M

k ·m,

i.e., setting M ⊗F1 k to be the free k-module on the nonzero elements of M, with
the k[A]-action induced from the A-action on M. It sends f ∈ HomA(M, N ) to its
unique k-linear extension in Homk[A](M ⊗F1 k, N ⊗F1 k).

We will find the following elementary observation useful:

Proposition 2.7. The functor ⊗F1k :Mod(A)F1 →Modk[A] is monoidal.

As a consequence, we have that for M, N ∈Mod(A)F1

(M ∧ N )⊗F1 k ' (M ⊗F1 k)⊗k (N ⊗F1 k)

as k[A]-modules.

2C. The split Grothendieck ring.

Definition 2.8. The split Grothendieck ring of Mod(A)F1, denoted by Ksp
0 (Mod(A)F1)

is the Z-linear span of isomorphism classes in Mod(A)F1 modulo the relation
[M ⊕ N ] = [M] + [N ], i.e.,

Ksp
0 (Mod(A)F1)= Z[[M]]/I, [M] ∈ Iso(Mod(A)F1),

where I is the ideal generated by all differences [M ⊕ N ] − [M] − [N ], with
product induced by ∧. Since by Proposition 2.5 every module is a direct sum of
indecomposable ones, we can also describe Ksp

0 Mod(A)F1 as the Z-linear span of
indecomposable A-modules:

Ksp
0 (Mod(A)F1)

:=
{∑

ai [Mi ]
∣∣ ai ∈ Z, [Mi ] ∈ Iso(Mod(A)F1), Mi is indecomposable

}
, (2)

with the product of two isomorphism classes [M], [M ′] of indecomposables given
by

[M] · [M ′] =
∑
[Ni ] if M ∧M ′ '

⊕
Ni , Ni indecomposable.
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We note that Ksp
0 (Mod(A)F1) is a commutative ring. If A has no zero-divisors,

the isomorphism class [F1] of the trivial A-module is a multiplicative identity in
Ksp

0 (Mod(A)F1).
More generally, if C is a subcategory of Mod(A)F1 closed under ⊕ and ∧, we

may consider Ksp
0 (C), where the span in (2) is restricted to the indecomposable

modules in C.
The following is an immediate consequence of the of the functor ⊗F1k being

monoidal:

Proposition 2.9. There is a ring homomorphism

8k : K
sp
0 (Mod(A)F1)→ Ksp

0 (Modk[A]).

3. Rooted trees, wheels, and the monoid 〈t〉

We now study the ring Ksp
0 (Mod(A)F1) in the case where A is 〈t〉, the free monoid

on one generator, and the corresponding base-change homomorphism

8k : K
sp
0 (Mod(A)F1)→ Ksp

0 (Modk[t])

for a field k. Recall that finite-dimensional k[t]-modules correspond to pairs
(V, T ), where V is a finite-dimensional vector space over k, and T ∈ End(V ).
The indecomposable k[t]-modules thus correspond to Jordan blocks. It follows by
analogy that the study of finite 〈t〉-modules amounts to studying “linear algebra
over F1”, and the indecomposable 〈t〉-modules are the corresponding Jordan blocks
over F1.

Given M ∈Mod(〈t〉)F1 , we may associate to it a graph 0M which encodes the
action of t on M. The vertices of 0M correspond bijectively to the nonzero elements
of M, and the directed edges join m ∈ M to t ·m. We will make no distinction
between m ∈ M and the corresponding vertex of 0M when the context is clear.

Remark 3.1. The data of a function f : S 7→ S (where S is a set) may be encoded
in a directed graph with vertex set S and a directed edge from s to f (s) for every
s ∈ S. 0M is a special case of this construction where f : M 7→ M is the map
m 7→ t ·m.

The possible connected graphs arising as 0M , corresponding to indecomposable
〈t〉-modules, see [Ganyushkin and Mazorchuk 2009; Szczesny 2014], are easily
seen to be of two types.

We call the first type a rooted tree and the second a wheel; see Figure 1. Rooted
trees correspond to indecomposable 〈t〉-modules where t acts nilpotently, in the
sense that tn

·m = 0 for sufficiently large n. We call such a module nilpotent.
We will use the following terminology when discussing the graphs 0M :
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Figure 1. A rooted tree (left) and a wheel (right).

• We call a vertex with no outgoing edges a root. It is drawn at the top. A connected
0M can have at most one root.

• If M is nilpotent, hence 0M a tree, then the depth of a vertex m 6= 0, denoted by
depth(m), is the number of edges in the unique path connecting m to the root. The
only vertex of depth zero is the root. In general, depth(m)+1 is the smallest power
of t that annihilates m.

• The height of a rooted tree is the maximal depth of any of its vertices. The tree
in Figure 1 has height 4.

• A cycle of length n is a sequence of distinct elements Z = {m1, . . . ,mn}, mi ∈ M,
such that t ·mi = mi+1 and t ·mn = m1.

• A chain of length n is a sequence of distinct elements C = {m1,m2, . . . ,mn},
mi ∈ M, such that t ·mi = mi+1, 1≥ i < n, but t ·mn 6= m1.

Wheels contain a single directed cycle, possibly with trees attached. A wheel is
easily seen to arise from a 〈t〉-module M where tr

·m = tr+n
·m for some r, n ∈N

for every m ∈ M.
We begin with the problem of computing the product in Ksp

0 (Mod(〈t〉)F1) in
terms of the graphs above.

3A. Products in Ksp
0 (Mod(〈t〉)F1). Given a 〈t〉-module M, and m ∈ M, we define

pred(m)= {m′ ∈ M, t ·m′ = m}.

At the level of the graph 0M , pred(m), m 6= 0, corresponds to the vertices connected
to m via directed edge. Recall that for M, N ∈Mod(〈t〉)F1 and (m, n) ∈ M ∧ N,
t ·(m, n)= (t ·m, t ·n). In particular, t ·(m, n)= 0 if and only if t ·m = 0 or t ·n= 0.
The following observations are immediate:

Proposition 3.2. Let M, N ∈Mod(〈t〉)F1 be indecomposable:

(1) M ∧ N is nilpotent if and only if at least one of M, N is nilpotent.
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(2) If M, N are nilpotent and (m, n) ∈ M ∧ N, then

depth((m, n))=min(depth(m), depth(n)).

(3) If M is nilpotent and N is not, then for (m, n) ∈ M ∧ N,

depth((m, n))= depth(m).

(4) pred(0M)= ker(t). We have pred(0M) 6= {0M} if and only if M is nilpotent, in
which case this set contains a single nonzero element, corresponding to the
root of 0M .

(5) For (m, n) ∈ M ∧ N,

pred(m, n)= {(m′, n′) | m′ ∈ pred(m), n′ ∈ pred(n)},

i.e., pred(m, n)= pred(m)× pred(n).

(6) {pred(0)⊂ M ∧ N } =
{
{pred(0)⊂ M}× N } ∪ {M ×{pred(0)⊂ N }

}
.

We proceed to examine the three cases where each of 0M , 0N is a rooted
tree/wheel.

Case 1: If 0M , 0N are both rooted trees, 0M∧N consists of dim(M)+ dim(N )− 1
rooted trees whose roots correspond to pairs (m, n) ∈ M ∧ N where at least one of
m, n is a root. Each component has height ≤min(height(0M), height(0N )), and at
least one component where the inequality is sharp.

Case 2: If 0M is a tree and 0N is a wheel, 0M∧N consists of dim(N ) rooted trees
whose roots correspond to pairs (rM , n)where rM is the root of0M . Each component
has height ≤ height(0M).

Case 3: If0M , 0N are both wheels containing cycles of length lM , lN , then ker(t)=0
in both M and N, and so ker(t) = 0 on M ∧ N. Each connected component of
0M∧N is therefore a wheel, and contains a unique cycle. If (m, n) ∈ M ∧ N is part
of a cycle, then

tr
· (m, n)= (m, n) (3)

for some r , which implies tr
·m = m and tr

· n = n. It follows that m (resp. n) is
itself part of a cycle in 0M (resp. 0N ). Moreover, r must be a multiple of lM and lN .
Since the length of the cycle containing (m, n) is the least r such that (3) holds, it
follows that r = lcm(lM , lN ).

To summarize, have thus shown that each connected component of0M∧N contains
a (necessarily unique) cycle of length lcm(lM , lN ), and that (m, n) occurs in a cycle
if and only if m, n do as well. Since there are lM lN such pairs, it follows that 0M∧N

has lM lN/lcm(lM , lN )= gcd(lM , lN ) connected components.
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We note that each connected component of 0M∧N is determined recursively by
property (5) above. For instance, if at least one of 0M , 0N is a rooted tree, we may
begin with a vertex (rM , n) or (m, rN ) corresponding to a root in 0M∧N and build
the rest of the component using (5). The same approach works if both graphs are
wheels, though there is no preferred choice for the starting vertex.

Example 3.3. The two trees 0N and 0M yield the forest 0N∧M pictured below, with
six connected components, each of which has height ≤ 1:

a

b

dc
0N

f g

e

0M

(a, f ) (a, g) (c, e) (d, e)
(b, f ) (b, g)

(a, e)

(c, f ) (c, g) (d, f ) (d, g)

(b, e)

0N∧M

Example 3.4. The tree 0N and the wheel 0M yield the forest 0N∧M pictured below,
with three connected components, each of which has height ≤ 2:

a

b

dc

0N

e f g

0M

(a, g)

(d, f ) (c, f )

(b, e)

(a, f )

(b, g)

(d, e) (c, e) (d, g) (c, g)

(b, f )

(a, e)

0N∧M
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Example 3.5. The two wheels 0N and 0M yield 0N∧M pictured below, with
gcd(2, 2)= 2 wheels, each with a cycle of lcm(2, 2)= 2 vertices:

b c d

a

0N

e f g

0M

(b, e)

(a, e)

(c, f )

(d, e) (b, g)

(a, g)

(d, g)

(c, g) (b, f ) (c, e) (d, f )

(a, f )

0N∧M

Example 3.6. The two wheels 0N and 0M yield 0N∧M pictured below, which
consists of a single wheel as gcd(3, 2) = 1. This wheel contains a cycle of
lcm(3, 2)= 6 vertices:

a b c

d

0N

e f g

0M

(d, g)

(c, f ) (b, g)

(a, f )

(d, e)

(b, f )

(a, g) (c, g)

(c, e)

(a, e)

(b, e)

(d, f )

0N∧M

We end this section by collecting a couple of observations regarding the structure
of Ksp

0 (Mod(〈t〉)F1).
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(1) The map Ksp
0 (Mod(〈t〉)F1)→Z sending [M] → dim(M) is a ring homomor-

phism.

(2) N :=
{∑

i ai [Mi ]
∣∣ Mi is nilpotent

}
⊂ Ksp

0 (Mod(〈t〉)F1) is an ideal. The quo-
tient

Ksp
0 (Mod(〈t〉)F1)/N

can be naturally identified with the integral span of wheels, with product given
by ∧.

3B. The homomorphism 8k. We now study the ring homomorphism

8k : K
sp
0 (Mod(〈t〉)F1)→ Ksp

0 (Modk[t]),

where k is a field containing all roots of unity. For [M] ∈ Iso(Mod(〈t〉)F1), we
have 8k([M]) is the isomorphism class of the k[t]-module M ⊗F1 k with basis
m ∈ M , m 6= 0, and t-action extended k-linearly from M. In what follows, we will
denote M⊗F1 k by Mk and the linear transformation t ∈ End(Mk) by TM . Fixing an
ordering m1, . . . ,mdim(M) of the nonzero elements of M produces a basis for Mk ,
and the matrix of TM in this basis is the adjacency matrix Adj(0M) of 0M .

The isomorphism classes of indecomposable k[t]-modules correspond to n× n
Jordan blocks Jn(λ) with eigenvalue λ:

λ 1 0
0
. . .

. . .
...
. . .

. . . 1
0 · · · 0 λ

 .
Describing 8k thus amounts to decomposing (Mk, TM), or equivalently the

adjacency matrix Adj(0M), into Jordan blocks. It is clearly sufficient to consider
the case where 0M is connected, that is, when 0M is a ladder tree or a simple cycle;
see Figure 2.

The Jordan forms of Adj(0M) when M is a ladder tree of height n−1 or a simple
cycle of length n are easily seen to be the matrices Jn(0) and Dn:

Jn(0)=


0 1 0
...
. . .

. . .
...

. . . 1
0 · · · · · · 0

 , Dn =

ζ 0
. . .

0 ζ n

 ,
with ζ = e2π i/n

For more general directed graphs arising as 0M , this problem is solved in [Cardon
and Tuckfield 2011]. We proceed to recall the solution given there, specialized to
our setup.
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Figure 2. A ladder (left) and a simple cycle (right).

Definition 3.7. A partition of 0M is a collection {C1, . . . ,Cr , Z1, . . . , Zs} of dis-
joint chains C1, . . . ,Cr and cycles Z1, . . . , Zs whose union is M\0. A proper
partition of M is a partition satisfying the following two additional properties:

(1) Each cycle in M is equal to one of Z1, . . . , Zs .

(2) For each 1 ≤ i ≤ r , if 0i
M is the graph obtained from 0M by deleting all of

the vertices in Z1, . . . , Zs,C1, . . . ,Ci , then Ci+1 is a chain of maximal length
in 0i

M .

It is easy to see that proper partitions of 0M exist, and can be obtained as follows.
Each connected component of 0M has at most one (necessarily unique) cycle —
take these to be Z1, . . . , Zs . Upon deleting the Z j , 1 ≤ j ≤ s, we are left with a
forest of rooted trees. We now look for the longest chain C1 in this forest, delete it,
and repeat, obtaining C2, . . . ,Cr .

Example 3.8. In the graph 0M given by

1 2 3 4 5

67

8
9

10

the set {C1,C2,C3, Z1}, where C1 = {1, 2, 3}, C2 = {9, 8}, C3 = {10}, and Z1 =

{4, 5, 6, 7}, is a proper partition.

The following theorem describes the Jordan form of Adj(0M).

Theorem 3.9 [Cardon and Tuckfield 2011]. Let {C1, . . . ,Cr , Z1, . . . , Zs} be a
proper partition of 0M into chains Ci of length l(Ci ) and cycles Z j of length l(Z j ).
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Then

Adj(0M)'

r⊕
i=1

Jl(Ci )(0)⊕
s⊕

j=1

Dn.

We are now able to characterize the image of the homomorphism 8k :

Theorem 3.10. The image of 8k is the subring of Ksp
0 (Mod(〈t〉)F1) generated by

[Jn(0)], [Dn], n ≥ 1.

We note one final consequence of the fact that 8k is monoidal. By the above
discussion, 8k(M) may be identified with the adjacency matrix of 0M . It follows
that

8k(M ∧ N )=8k(M)⊗k 8k(N ).

In other words, Adj(0M∧N )= Adj(0M)⊗Adj(0N ), where ⊗ on the right denotes
the Kronecker product of matrices. This is the defining property of the tensor
product graph 0M ⊗0N ; see [Weichsel 1962]. To summarize:

Proposition 3.11. For M, N ∈Mod(〈t〉)F1 , we have 0M∧N = 0M ⊗0N .

4. Skew shapes and the monoids 〈x1, . . . , xn〉

We now consider a subcategory Skewn ⊂ Mod(Pn)F1 (originally introduced in
[Szczesny 2018]) consisting of n-dimensional skew shapes. Our goal is to give an
explicit description of the product in the ring Ksp

0 (Skewn).

4A. Skew shapes and Pn-modules. Zn has a natural partial order where for x =
(x1, . . . , xn) ∈ Zn and y = (y1, . . . , yn) ∈ Zn , we have

x ≤ y⇐⇒ xi ≤ yi for i = 1, . . . , n.

Definition 4.1. An n-dimensional skew shape is a finite convex subposet S ⊂ Zn.
S is connected if and only if the corresponding poset is. We consider two skew
shapes S, S′ to be equivalent if and only if they are isomorphic as posets. If S, S′

are connected, then they are equivalent if and only if S′ is a translation of S, i.e., if
there exists a ∈ Zn such that S′ = a+ S.

The condition that S is connected is easily seen to be equivalent to the condition
that any two elements of S can be connected via a lattice path lying in S. The
name skew shape is motivated by the fact that for n = 2, a connected skew shape
in the above sense corresponds (nonuniquely) to a difference λ/µ of two Young
diagrams in French notation (for an explanation of this notation see for instance
[Fulton 1997]). For n = 3, these correspond to skew plane partitions.

Example 4.2. Let n = 2 and

S ⊂ Z2
= {(1, 0), (2, 0), (3, 0), (0, 1), (1, 1), (0, 2)}
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(up to translation by a ∈ Z2). Then S corresponds to the connected skew Young
diagram

Let S⊂Zn be a skew shape. We may attach to S a Pn-module MS with underlying
set

MS = S t {0}

and action of Pn defined by

xe
· s =

{
s+ e, if s+ e ∈ S,
0 otherwise,

e ∈ Zn
≥0, s ∈ S.

In particular, xi · s = s+ei if s+ei ∈ S, and equals 0 otherwise, where ei is the i-th
standard basis vector. MS is a graded Pn-module with respect to its Zn

≥0-grading,
in which deg(xi )= ei .

Example 4.3. Let S be as in Example 4.2. Let x1 (resp. x2) act on the P2=〈x1, x2〉-
module MS by moving one box to the right (resp. one box up) until reaching the
edge of the diagram, and 0 beyond that. A minimal set of generators for MS is
indicated by the black dots:

•

•

We may consider the subcategory Skewn ⊂Pn-mod consisting of Pn-modules M
satisfying the following two conditions:

(1) M admits a Zn-grading.

(2) For a ∈ Pn , m1,m2 ∈ M,

a ·m1 = a ·m2 ⇐⇒ m1 = m2 or a ·m1 = a ·m2 = 0.

The following proposition follows from results in [Szczesny 2018]:

Proposition 4.4. Skewn forms a full monoidal subcategory of Mod(Pn)F1 . If M ∈
Skewn is indecomposable, then M ' MS for a connected skew shape S.

In other words, given connected skew shapes S1, S2, the Pn-module MS1 ∧MS2

is isomorphic to ⊕MUj , where Uj are connected skew shapes.

Lemma 4.5. If S1, S2 ∈ Skewn with chosen embeddings in Zn , and t ∈ Zn , then

S1 ∩ (S2+ t)

is also an n-dimensional skew shape, possibly empty or disconnected.
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Proof. As S2 is a skew shape, so is S2+ t . Hence, it suffices to show the intersection
of skew shapes is a skew shape, that is, S1 ∩ S2 is a skew shape.

It is immediate that S1 ∩ S2 is a finite poset of Zn. Further, if a, b, c ∈ S1 ∩ S2

and a ≤ c ≤ b, then as both S1 and S2 are convex, c ∈ S1 ∩ S2. Hence, S1 ∩ S2 is
convex and therefore a skew shape. �

Theorem 4.6. If S1, S2 ∈ Skewn with chosen embeddings in Zn then

MS1 ∧MS2 =

⊕
t∈Zn

MS1∩(S2+t).

Remark 4.7. Since S1, S2 are finite embedded skew shapes, the intersection S1 ∩

(S2+ t) is empty for all but finitely many t ∈ Zn. Moreover, by Lemma 4.5, the
right-hand side is an object in Skewn .

Proof. We will use the notation at ∈ MS1∩(S2+t) to denote an element occurring in
the t-th summand in

⊕
t∈Zn MS1∩(S2+t). Define

9 : MS1 ∧MS2 →

⊕
t∈Zn

MS1∩(S2+t)

by
9((a, b))= aa−b ∈ MS1∩(S2+a−b).

We proceed to show that9 is an isomorphism of Pn-modules. 9 is clearly injective,
and sends 0 to 0. Moreover, if at ∈ MS1∩(S2+t) is nonzero, then a = b+ t for some
nonzero b ∈ S2; hence at =9((a, b)). 9 is therefore a bijection.

It remains to check that 9 is a morphism of Pn-modules, or equivalently that
9 ◦ xi = xi ◦9 for i = 1, . . . , n.

Suppose (a, b) is a nonzero element in the domain of 9. If xi ((a, b))= 0, then
either xi (a)= 0 or xi (b)= 0, or equivalently, either a+ei /∈ S1 or b+ei /∈ S2. Thus
a+ ei /∈ S1 ∩ (S2+ a− b) and so

xi · aa−b = xi ◦9((a, b))= 0=9 ◦ xi ((a, b)).

Otherwise, xi ((a, b))= (a+ ei , b+ ei ) ∈ S1× S2 and so it follows that

9 ◦ xi ((a, b))= (a+ ei )a−b.

Meanwhile, 9(a, b) = aa−b. As a + ei ∈ S1, b + ei ∈ S2, we have a + ei ∈

S1 ∩ (S2+ a− b), and so xi · aa−b = (a+ ei )a−b. Hence

xi ◦9((a, b))=9 ◦ xi · (a, b). �

Remark 4.8. The situation can be visualized as follows. For two embedded skew
shapes S and T, the connected component of the skew shape in MS∧MT containing
some point (a, b) is the intersection of S with the unique translate of T that makes
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a and b coincide. Below is an example of S, T and their intersection in gray for
n = 2:

•

•

•

Example 4.9. Suppose the we have the following skew shapes S and T in n = 2
dimensions:

To find the collection of skew shapes occurring in MS ∧ MT we observe the
nontrivial intersections of S and T under translation are given below with regions
of intersection in dark gray, and regions of nonintersection in light gray:

It follows that MS∧MT decomposes into indecomposable modules corresponding
to the following skew shapes with the indicated multiplicities:

8 ⊕ 2 ⊕ 2

Note that we further decomposed the disconnected skew shape

into its connected components.
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