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Combinatorial two-player games have recently been applied to knot theory. Exam-
ples of this include the knotting-unknotting game and the region unknotting game,
both of which are played on knot shadows. These are turn-based games played
by two players, where each player has a separate goal to achieve in order to win
the game. In this paper, we introduce the linking-unlinking game which is played
on two-component link shadows. We then present winning strategies for the
linking-unlinking game played on all shadows of two-component rational tangle
closures and played on a large family of general two-component link shadows.

1. Introduction

Recently, a number of researchers have applied game theory to knot theory in the
form of combinatorial games played on knot diagrams. Examples of such games
include twist untangle [Ganzell et al. 2014], the knotting-unknotting game [Henrich
et al. 2011; Johnson 2011], and the region unknotting game [Brown et al. 2017].
The game twist untangle is played between two people on a nontrivial diagram of
the unknot formed by iteratively twisting the unknotted circle. Players take turns
using either an R1 move or an R2 move (see Figure 6) to decrease the number
of crossings and simplify the diagram. The winner is the player that reduces the
diagram to the unknotted circle. For more details, see [Ganzell et al. 2014]. The
knotting-unknotting game is played on a shadow of a knot (see Definition 2.3).
Players take turns resolving a crossing (see Definition 2.4) until all crossings are
resolved and a knot diagram is formed. One player, the unknotter, wins if the
resulting knot diagram is unknotted (represents the trivial knot), while the other
player, the knotter, wins if the resulting knot diagram is knotted (represents a
nontrivial knot). For more details, see [Henrich et al. 2011; Johnson 2011]. The
region unknotting game is similar to the knotting-unknotting game in that the goals
of the knotter and unknotter remain the same. The key difference is that play now
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consists of resolving the set of crossings that are incident to a face of the knot
shadow (or changing the crossing type of a crossing if it has already been resolved).
For more details, see [Brown et al. 2017].

In this paper, we will adapt the knotting-unknotting game to be played on two-
component link shadows. We call this new game the linking-unlinking game. Here,
players still take turns resolving crossings. One player, the unlinker, wins if the
resulting two-component link diagram is splittable (is equivalent to a two-component
link diagram where the components are separated from each other), while the other
player, the linker, wins if the resulting two-component link diagram is unsplittable
(is not splittable).

Our main goal in this paper is to find winning strategies for playing the linking-
unlinking game on families of two-component link shadows. The first family of link
shadows we explore consists of the shadows of the two-component links that arise
as a closure of the rational tangle (a1, . . . , an). Roughly speaking, a rational tangle
is formed by taking two vertical parallel strands and alternating between applying
twists to the bottom two endpoints of the strands and applying twists to the right
two endpoints of the strands. For an example of the construction of a rational tangle,
see Figure 16. For the precise definition of rational tangle, see Definition 2.14. Our
first three main results are combined into the following theorem.

Theorem 1.1. Suppose we have a shadow of a rational two-component link coming
from a closure of the rational tangle (a1, . . . , an):

(1) If a2k+1 = 0 for all k, then the unlinker wins.

(2) If either
(a) a2k+1 6= 0 for at least one k and all of the ai are even,
(b) n = 2 and both a1 and a2 are odd, or
(c) n ≥ 3, both a1 and an are odd, and all other ai are even,
then the second player has a winning strategy (regardless of their role).

To extend the results above to all shadows of two-component rational tangle
closures, we utilize a decomposition of the syllables of the tangle word (a1, . . . , an)

into syllables consisting of self-intersections and strings of syllables consisting of
non-self-intersections (see Definition 2.18 and Proposition 2.22). By combining this
decomposition with the proof of Theorem 1.1, we are able to prove the following
result.

Theorem 1.2. Suppose we have a shadow of a rational two-component link coming
from a closure of the rational tangle (a1, . . . , an). Furthermore, assume a2k+1 6= 0
for some k:

(1) If the tangle word contains an even number of self-intersections, then the
second player has a winning strategy (regardless of their role).
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(2) If the tangle word contains an odd number of self-intersections, then the first
player has a winning strategy (regardless of their role).

Finally, we conclude the paper by expanding our focus to general two-component
link shadows, using a decomposition of the crossings of a link shadow into self-
intersections and non-self-intersections (see Definition 2.11) and using linking
number arguments (see Definitions 2.9, 2.10, and 2.12) to prove the following result.

Theorem 1.3. Suppose we have a shadow of a general two-component link:

(1) If the shadow contains zero non-self-intersections, then the unlinker wins.

(2) If the shadow contains a nonzero number of non-self-intersections and an
even number of self-intersections, then the linker has a winning strategy when
playing second.

(3) If the shadow contains a nonzero number of non-self-intersections and an
odd number of self-intersections, then the linker has a winning strategy when
playing first.

The remainder of this paper is organized as follows. In Section 2, we present back-
ground from knot theory, defining terminology and providing results that will be used
later. Specifically, we begin by introducing knots and links, various types of knot
and link projections, and notions of equivalence for these objects in Section 2A. In
Section 2B, we define splittable and unsplittable link diagrams, self-intersections and
non-self-intersections for link diagrams, and the linking number of a two-component
link diagram. In Section 2C, we define rational tangles and rational link diagrams.
In Section 2D, we define self-intersections and non-self-intersections for rational
tangles, determine exactly when a rational tangle will close to form a two-component
link diagram, and provide a decomposition theorem for rational tangle words.

In Section 3, we define the linking-unlinking game and present winning strategies
for playing the game on various two-component link shadows. Specifically, we de-
fine the linking-unlinking game and present two key player strategies in Section 3A,
we present winning strategies for all shadows of two-component rational tangle
closures in Section 3B, and we present winning strategies for large families of
general two-component link shadows in Section 3C.

2. Definitions and background

To begin, we introduce some basic ideas from knot theory. Many of the definitions
that follow can be found in introductory knot theory textbooks such as [Johnson
and Henrich 2017; Adams 1994].

2A. Knots, knot projections, and knot equivalence. A mathematical knot is much
like the everyday knot we tie in our shoelaces. The key difference is that mathemat-
ical knots form closed loops.
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Figure 1. Some examples of knots.

Definition 2.1. A knot is a piecewise-linear simple closed curve in three-dimensional
space R3. Equivalently, a knot is a smooth embedding of a circle into R3.

Returning to our shoelace analogy, if we fused the loose ends of a knotted shoelace
together, we would have a model of a mathematical knot. Figure 1 provides some
examples of knots. Note that, if we consider the piecewise-linear definition of a
knot, we can assume that knots are made up of a very large number of line segments
so that the strands of the knot appear smooth. We now shift our attention to links,
which consist of knots.

Definition 2.2. A link is a collection of one or more knots (that can be, but do not
have to be, interlinked). An n-component link is a collection of n knots.

Note that a knot is a 1-component link, which means the study of links includes
the study of knots. For the majority of this paper, we will focus on two-component
links. See Figure 2 for some examples of links with multiple components. To
simplify the study of knotted loops in three dimensions, we will carefully project
our links to two dimensions.

Definition 2.3. A link shadow is a projection of a link onto the plane R2 so that all
crossings are transverse double crossings.

We can think of a link shadow as being formed by carefully shining a flashlight
on a link and viewing the shadow it casts. Figure 3 provides both an example and a
nonexample of a link shadow.

1 2

1

2 3

1
2

3

4

Figure 2. A two-component link (left), a 3-component link (mid-
dle), and a 4-component link (right). Note that the components of
each link have been numbered.



THE LINKING-UNLINKING GAME 1113

Figure 3. The figure on the left is a valid link shadow. The figure
on the right is not, as the circled crossing has three strands meeting
at the crossing rather than two.

Notice that link shadows only tell us where crossings occur, not which strand is
above the other at each crossing. This means that multiple links can have the same
link shadow. To indicate a specific link, we need to include more information.

Definition 2.4. A resolved crossing is a crossing in a link projection that has been
resolved so that the overstrand and the understrand are distinguishable. This is
usually depicted by adding two gaps to the understrand. A crossing that has not
been resolved is called an unresolved crossing.

To resolve an unresolved crossing, we choose which strand becomes the over-
strand. There are two possible resolutions for each crossing, as shown in Figure 4.
We now define the results of resolving a subset of crossings of a link shadow.

Definition 2.5. A link pseudodiagram, as defined in [Hanaki 2010], is a link pro-
jection where an arbitrary number of crossings have been resolved. From this
perspective, a link shadow is a link pseudodiagram where no crossings have been
resolved and a link diagram is a link pseudodiagram where every crossing has been
resolved.

For an example of a link pseudodiagram, see Figure 5. Given the family of all
links and the family of all link diagrams, we will now discuss notions of equivalence
for each of these families.

Definition 2.6. If we can manipulate three-dimensional space R3 to deform one
link L1 into another link L2, then L1 and L2 are called equivalent.

Figure 4. An unresolved crossing of a link projection (left) and
the two possible resolutions for this crossing (right).
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Figure 5. A link pseudodiagram where the upper crossings circled
with dashes are resolved and the lower crossings circled with dots
are unresolved.

Link equivalence allows the collection of all links to be partitioned into equiva-
lence classes. To determine equivalence on a diagrammatic level, we use Reidemeis-
ter moves (depicted in Figure 6) and planar isotopies (depicted in Figure 7). In this
paper, we will focus almost exclusively on the R2 move. Both Reidemeister moves
and planar isotopies are local moves, meaning they occur within a fixed region of
the plane (so the diagram outside of this region remains unchanged and is, therefore,
omitted from Figures 6 and 7). A planar isotopy can be thought of as stretching and
bending a single strand of a link diagram without affecting the crossing structure
of the diagram. An example of a planar isotopy is shown in Figure 8.

R1

R2

R3

Figure 6. The three Reidemeister moves: R1 moves add or remove
a loop, R2 moves overlay one strand on top of a nearby strand (or
the reverse process), and R3 moves slide a strand over a crossing.
In this paper, we will focus almost exclusively on the R2 move.
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planar isotopy

Figure 7. A general planar isotopy.

Definition 2.7. If there is a finite sequence of Reidemeister moves and planar
isotopies that turns a given link diagram D1 into another link diagram D2, then D1

and D2 are called equivalent.

As was the case with link equivalence, link diagram equivalence allows the
collection of all link diagrams to be partitioned into equivalence classes.

2B. Splittable link diagrams, non-self-intersections, and linking numbers. The
ability to determine whether or not the components of a two-component link diagram
can be separated from each other will be crucial for determining the winner of
the linking-unlinking game. As such, we divide the family of link diagrams into
splittable link diagrams and unsplittable link diagrams.

Definition 2.8. A link diagram is called splittable if it is equivalent to a split link
diagram where one or more components of the diagram can be separated from one
or more remaining components of the diagram by a circle. If a link diagram is not
splittable (resp. not split), then it is called unsplittable (resp. nonsplit).

If a link diagram is splittable, we can imagine being able to split one or more
components away from the rest of the link diagram. Figures 9 and 10 provide
examples of splittable and unsplittable two-component link diagrams, respectively.

Now with an understanding of splittable and unsplittable link diagrams, we will
introduce an invariant of two-component links called the linking number which
will be used to help us detect when a link diagram is unsplittable. To define this
quantity, we first need to discuss orientations of link pseudodiagrams.

planar isotopy

Figure 8. An example of a planar isotopy.
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Figure 9. An example of a splittable two-component link diagram
(where each link diagram component in this case is an unknotted
circle). The dashed circle on the right separates the two unknotted
components of the link diagram.

Figure 10. An example of an unsplittable two-component link
diagram called the Hopf link diagram.

Definition 2.9. An oriented link pseudodiagram is a link pseudodiagram where
one of two possible directions of travel has been chosen for each component of the
link pseudodiagram.

For an example of an oriented two-component link diagram, see Figure 11. Given
an oriented link pseudodiagram, we can associate signs to each resolved crossing.

Definition 2.10. To each resolved crossing of an oriented link pseudodiagram, we
can associate a crossing sign as shown in Figure 12.

In Figure 11, each crossing is labeled with its sign. The final ingredient needed
to define the linking number is the classification of the crossings of a link pseudodi-
agram into self-intersections and non-self-intersections.

+1

−1
−1

−1

−1

Figure 11. An oriented two-component link diagram labeled with
the signs of each of its crossings. Arrows are used to denote the
choice of direction of travel.
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−1 +1

Figure 12. The left figure shows a−1 crossing and the right figure
shows a +1 crossing.

Definition 2.11. If the two strands meeting at a crossing of a link pseudodiagram
come from the same component of the link pseudodiagram, then such a crossing is
called a self-intersection (SI). If a crossing is not a self-intersection, then we call it
a non-self-intersection (NSI).

Note that all crossings of a knot pseudodiagram are necessarily SIs. Consequently,
NSIs can only occur in link pseudodiagrams containing at least two components.
Figure 13 provides examples of SIs and NSIs in a link diagram. The idea of
classifying the crossings of a link pseudodiagram as SIs or NSIs will be used in the
definition of the linking number below, as well as later on in this paper.

Definition 2.12. The linking number of an oriented two-component link diagram
is defined to be half of the sum of the crossing signs, where the sum is taken over
all of the non-self-intersections (NSIs) of the link diagram.

Looking back at Figure 11, we see that the two-component link diagram has a
linking number of 1

2 [3(−1)+1(1)] =−1. Observe that the leftmost crossing, which
has crossing sign−1, is not included in the linking number computation because this
crossing is an SI. The linking number is an invariant of oriented two-component link
diagrams, which means that two equivalent oriented two-component link diagrams
have the same linking number. Note that any splittable two-component link diagram
has linking number 0, as such a link diagram is equivalent to a link diagram with
no NSIs. This tells us, by the contrapositive, that any oriented two-component link

Figure 13. The dashed circle surrounds a crossing that is a self-
intersection (SI). All other crossings are non-self-intersections (NSIs).
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−1

−1

+1

+1

Figure 14. The Whitehead link is unsplittable with a linking num-
ber of 0.

diagram with nonzero linking number is unsplittable. An oriented two-component
link diagram with linking number 0 is not necessarily splittable, however. An
example of this is shown in Figure 14. To compute the linking number in this
example, we ignore the center crossing because it is an SI. The two crossings on
the left have a negative sign while the two crossings on the right have a positive
sign. Summing these signs gives a linking number of 1

2 [2(−1)+ 2(1)] = 0 but the
link diagram is known to be unsplittable through other methods.

The following proposition, which will be useful later in this paper, determines
the parity of the number of NSIs in a two-component link pseudodiagram.

Proposition 2.13. Every two-component link pseudodiagram contains an even
number of non-self-intersections (NSIs).

Proof. The result is clearly true for a split two-component link pseudodiagram since
it contains no NSIs. Now consider a nonsplit two-component link pseudodiagram
(which necessarily contains NSIs). Choose a component of the link pseudodiagram
and call it component 1. We can distinguish between the “inside” and “outside” of
component 1 by giving it a canonical checkerboard coloring, that is, by coloring the
regions of the shadow of component 1 either black or white so that regions sharing
an edge have opposite colors and so that the unbounded region is colored white. We
then view the black regions as the “inside” and the white regions as the “outside”
of component 1. An example of a canonical checkerboard coloring is shown in
Figure 15. It is a classical result that every link pseudodiagram has a checkerboard
coloring. (For more details, see Section X.6 of [Bollobás 1998].)

Call the second component of the link pseudodiagram component 2. Assign
component 2 an orientation and choose a starting point on component 2 that is
outside of component 1. Since there are NSIs, at some point component 2 will cross
from the outside of component 1 to the inside of component 1. Since component 2
enters the inside of component 1, it must also exit the inside of component 1 because
component 2 is a closed curve that starts outside of component 1. This follows
from the Jordan curve theorem, which states that every simple closed curve in the
plane has an interior and an exterior. (For more details, see Chapter 3 of [Henle
1979].) Thus, the link pseudodiagram must contain at least two NSIs.
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Figure 15. A knot shadow on the left with its canonical checker-
board coloring on the right. The black regions indicate the “inside”
and the white regions indicate the “outside” of the knot shadow.

Following the orientation of component 2 from its starting point, the first NSI
will bring us from the outside of component 1 to the inside of component 1. The
second NSI will bring us back to the outside of component 1. By iterating this
argument, we can see that we are outside component 1 after passing through an
even number of NSIs and we are inside component 1 after passing through an odd
number of NSIs.

Suppose the link pseudodiagram contained an odd number of NSIs. Then, by
the argument from the preceding paragraph, we would end up inside component 1
after beginning at the starting point, following the orientation of component 2, and
returning to the starting point. But then the endpoint of component 2 is inside
component 1 and the starting point of component 2 is outside component 1. This
is a contradiction since the starting point and the endpoint of component 2 are the
same point. Therefore, there cannot be an odd number of NSIs in a two-component
link pseudodiagram. �

2C. Rational tangles and rational link diagrams. Rational links come from ratio-
nal tangles that are formed by an iterative process of twisting two strands.

Definition 2.14. We define a rational tangle, denoted by (a1, a2, . . . , an), where all
of the ai are integers, through the following construction. We begin with two parallel
vertical strands, as shown in the top left of Figure 16. We then read (a1, a2, . . . , an)

from left to right, twisting strands as we go. In particular, we begin by twisting the
bottom two endpoints |a1| times and then proceed to alternate between twisting the
right two endpoints |a2k | times and twisting the bottom two endpoints |a2k+1| times.
If ai > 0 (resp. ai < 0), then we apply |ai | twists in such a way that the overstrand
has a positive (resp. negative) slope. We call the ai the syllables of the rational
tangle word (a1, a2, . . . , an).
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Figure 16. The rational tangles (0) (top left), (2) (top center),
(2,−3) (top right), (2,−3,−2) (bottom left), and (2,−3,−2, 1)

(bottom right).

See Figure 16 for an example of the construction of a rational tangle. Since the
linking-unlinking game will be played on two-component link pseudodiagrams, we
need to generalize our notation for rational tangle words to allow for unresolved
crossings.

Definition 2.15 [Johnson 2011]. By making a subset of the crossings of a rational
tangle unresolved, we create a rational pseudotangle. We denote a rational pseu-
dotangle by a rational pseudotangle word (a1(b1), . . . , an(bn)), where the ai (bi )

are called the syllables of the word and where |ai | denotes the number of resolved
crossings in the i-th syllable and |bi | denotes the number of unresolved crossings in
the i-th syllable. If either ai = 0 or bi = 0 (but not both) for some i , then we omit the
single occurrence of 0 or (0) in the rational pseudotangle word. If both ai = 0 and
bi = 0 for some i , then we replace ai (bi ) by 0 in the rational pseudotangle word.

We now present a number of tangle equivalences that will be useful later in this
paper.

Proposition 2.16 [Johnson 2011, Lemma 4.2]. The following statements provide a
set of tangle equivalences for rational tangles. Similar statements can also be made
for rational pseudotangles:

(0) (a1, . . . , ai , 0)= (a1, . . . , ai ).

(1) (a1, . . . , ai , 0, ai+1, . . . , an)= (a1, . . . , ai + ai+1, . . . , an).

(2) (a1, . . . , ai , 0, 0, ai+1, . . . , an)= (a1, . . . , ai , ai+1, . . . , an).

(3) (0, a1+ 1, a2, . . . , an)= (0, a1, a2, . . . , an).

(4) (1, a1, a2, . . . , an)= (a1+ 1, a2, . . . , an).

(5) (−1, a1, a2, . . . , an)= (a1− 1, a2, . . . , an).
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1 2

Figure 17. The numerator closure of the tangle (2,−3,−2, 1)

produces a knot diagram (left) and the denominator closure of
the tangle (2,−3,−2, 1) produces a two-component link diagram
where the components have been numbered 1 and 2 (right).

Given that a rational pseudotangle has four endpoints, there are two ways to
close a rational pseudotangle to form a rational link pseudodiagram.

Definition 2.17. A rational pseudotangle can be closed to form a rational link
pseudodiagram either by connecting the top endpoints together and the bottom end-
points together (forming the numerator closure) or by connecting the left endpoints
together and the right endpoints together (forming the denominator closure).

The left side of Figure 17 shows the numerator closure of the rational tangle
(2,−3,−2, 1) from Figure 16, which creates a knot diagram, and the right side
of Figure 17 shows the denominator closure of this tangle, which creates a two-
component link diagram. In general, either both closures of a rational pseudotangle
will be knot pseudodiagrams or one closure will be a knot pseudodiagram and the
other will be a two-component link pseudodiagram.

2D. Non-self-intersections for rational tangles. In Definition 2.11, we defined
self-intersections (SIs) and non-self-intersections (NSIs) for link pseudodiagrams.
We will now define SIs and NSIs for rational pseudotangles.

Definition 2.18. A crossing that occurs between a strand of a rational pseudotangle
and itself is called a self-intersection (SI). Otherwise, the crossing occurs between
the two strands and is called a non-self-intersection (NSI). Furthermore, a syllable
of a rational pseudotangle word is called an SI syllable (resp. NSI syllable) if all of
the crossings in the syllable are SIs (resp. NSIs).

If a rational pseudotangle has a closure that is a two-component link pseudodia-
gram, then the two strands of the pseudotangle become the two separate components
of the link pseudodiagram and the SIs and NSIs of the pseudotangle become the SIs
and NSIs of the link pseudodiagram, respectively. If a rational pseudotangle does not
have a closure that is a two-component link pseudodiagram (if both closures result in
a knot pseudodiagram), then both the SIs and the NSIs of the pseudotangle become
SIs of the knot pseudodiagram since knot pseudodiagrams cannot contain NSIs.
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T T

1

2 1

2 1

2 1

2 1

2

Figure 18. A rational pseudotangle T where strand 1 has endpoints
in the northwest and southeast corners and strand 2 has endpoints in
the northeast and southwest corners (left) and the result of adding
a half-twist to this pseudotangle (right).

When looking for winning strategies for the linking-unlinking game played on
rational two-component link shadows, we need to make sure that there actually exists
a closure of the rational pseudotangle that is a two-component link pseudodiagram.
The following result addresses this issue.

Proposition 2.19. A rational pseudotangle has a closure that is a two-component
link pseudodiagram if and only if the pseudotangle contains an even number of
NSIs.

Proof. (⇒) Assume we have a two-component link pseudodiagram that is a closure
of a rational pseudotangle. By Proposition 2.13, the link pseudodiagram must
contain an even number of NSIs. This implies that the rational pseudotangle must
also contain an even number of NSIs because, otherwise, the rational pseudotangle
would contain an odd number of NSIs and closure would create a two-component
link pseudodiagram with an odd number of NSIs, contradicting Proposition 2.13.

(⇐) Assume we have a rational pseudotangle that contains an even number of NSIs
and suppose, for a contradiction, that both the numerator and denominator closures
result in a knot pseudodiagram. The only way this can happen is for one strand of
the pseudotangle to have endpoints in the northwest and southeast corners and the
other strand to have endpoints in the northeast and southwest corners, as shown on
the left side of Figure 18.

Add a half-twist to the end of the pseudotangle, as shown on the right side of
Figure 18. This produces a rational pseudotangle with an odd total number of
NSIs. We can see that the numerator closure of this new rational pseudotangle
will result in a two-component link pseudodiagram. But this means we have a
two-component link pseudodiagram with an odd total number of NSIs, which
contradicts Proposition 2.13. �

In the proposition that follows, we present information about SI syllables and
NSI syllables for rational pseudotangle words.
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a1

a2
a1

a2
...

. . .

... . . .

Figure 19. The case where a1 is odd (left) and the case where a1

is even (right). The two strands of the pseudotangle are numbered 1
and 2.

Proposition 2.20. The following statements are true for rational tangle words
(a1, . . . , an). Similar statements can also be made for rational pseudotangle words:

(1) The first syllable a1 is an NSI syllable.

(2) The second syllable a2 is an SI syllable if and only if a1 is even.

(3) If ai is an SI syllable, then ai+1 is an NSI syllable.

(4) Assume ai is an SI syllable. Then ai+2 is an SI syllable if and only if ai+1 is
even.

(5) If both ai and ai+1 are NSI syllables and ai+1 is odd, then ai+2 is an SI syllable.

(6) If both ai and ai+1 are NSI syllables and ai+1 is even, then ai+2 is an NSI
syllable.

Proof. Condition (1) is true by Definition 2.18 because the crossings of the first
syllable a1 are necessarily between the two strands of the rational tangle. The proof
of the forward direction of condition (2) proceeds by contraposition and follows
from the left side of Figure 19. The proof of the reverse direction of condition (2)
follows from the right side of Figure 19.

For the remainder of this proof, let L denote the rational tangle (a1, a2, . . . , ai−1)

that precedes the syllable ai . Note that when we construct a rational tangle, the
northwest endpoint of L remains fixed. Label the strand of L incident to this
endpoint strand 1 and label the other strand of L strand 2. Furthermore, we
can assume that ai is a horizontal twist without loss of generality, as we can
create the case where ai is a vertical twist by reflecting the diagram over the line
y =−x .

To prove condition (3), assume ai is an SI syllable. Then, as shown in Figure 20,
the next syllable ai+1 will be an NSI syllable. For the remaining three conditions,
we will consider cases. Figures 21, 22, and 23 show these six total cases, grouped
into three pairs based on the location of the second endpoint of strand 1 of L and
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Figure 20. An SI syllable ai followed by an NSI syllable ai+1.
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Figure 21. The two cases where the southwest endpoint of L
comes from strand 1.

based on the parity of ai+1. To prove condition (4), assume ai is an SI syllable.
The proof of the forward direction of condition (4) proceeds by contraposition
and follows from the left side of Figure 21. The proof of the reverse direction of
condition (4) follows from the right side of Figure 21. To prove conditions (5)
and (6) (combined), assume both ai and ai+1 are NSI syllables. The proof of these
conditions follows from Figures 22 and 23.

�

We now present notation used to highlight the presence of isolated SI syllables
in rational tangle words.

Notation 2.21. Given a syllable a of a rational tangle word, we use a∗ to indicate
that the syllable a is an SI syllable.

Given Proposition 2.20, we now present a result that leads to a method to
decompose any rational pseudotangle word into SI syllables and strings of NSI
syllables.

Proposition 2.22. Every rational tangle word can be decomposed into strings of
NSI syllables that alternate with isolated SI syllables. Furthermore:
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Figure 22. The two cases where the northeast endpoint of L comes
from strand 1 and where ai and ai+1 are NSI syllables. Note that
ai must be odd for ai+1 to be an NSI syllable.
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Figure 23. The two cases where the southeast endpoint of L comes
from strand 1 and where ai and ai+1 are NSI syllables. Note that
ai must be even for ai+1 to be an NSI syllable.

(1) All but the last string of NSI syllables consists of either
• a single even syllable,
• two consecutive odd syllables, or
• an odd syllable followed by an arbitrary nonempty string of even syllables

followed by a final odd syllable.

(2) If the rational tangle contains an even number of NSIs, then the last string of
NSI syllables consists of the same possibilities as condition (1).

(3) If the rational tangle contains an odd number of NSIs, then the last string of
NSI syllables consists of either
• a single odd syllable, or
• an odd syllable followed by an arbitrary nonempty string of even syllables.

A similar statement can also be made for rational pseudotangle words.
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Proof. By Proposition 2.20(3), no two SI syllables can be adjacent. Thus, the strings
of NSI syllables alternate with isolated SI syllables.

We will now prove condition (1). Suppose we have a nonfinal string of NSI
syllables. We want to show that this string consists of a single even syllable or
an odd syllable followed by an arbitrary (possibly empty) string of even syllables
followed by a final odd syllable. In Cases 1 and 2 below, we consider the first
nonfinal string of NSI syllables, whose first syllable is a1. By Proposition 2.20(1),
we know that a1 is an NSI syllable.

Case 1: Suppose a1 is even. Then Proposition 2.20(2) implies that a2 is an SI
syllable, so the first nonfinal string of NSI syllables consists of the single even
syllable a1.

Case 2: Suppose a1 is odd. Then Proposition 2.20(2) implies that a2 is an NSI
syllable. If a2 is odd, then Proposition 2.20(5) implies that a3 is an SI syllable,
which gives a string of NSI syllables composed of two odd syllables. If a2 is even,
then Proposition 2.20(6) implies that a3 is an NSI syllable. This string of even NSI
syllables continues by repeatedly applying Proposition 2.20(6). This string of even
NSI syllables must eventually terminate, however, since this is a nonfinal string of
NSI syllables. Therefore, we eventually find an odd syllable in this string of NSI
syllables; call this syllable ak . This syllable ak is the last syllable in this string of
NSI syllables because the next syllable ak+1 is an SI syllable by Proposition 2.20(5).
Thus, the first nonfinal string of NSI syllables consists of an odd syllable a1 followed
by an arbitrary (possibly empty) string a2, . . . , ak−1 of even syllables followed by
a final odd syllable ak .

In Cases 3 and 4 below, we consider a nonfirst nonfinal string of NSI syllables.
Let ai , where i > 1, denote the first syllable in this string of NSI syllables.

Case 3: Suppose ai is even. Since ai is the first NSI syllable in a nonfirst string of
NSI syllables, we know that ai−1 is an SI syllable. By Proposition 2.20(4), ai+1 is
an SI syllable, so the nonfirst nonfinal string of NSI syllables consists of the single
even syllable ai .

Case 4: Suppose ai is odd. Since ai is the first NSI syllable in a nonfirst string
of NSI syllables, we know that ai−1 is an SI syllable. Then Proposition 2.20(4)
implies that ai+1 is an NSI syllable. The remainder of this case is similar to Case 2,
except that ai+1 is now playing the role of a2.

This completes the proof of condition (1). To prove condition (2) and condi-
tion (3), we will consider the final string of NSI syllables. Let ai be the first syllable
in this final string of NSI syllables. We will consider two cases based on the parity
of the NSIs.
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To prove condition (2), suppose there are an even number of NSIs in the tangle
word. Condition (1) of this proposition implies that each nonfinal string of NSI
syllables contains an even number of NSIs. Thus, the final string of NSI syllables
must contain an even number of NSIs for the tangle word to contain an even total
number of NSIs.

Case A: Suppose ai is even. If the final string of NSI syllables consists of the
syllable ai alone, then we have the desired result. We may now assume that the
final string of NSI syllables contains a second syllable ai+1. If the final string of
NSI syllables is the only string of NSI syllables in the tangle word, then ai = a1,
ai+1 = a2, and the argument from Case 1 gives the desired result. Now suppose
there are at least two strings of NSI syllables in the tangle word. Then the argument
from Case 3 gives the desired result.

Case B: Suppose ai is odd. If the final string of NSI syllables consists of the
syllable ai alone, then we have a contradiction of the fact that the final string of
NSI syllables contains an even number of NSIs. We may now assume that the final
string of NSI syllables contains a second syllable ai+1.

Subcase 1: Suppose the final string of NSI syllables is the only string of NSI
syllables in the tangle word. Then ai = a1 and ai+1 = a2.

Suppose a2 is odd. If the final string of NSI syllables contains only a1 and a2,
then we have the desired result. If the final string of NSI syllables contains a third
syllable a3, then the argument from the first three sentences of Case 2 gives the
desired result.

Suppose a2 is even. If the final string of NSI syllables contains only a1 and a2,
then we have a contradiction of the fact that the final string of NSI syllables
contains an even number of NSIs. If the final string of NSI syllables contains a
third syllable a3, then the argument from Case 2 implies that a1 is followed by a
nonempty string of even syllables. Eventually, an odd syllable must occur because
the total number of NSIs in the final string of NSI syllables must be even. Then
either this odd syllable is the last syllable of the tangle word or the next syllable is
an SI syllable by Proposition 2.20(5). In either case, we have the desired result.

Subcase 2: Now suppose there are at least two strings of NSI syllables in the tangle
word.

Suppose ai+1 is odd. If the final string of NSI syllables contains only ai and ai+1,
then we have the desired result. If the final string of NSI syllables contains a third
syllable ai+2, then the argument from Case 4 gives the desired result.

Suppose ai+1 is even. If the final string of NSI syllables contains only ai and ai+1,
then we have a contradiction of the fact that the final string of NSI syllables
contains an even number of NSIs. If the final string of NSI syllables contains a
third syllable ai+2, then the argument from Case 4 implies that ai is followed by a
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nonempty string of even syllables. Eventually, an odd syllable must occur because
the total number of NSIs in the final string of NSI syllables must be even. Then
either this odd syllable is the last syllable of the tangle word or the next syllable
is an SI syllable by Proposition 2.20(5). In either case, we have the desired result.

To prove condition (3), suppose there are an odd number of NSIs in the tangle
word. Condition (1) of this proposition implies that each nonfinal string of NSI
syllables contains an even number of NSIs. Thus, the final string of NSI syllables
must contain an odd number of NSIs for the tangle word to contain an odd total
number of NSIs.

Case A: Suppose ai is even. If the final string of NSI syllables consists of the syllable
ai alone, then we have a contradiction of the fact that the final string of NSI syllables
contains an odd number of NSIs. We may now assume that the final string of NSI syl-
lables contains a second syllable ai+1. If the final string of NSI syllables is the only
string of NSI syllables in the tangle word, then ai = a1, ai+1= a2, and the argument
from Case 1 gives a contradiction of the fact that the final string of NSI syllables
contains an odd number of NSIs. Now suppose there are at least two strings of NSI
syllables in the tangle word. Then the argument from Case 3 gives a contradiction
of the fact that the final string of NSI syllables contains an odd number of NSIs.

Case B: Suppose ai is odd. If the final string of NSI syllables consists of the syllable
ai alone, then we have the desired result. We may now assume that the final string
of NSI syllables contains a second syllable ai+1.

Subcase 1: Suppose the final string of NSI syllables is the only string of NSI
syllables in the tangle word. Then ai = a1 and ai+1 = a2.

Suppose a2 is odd. If the final string of NSI syllables contains only a1 and a2, then
we have a contradiction of the fact that the final string of NSI syllables contains an
odd number of NSIs. If the final string of NSI syllables contains a third syllable a3,
then the argument from the first three sentences of Case 2 gives a contradiction of
the fact that the final string of NSI syllables contains an odd number of NSIs.

Suppose a2 is even. If the final string of NSI syllables contains only a1 and a2,
then we have the desired result. If the final string of NSI syllables contains a
third syllable a3, then the argument from Case 2 implies that a1 is followed by a
nonempty string of even syllables which must terminate because the tangle word
is finite. This gives the desired result.

Subcase 2: Now suppose there are at least two strings of NSI syllables in the tangle
word.

Suppose ai+1 is odd. If the final string of NSI syllables contains only ai and ai+1,
then we have a contradiction of the fact that the final string of NSI syllables
contains an odd number of NSIs. If the final string of NSI syllables contains a third
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syllable ai+2, then the argument from Case 4 gives a contradiction of the fact that
the final string of NSI syllables contains an odd number of NSIs.

Suppose ai+1 is even. If the final string of NSI syllables contains only ai and ai+1,
then we have the desired result. If the final string of NSI syllables contains a third
syllable ai+2, then the argument from Case 4 implies that ai is followed by a
nonempty string of even syllables which must terminate because the tangle word
is finite. This gives the desired result. �

We now present an example of applying Proposition 2.22 to decompose a rational
tangle word into SI syllables and NSI syllables.

Example 2.23. Consider the rational tangle word

(1, 4, 2, 1, 3, 5, 3, 2, 1, 2, 0, 5, 2, 6, 4).

Reading from left to right, we see that our first string of NSI syllables is 1, 4, 2, 1,
as this is an odd syllable followed by a nonempty string of even syllables followed
by a final odd syllable. The next syllable, 3, is an SI syllable. We now update our
tangle word to get

(1, 4, 2, 1, 3∗, 5, 3, 2, 1, 2, 0, 5, 2, 6, 4).

Proceeding to the right, we see that 5, 3 is the next string of NSI syllables, as this
is a string of two consecutive odd syllables. The next syllable, 2, is an SI syllable,
so we update our tangle word to get

(1, 4, 2, 1, 3∗, 5, 3, 2∗, 1, 2, 0, 5, 2, 6, 4).

Continuing this process, we see that 1, 2, 0, 5 is the next string of NSI syllables and
the following syllable, 2, is an SI syllable. Updating our tangle word, we get

(1, 4, 2, 1, 3∗, 5, 3, 2∗, 1, 2, 0, 5, 2∗, 6, 4).

The final string of NSI syllables consists of the single even syllable 6, so our rational
tangle word ends with the syllable 4, which is an SI syllable. Thus, our completely
decomposed tangle word is given by

(1, 4, 2, 1, 3∗, 5, 3, 2∗, 1, 2, 0, 5, 2∗, 6, 4∗).

3. The linking-unlinking game

In this section, we will define the linking-unlinking game and provide winning strate-
gies for the linking-unlinking game played on all shadows of two-component rational
tangle closures and played on a large family of general two-component link shadows.
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1 2 3

4 5 6

Figure 24. The linking-unlinking game played on a shadow of the
Whitehead link. Crossings being played on are surrounded by a
dotted circle.

3A. Defining the linking-unlinking game. In what follows, we introduce the
linking-unlinking game and present two key player strategies that will be used
often in the remainder of this paper.

Definition 3.1. The linking-unlinking game is a two-player game played on the
shadow of a two-component link. The game is played with each player taking turns
resolving crossings of the link shadow. The game ends when all of the crossings
are resolved and a two-component link diagram is formed. One player, the linker,
wins if the resulting link diagram is unsplittable. The other player, the unlinker,
wins if the resulting link diagram is splittable.

An example of the linking-unlinking game is provided below.

Example 3.2. Figure 24 shows an example of the linking-unlinking game being
played on a shadow of the Whitehead link. Here, the unlinker goes first. The second
frame shows that the unlinker decides to play on the central crossing. Next, the
linker plays on the upper left crossing, as shown in the third frame. In the fourth
frame, the unlinker responds on the lower left crossing, resolving the crossing with
the intention of being able to reduce the two left crossings with an R2 move. Next,
the linker plays on the top right crossing, as shown in the fifth frame. Finally, the
sixth frame shows that the unlinker responds on the lower right crossing, resolving
the crossing with the intention of being able to reduce the two right crossings with
an R2 move. The link diagram at the end of the game is equivalent to the splittable
trivial two-component link diagram (also called the two-component unlink diagram),
so the unlinker wins. Figure 25 shows this equivalence.

Given the definition of the linking-unlinking game as a two-player combinatorial
game, our main goal will now be to determine who wins the game and who loses
the game for various two-component link shadows.
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R2 R1 R2

Figure 25. A sequence of Reidemeister moves used to show that
the two-component link diagram above on the left is splittable.

Definition 3.3. In a two-player game, a player has a winning strategy if there is
always a sequence of moves that allows them to win, regardless of what their
opponent does.

Given the structure of rational pseudotangles, we will often group together cross-
ings in a syllable of the pseudotangle word when constructing winning strategies
for the linking-unlinking game.

Definition 3.4. A subtwist region in a link pseudodiagram is a section of the
associated link shadow consisting of a chain of bigons. A twist region in a link
pseudodiagram is a section of the associated link shadow consisting of a maximal
chain of bigons, maximal in the sense that the chain cannot be extended by adding
more bigons. Note that a twist region consisting of a single crossing with no incident
bigons is possible.

A chain of bigons can be thought of as being formed by twisting two parallel
strands. Figure 26 provides a schematic depiction of a twist region. Given a subtwist
region of a link pseudodiagram, we now define an operation called flyping that will
be useful in defining two important player strategies for the linking-unlinking game.

Definition 3.5. A flype is a move performed on a tangle of a link pseudodiagram
that reflects the tangle over an axis.

See Figure 27 for an example of a flype. For our purposes, we will only consider
flypes applied to subtwist regions of a tangle pseudodiagram. In what follows, we
present two key player strategies for the linking-unlinking game that will be applied

L

twist region

. . .

Figure 26. A schematic diagram where the twist region is sur-
rounded by a dashed rectangle. The box labeled L represents the
remainder of the link pseudodiagram.
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tangle

tangle

tangle

reflect

R2

Figure 27. A schematic diagram of a flype applied to a tangle in
a link pseudodiagram.

throughout the remainder of this paper. Note that these are response strategies for
the next player regardless of the role of the current player.

Strategy 3.6 (R2-strategy for the next player). Assign the given link pseudodiagram
an orientation. When a player plays by resolving a crossing in a twist region
(consequently assigning this crossing a crossing sign), the next player responds
by resolving a crossing in the same twist region so that this crossing has crossing
sign opposite to the previous resolved crossing. This allows both crossings to be
removed by applying a flype and an R2 move, as shown in Figure 28.

The R2-strategy is useful for both players because it allows for pairs of crossings
to be removed at the end of the game.

Strategy 3.7 (anti-R2-strategy for the next player). Assign the given link pseudo-
diagram an orientation. Here, when a player plays by resolving a crossing in a twist
region, the next player responds by resolving a crossing in the same twist region

subtwist region

subtwist region

subtwist region

flype

R2

. . . . . .

. . . . . .

. . . . . .

Figure 28. An example of the R2-strategy. A player resolves a
crossing and the next player responds on another crossing in the
twist region so that a flype and an R2 move will remove the pair
of crossings.
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subtwist region

subtwist region

flype

. . . . . .

. . . . . .

Figure 29. An example of the anti-R2-strategy. A player resolves
a crossing and the next player responds on another crossing in the
twist region so that a flype will create a clasp between the two
strands of the twist region.

so that this crossing has the same crossing sign as the previous resolved crossing.
In this situation, the two crossings cannot be removed by applying a flype to the
subtwist region and one of the two incident crossings, as shown in Figure 29. Note
that one or both of these crossings may be able to be removed, however, by applying
Reidemeister moves to the remainder of the link diagram at the end of the game.

The anti-R2-strategy is particularly useful for the linker because it creates a clasp
between two strands. As an example of why creating clasps might be useful for the
linker, consider the unsplittable Hopf link diagram in Figure 10.

3B. The linking-unlinking game for rational two-component link shadows. In
this section, we provide winning strategies for the linking-unlinking game played on
shadows of two-component rational tangle closures. We begin by providing a lemma
that will be used in the proofs of a number of theorems in the remainder of this paper.

Lemma 3.8. The following statements are true:

(1) The rational tangle (0) has a splittable two-component link closure.

(2) The rational tangle (±2) has an unsplittable two-component link closure.

Proof. To prove statement (1), observe from the top left of Figure 16 that the
denominator closure of the tangle (0) gives the trivial two-component link diagram.
This link diagram is clearly splittable.

To prove statement (2), observe that the denominator closure of the tangle (±2)

gives either the Hopf link diagram from Figure 10 or its reflection. In either case,
after orienting this link diagram, it can be seen that the linking number of the
resulting oriented two-component link diagram has absolute value 1. Since this link
diagram has nonzero linking number, it is unsplittable. �

We now begin our study of the linking-unlinking game by focusing on certain
families of rational two-component link shadows. The following result presents
winning strategies for the unlinker in a very specific pathological case and for the
second player in other cases.
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Theorem 3.9. Suppose we have a shadow of a rational two-component link coming
from a closure of the rational tangle (a1, . . . , an):

(1) If a2k+1 = 0 for all k, then the unlinker wins.

(2) If a2k+1 6= 0 for at least one k and all of the ai are even, then the second player
has a winning strategy.

Proof. We begin by proving statement (1). Assume we have a shadow of a rational
two-component link coming from a closure of the rational tangle (a1, . . . , an) where
a2k+1 = 0 for all k. If n = 1, then the tangle word is (0) and the unlinker wins
by Lemma 3.8. Now suppose that n ≥ 2. Then the tangle word can be written
in the form (0, a2, . . . , 0, a2m) or (0, a2, . . . , 0, a2m, 0). By repeatedly applying
Proposition 2.16(3), we can reduce each of the tangle subwords (0, a2k) to (0, 0).
By repeatedly applying Proposition 2.16(2), we can remove all but the last copy of
(0, 0) from the tangle word. At the end of this process, what remains is either (0, 0)

or (0, 0, 0), both of which are equivalent to (0) by applying Proposition 2.16(0)
either once or twice, respectively. By Lemma 3.8, the unlinker wins.

We will now prove statement (2). Assume we have a shadow of a rational two-
component link coming from a closure of the rational tangle (a1, . . . , an) where
a2k+1 6= 0 for at least one k and where all of the ai are even. Fix a value j such
that a2 j+1 6= 0. We consider two cases, depending on the role of the second player.

Case 1: Suppose the unlinker plays second. Whenever the linker plays on a syllable,
the unlinker should respond on the same syllable by using the R2-strategy. Note
that this response strategy is always possible since all of the ai are even. Thus, each
time the unlinker responds, two crossings can be removed at the end of the game.
After applying flypes and R2 moves at the end of the game, the resulting tangle
word will be of the form (0, . . . , 0). By repeatedly applying Proposition 2.16(0),
this tangle word is equivalent to (0) and the unlinker wins by Lemma 3.8.

Case 2: Suppose the linker plays second. Whenever the unlinker plays on any
ai -syllable where i 6= 2 j + 1, the linker should respond on this syllable by using
the R2-strategy. Again, this strategy can be applied since each ai is even. Thus,
each time the linker responds, two crossings can be removed at the end of the game.
When the unlinker plays on a2 j+1 6= 0, the linker should respond by using the
R2-strategy until only two unresolved crossings remain in this subtwist region. On
the last two unresolved crossings in this subtwist region, the linker should respond
by using the anti-R2-strategy.

After applying flypes and R2 moves at the end of the game, the resulting tangle
word will be of the form (0, . . . , 0, 2, 0, . . . , 0) or (0, . . . , 0,−2, 0, . . . , 0), where
there are an even number of zeros before the 2 or −2. By repeatedly apply-
ing Proposition 2.16(2), we can reduce the tangle word to either (2, 0, . . . , 0) or



THE LINKING-UNLINKING GAME 1135

(−2, 0, . . . , 0). By repeatedly applying Proposition 2.16(0), these tangle words are
equivalent to either (2) or (−2), respectively, and the linker wins by Lemma 3.8. �

We now present winning strategies for rational two-component link shadows
whose tangle word consists of two odd syllables.

Theorem 3.10. Playing on the shadow of a rational two-component link coming
from a closure of the rational tangle (a1, a2), if a1 and a2 are both odd, then the
second player has a winning strategy.

Proof. Assume we have a shadow of a rational two-component link coming from
a closure of the rational tangle (a1, a2) where a1 and a2 are both odd. We will
consider two cases, depending on the role of the second player.

Case 1: Suppose the linker plays second. When the unlinker plays, the linker should
respond on the same syllable using the R2-strategy so long as this is possible. Since
the unlinker is playing first and since both of the syllables are odd, the unlinker
will necessarily have to resolve the last crossing in either a1 or a2. Once the
unlinker fully resolves an ai -syllable, the pseudotangle word can be reduced to
one of (1, (a)), (−1, (a)), ((a), 1), or ((a),−1), where a is odd. The linker should
then play on a by resolving a crossing to have the same overcrossing slope as the
previous crossing resolved by the unlinker. Thus, the linker will turn (1, (a)) into
(1, 1(|a| − 1)), (−1, (a)) into (−1,−1(|a| − 1)), ((a), 1) into (1(|a| − 1), 1), or
((a),−1) into (−1(|a| − 1),−1).

Since |a| − 1 is even, the linker should resume using the R2-strategy to respond
to the unlinker until the end of the game. This results in a rational tangle word
that can be reduced to either (1, 1) or (−1,−1), which is equivalent to either (2)

or (−2) by applying statement (4) or (5) of Proposition 2.16, respectively. By
Lemma 3.8, the linker wins.

Case 2: Suppose the unlinker plays second. The unlinker’s strategy will be similar to
the linker’s strategy from Case 1. First, the unlinker should use the R2-strategy until
the linker fully resolves an ai -syllable. As in the previous case, the pseudotangle
word can be reduced to the form (1, (a)), (−1, (a)), ((a), 1), or ((a),−1), where
a is odd. The unlinker should then play on a by resolving a crossing to have
overcrossing slope opposite to the previous crossing resolved by the linker. Thus,
the unlinker will turn (1, (a)) into (1,−1(|a|−1)), (−1, (a)) into (−1, 1(|a|−1)),
((a), 1) into (−1(|a| − 1), 1), or ((a),−1) into (1(|a| − 1),−1).

Since |a|−1 is even, the unlinker should resume using the R2-strategy to respond
to the linker until the end of the game. This results in a rational tangle word that
can be reduced to either (1,−1) or (−1, 1), both of which are equivalent to (0) by
applying statement (4) or (5) of Proposition 2.16, respectively. By Lemma 3.8, the
unlinker wins. �
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The following theorem builds on the results of the previous two theorems.

Theorem 3.11. Playing on the shadow of a rational two-component link coming
from a closure of the rational tangle (a1, . . . , an) where n ≥ 3, if a1 and an are odd
and all other ai are even, then the second player has a winning strategy.

Proof. Assume we have a shadow of a rational two-component link coming from
a closure of the rational tangle (a1, . . . , an) where n ≥ 3, where a1 and an are
odd, and where all other ai are even. When the first player plays on a1 or an , the
second player should respond by using the same strategy as used in the proof of
Theorem 3.10, as though the game were played on (a1, an), where the linker wants
to reduce (a1, an) to either (1, 1) or (−1,−1) and the unlinker wants to reduce
(a1, an) to either (1,−1) or (−1, 1). When the first player plays on one of the even
ai -syllables, the second player should respond on the same syllable by using the
R2-strategy. At the end of the game, there are two cases for the resulting tangle
word, depending on the role of the second player.

Case 1: Suppose the linker plays second. Then the resulting tangle word can
be reduced to either (1, 0, . . . , 0, 1) or (−1, 0, . . . , 0,−1). If there is an even
number of zeros, then the tangle word can be reduced to either (1, 1) or (−1,−1)

by repeatedly applying Proposition 2.16(2) and reduced to either (2) or (−2) by
applying statement (4) or (5) of Proposition 2.16, respectively. If there is an
odd number of zeros, then the tangle word can be reduced to either (1, 0, 1) or
(−1, 0,−1) by repeatedly applying Proposition 2.16(2) and reduced to either (2)

or (−2) by applying Proposition 2.16(1). By Lemma 3.8, the linker wins.

Case 2: Suppose the unlinker plays second. Then the resulting tangle word can be
reduced to either (1, 0, . . . , 0,−1) or (−1, 0, . . . , 0, 1). If there is an even number
of zeros, then the tangle word can be reduced to either (1,−1) or (−1, 1) by
repeatedly applying Proposition 2.16(2) and reduced to (0) by applying statement (4)
or (5) of Proposition 2.16, respectively. If there is an odd number of zeros, then
the tangle word can be reduced to either (1, 0,−1) or (−1, 0, 1) by repeatedly
applying Proposition 2.16(2) and reduced to (0) by applying Proposition 2.16(1).
By Lemma 3.8, the unlinker wins. �

We will now explore how the parity of the number of SIs in the rational two-
component link shadow affects which player has a winning strategy. The following
key theorem, when paired with Theorem 3.9(1), provides winning strategies for all
shadows of two-component rational tangle closures. Its proof combines a number
of results from earlier in this paper.

Theorem 3.12. Suppose we have a shadow of a rational two-component link
coming from a closure of the rational tangle (a1, . . . , an). Furthermore, assume
a2k+1 6= 0 for some k:



THE LINKING-UNLINKING GAME 1137

(1) If the tangle word contains an even number of SIs, then the second player has
a winning strategy.

(2) If the tangle word contains an odd number of SIs, then the first player has a
winning strategy.

Proof. Assume we have a shadow of a rational two-component link coming from a
closure of the rational tangle (a1, . . . , an) where a2k+1 6= 0 for some k.

We begin by proving statement (1). Assume (a1, . . . , an) contains an even
number of SIs. Using Proposition 2.22, we can decompose (a1, . . . , an) into
alternating strings of NSI syllables and isolated SI syllables. Whenever the first
player plays on an SI, the second player should respond by playing arbitrarily on
any other SI. Note that this response strategy is always possible since the number
of SIs is even.

By Proposition 2.19, since we have a two-component link shadow coming from
a closure of a rational tangle, the tangle must contain an even number of NSIs.
Therefore, by Proposition 2.22, we have that a nonfinal or final string of NSI
syllables can be either (a) a single even syllable, (b) two consecutive odd syllables,
or (c) an odd syllable followed by an arbitrary nonempty string of even syllables
followed by a final odd syllable. Notice that the proofs of Theorems 3.9(2), 3.10,
and 3.11 provide the second player with a strategy for playing on the respective
type (a), type (b), and type (c) strings of NSI syllables listed above.

When the first player plays on an unresolved crossing from a nonfinal string of
NSI syllables, the second player should respond on an unresolved crossing in the
same nonfinal string of NSI syllables by using the strategy for when the unlinker
plays second provided by the proof of the theorem corresponding to the type of
string of NSI syllables. This strategy ensures that each nonfinal string of NSI
syllables can be reduced to the tangle subword (0).

When the first player plays on an unresolved crossing from the final string of
NSI syllables, the second player should respond on an unresolved crossing in the
same final string of NSI syllables by using the strategy that corresponds to their
role as linker or unlinker from the proof of the theorem corresponding to the type
of string of NSI syllables.

Note that the second player will always be able to respond on the same nonfinal
or final string of NSI syllables because each such string contains an even total
number of crossings. We will now consider two cases, depending on the role of the
second player.

Case 1: Suppose the unlinker plays second. Let (a1, . . . , ak) denote the first string
of NSI syllables. By the proofs of Theorems 3.9(2), 3.10, and 3.11, we know that
the unlinker’s strategy results in this string of syllables being able to be reduced to
the tangle subword (0).
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Subcase 1: Suppose the entire tangle word contains a single string of NSI syllables.
If the entire tangle word consists of a single string of NSI syllables without an SI
syllable at the end of the tangle word, then the tangle word can be reduced to (0)

and the unlinker wins by Lemma 3.8. If the entire tangle word consists of a single
string of NSI syllables followed by an SI syllable, call it a∗, at the end of the tangle
word, then the tangle word can be reduced to (0, a∗), which can be reduced to
(0, 0) by repeatedly applying Proposition 2.16(3). By applying Proposition 2.16(0),
(0, 0) can be reduced to (0) and the unlinker wins by Lemma 3.8.

Subcase 2: Suppose the tangle word contains multiple strings of NSI syllables.
Then we can apply the strategy from all but the last sentence of Subcase 1 to each
tangle subword (ak+1, ak+2, . . . , am, b∗m), where (ak+1, ak+2, . . . , am) is a nonfinal
string of NSI syllables and where b∗m is an SI syllable, so that each such subword
can be reduced to (0, 0). These subwords can then be removed from the tangle
word by applying Proposition 2.16(2). If the final string of NSI syllables is not
followed by a final SI syllable, then the tangle word can be reduced to (0) and the
unlinker wins by Lemma 3.8. If the final string of NSI syllables is followed by a
final SI syllable, then the argument from Subcase 1 can be applied in its entirety to
conclude that the unlinker wins by Lemma 3.8.

Case 2: Suppose the linker plays second. Then, as indicated in the paragraphs
preceding Case 1, the only difference in strategy will occur in the final string of
NSI syllables. Specifically, the linker (and the unlinker) will respond so that all of
the nonfinal strings of NSI syllables can be reduced to the tangle subword (0) and
the linker will respond so that the final string of NSI syllables can be reduced to
either the tangle subword (2) or the tangle subword (−2).

Subcase 1: Suppose the entire tangle word contains a single string of NSI syllables.
If the entire tangle word consists of a single string of NSI syllables without an SI
syllable at the end of the tangle word, then the tangle word can be reduced to (2)

or (−2) and the linker wins by Lemma 3.8. If the entire tangle word consists of a
single string of NSI syllables followed by an SI syllable, call it a∗, at the end of the
tangle word, then the tangle word can be reduced to (2, a∗) or (−2, a∗). Since SI
syllables do not contribute to the linking number, an argument similar to the one
from the proof of Lemma 3.8(2) can be used to conclude that the linker wins.

Subcase 2: Suppose the tangle word contains multiple strings of NSI syllables.
Then we can apply the strategy from all but the last sentence of Subcase 1 of Case 1
to each tangle subword (ak+1, ak+2, . . . , am, b∗m), where (ak+1, ak+2, . . . , am) is a
nonfinal string of NSI syllables and where b∗m is an SI syllable, so that each such
subword can be reduced to (0, 0). These subwords can then be removed from the
tangle word by applying Proposition 2.16(2). If the final string of NSI syllables
is not followed by a final SI syllable, then the tangle word can be reduced to (2)
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or (−2) and the linker wins by Lemma 3.8. If the final string of NSI syllables is
followed by a final SI syllable, then the argument from Subcase 1 can be applied in
its entirety to conclude that the linker wins by Lemma 3.8.

We will now prove statement (2). Assume (a1, . . . , an) contains an odd number
of SIs. Then the first player should begin by playing arbitrarily on an SI. This will
effectively reduce the game to one with an even number of unresolved SIs where the
first player is now playing second on this new link pseudodiagram. But then the first
player can use the strategy from the proof of statement (1) to guarantee a win. �

3C. The linking-unlinking game for general two-component link shadows. We
now broaden our focus from rational two-component link shadows to general two-
component link shadows. In particular, we will focus the majority of our attention
on finding winning strategies for the linker. First, we introduce the notion of a
partial linking number that can be applied to a link pseudodiagram throughout the
linking-unlinking game.

Definition 3.13. The pseudolinking number of an oriented two-component link
pseudodiagram is defined to be half of the sum of the crossing signs, where the sum is
taken over all of the resolved non-self-intersections (NSIs) of the link pseudodiagram.
Note that an oriented two-component link shadow has a pseudolinking number of 0
and note that the pseudolinking number of an oriented two-component link diagram
is the linking number of the diagram.

In what follows, we use the pseudolinking number, the presence of NSIs, and the
parity of the number of SIs to provide winning strategies for the linking-unlinking
game played on a large family of general two-component link shadows. In particular,
we present winning strategies for the unlinker in a very specific pathological case
and for the linker in other cases.

Theorem 3.14. Suppose we have a shadow of a two-component link:

(1) If the shadow contains no NSIs, then the unlinker wins.

(2) If the shadow contains a nonzero number of NSIs and an even number of SIs,
then the linker has a winning strategy when playing second.

(3) If the shadow contains a nonzero number of NSIs and an odd number of SIs,
then the linker has a winning strategy when playing first.

Proof. We begin by proving statement (1). Since the two-component link shadow
contains no NSIs, the game starts on a split two-component link shadow and
the unlinker wins automatically because resolving crossings will never create an
unsplittable link diagram.

We now prove statement (2). Assign an arbitrary orientation to the two-component
link shadow. If the unlinker plays on an SI, the linker should respond by also playing
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on an SI. Since the number of SIs is even, the linker will always be able to respond
on a remaining SI until all SIs are resolved. Note that the SIs do not affect the
(pseudo)linking number, so how the linker responds is arbitrary.

Recall that the pseudolinking number of a two-component link shadow (or a
two-component link pseudodiagram with only SIs resolved) is 0. Thus, after the
unlinker plays for the first time on an NSI, the two-component link pseudodiagram
will have a positive pseudolinking number of 1

2 or a negative pseudolinking number
of − 1

2 . The linker should then respond on any other NSI by resolving the crossing
to have the same sign as the crossing resolved by the unlinker on the previous
move, which will change the pseudolinking number to 1 or −1. For the remaining
NSIs, when the unlinker plays on an NSI, the linker should respond on a remaining
NSI by resolving the crossing to have sign opposite to the crossing resolved by
the unlinker on the previous move. Since Proposition 2.13 guarantees that every
two-component link pseudodiagram contains an even number of NSIs, the linker
will always be able to respond on a remaining NSI until all NSIs are resolved.

Notice that the linker’s response strategy preserves the pseudolinking number
at 1 or −1 (after their first response on an NSI) for the remainder of the game.
Consequently, when the linker makes the final move, the resulting two-component
link diagram will have a nonzero linking number. This implies that the link diagram
is unsplittable and, therefore, the linker wins.

We now prove statement (3). Assign an arbitrary orientation to the two-component
link shadow. The linker should begin by playing arbitrarily on an SI. This will
effectively reduce the game to one with an even number of unresolved SIs where
the linker is now playing second on this new link pseudodiagram. But then the
linker can use the strategy from the proof of statement (2) to guarantee a win. �

Conclusion

In Section 3 of this paper, we introduced a new two-player combinatorial game
played on shadows of two-component link diagrams, called the linking-unlinking
game, where players take turns resolving crossings. One player, the linker, wins if
the resulting two-component link diagram is unsplittable, while the other player,
the unlinker, wins if the resulting two-component link diagram is splittable.

By studying the decomposition of a rational tangle word into SIs and NSIs, by
applying the R2- and anti-R2-strategies, and by utilizing tangle equivalences, we
were able to find winning strategies for playing the linking-unlinking game on any
shadow of a two-component rational tangle closure (see Theorems 3.9(1) and 3.12).

By studying the pseudolinking numbers of general two-component link shadows,
we were able to find winning strategies for the unlinker in the pathological case
when the shadow contains no NSIs and winning strategies for the linker in half of
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the cases when the shadow contains NSIs (see Theorem 3.14). Recall that ensuring
a linking number of 0 does not guarantee that a link diagram will be splittable.
This suggests that linking number arguments may not be as useful when seeking
winning strategies for the unlinker in the remaining half of the cases when the
shadow contains NSIs. As such, these cases currently remain open.

Question 3.15. Can explicit winning strategies for playing the linking-unlinking
game on two-component link shadows be found in the remaining cases not covered
by Theorem 3.14?

If winning strategies for playing the linking-unlinking game on all two-component
link shadows cannot be found, then it would be interesting to find families of
two-component link shadows beyond rational tangle closures for which winning
strategies can be found.

Question 3.16. For which new families of link shadows can explicit winning
strategies for playing the linking-unlinking game be found?
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