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We investigate a class of truncated path algebras in which the Betti numbers of
a simple module satisfy a polynomial of arbitrarily large degree. We produce
truncated path algebras where the i-th Betti number of a simple module S is
βi (S)= i k for 2≤ k ≤ 4 and provide a result of the existence of algebras where
βi (S) is a polynomial of degree 4 or less with nonnegative integer coefficients.
In particular, we prove that this class of truncated path algebras produces Betti
numbers corresponding to any polynomial in a certain family.

1. Introduction

We consider finite-dimensional algebras 3 over an algebraically closed field with
rad23= 0, where rad3 denotes the Jacobson radical of the algebra. We work with
these algebras by representing them as quotients of path algebras. The motivation
behind investigating these algebras lies in the universality of path algebras. Namely,
any finite-dimensional algebra over an algebraically closed field is a quotient of a
path algebra. We use quivers (directed graphs) to write down these algebras and
provide numerous examples along the way.

We study modules by means of their projective resolutions. Betti numbers are of
particular interest in examining the projective resolutions of modules as they provide
a method of describing the growth of resolutions. Such growth was examined in
the groundbreaking paper [Tate 1957] in the setting of commutative rings and in
[Alperin and Evens 1981] for group algebras. Since then the growth of resolutions
has been shown to be related to many fundamental properties of an algebra such as,
for example, the representation type of an algebra [Diveris and Purin 2014; Erdmann
et al. 2004] or codimension of a commutative ring [Avramov 1998; Avramov and
Buchweitz 2000; Avramov et al. 1997; Eisenbud 1980].

A fundamental question that is driving our work in this paper is to determine
which polynomials are eventually realizable as sequences of Betti numbers. To this
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end we introduce a particular class of path algebras, namely those given by quivers
of the form

1 2

n+2

n n+1x1

y1 y2

xn

yn yn+1

. . .

where the xi and yn+1 are positive integers and yi , 1 ≤ i ≤ n, are nonnegative
integers that represent the number of arrows between vertices. To clarify, the general
n = 0 case is of the form

1 2y1

and the general n = 1 case is of the form

1 2

3

x1

y1 y2

From here on, we refer to these algebras as pyramidal algebras. Given a pyramidal
algebra 3, we refer to the quotient algebra 3/ radm 3 as an m-pyramidal algebra.
For the majority of the paper, we consider only 2-pyramidal algebras and briefly
discuss the more general version at the end.

A key result in the paper is to show that 2-pyramidal algebras have a simple mod-
ule whose Betti numbers have polynomial growth of arbitrarily high degree. More
precisely, the Betti numbers over algebras of pyramidal form satisfy βi (S1)= pn(i),
where S1 is the simple module at vertex 1 and pn is a polynomial of degree n. In addi-
tion to proving this result, we provide examples of algebras with particularly interest-
ing behavior of Betti numbers. We end with an application of our work to a question
about the existence of algebras in which βi (S1) is a polynomial of a specific form.

2. Preliminaries

A quiver is a set of vertices and arrows (an oriented graph). In this paper we work
with finite quivers, that is, quivers with finitely many vertices and arrows. Further-
more, we assume that the quiver is connected, which means that the underlying
graph is connected. We concatenate arrows to form paths in the quiver. In addition,
there is a trivial path at each vertex, which we denote by ei for vertex i .
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A path algebra over a field k is the k-vector space that has as its basis the set
of all paths. The multiplication of paths is given by concatenation of compatible
paths. For incompatible paths the product is zero. With this operation the set of
paths has a natural structure as a k-algebra. Furthermore, the Jacobson radical of
the algebra is simply the ideal generated by the set of all arrows.

Example 2.1. We illustrate the above notions with the 2-pyramidal algebra where
y1 = 1:

1 2
α

β

The quiver above has two vertices and two arrows. As for paths, there are four
nonzero paths: the two trivial paths {e1, e2} and two arrows {α, β}. Some examples
of multiplication are: e1 · α = α, α · e2 = α, α · β = αβ = 0 (as the path lies in
rad23), and β ·α = 0 (as the arrows are incompatible).

In this paper we work with finitely generated right modules over finite-dimensional
algebras. Every such module has a projective cover and consequently a minimal
projective resolution over the algebra. For a path algebra, the number of indecom-
posable nonisomorphic projective modules corresponds to the number of vertices in
the quiver of the algebra. In particular, there are only finitely many such projective
modules, while there can be infinitely many indecomposable nonisomorphic mod-
ules over such algebras. Therefore projective modules, by means of resolutions,
provide a method of studying any module over a finite-dimensional algebra.

We measure the complexity of an algebra by measuring the complexity of the
projective resolutions of the modules over the algebra. We do this by examining
the growth of the Betti sequence of the resolutions. For m ≥ 0, the m-th term, the
m-th Betti number, is the number of indecomposable projective modules at the m-th
step of the resolution. Thus, faster growth of a Betti sequence corresponds to a
higher-complexity module.

It suffices to examine the resolutions of the simple modules as the fastest growth
rate is always realized by a simple module. The goal in this paper is precisely this —
to examine the resolutions of simple modules.

Throughout the paper we use the following notation. We denote by Sn the simple
module at vertex n. For i ≥ 0, the i-th term in a projective resolution of a module M
is denoted by Pi (M) and the i-th Betti number is βi (M).

We also make use of dimension vectors of modules. The dimension vector
of a module M represents the element [M] in the Grothendieck group K0(3)

corresponding to M, where K0(3) is the free abelian group on a set of isomorphism
classes of the simple3-modules. As such, dimension vectors record the multiplicity
of each composition factor in the composition series of the module. For ease of
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notation, ki copies of Si in the composition series of a module M are denoted
by 1k12k2 · · · tkt. In particular, we are not tracking the radical layers in which the
composition factors occur.

Example 2.2. The 2-pyramidal algebra in Example 2.1 has two nonisomorphic
simple modules, one at each vertex, denoted by S1 and S2. The projective covers of
the simple modules can be obtained by recording the maximal path starting at the
corresponding vertex, keeping in mind that in a 2-pyramidal algebra the composite
of any two arrows vanishes. Thus, the projective cover of the simple module S1 = 1
is P0(S1)=

1
2 = 1 2, the projective cover of S2 = 2 is P0(S2)=

2
2 = 22.

Note that the zeroth Betti number, corresponding to the zeroth step in the projec-
tive resolution, is 1. This will always be the case, and for this reason we will ignore
the zeroth Betti number and consider only βk with k ≥ 1 for the remainder of this
paper. The first syzygy, denoted by �1(S1), in the projective resolution of S1 is
the kernel of the epimorphism P0(S1)→ S1. It has dimension vector �1(S1)= 2.
A projective resolution of S1 is obtained by iterating the process and finding a
projective cover, denoted by P1(S1), for the syzygy �1(S1) = 2. We obtain the
resolution

· · ·
2
2 →

2
2 →

2
2 →

1
2 → S1 = 1.

In other words, we have Pi (S1)=
2
2 and syzygies �i (S1)= 2 for i > 0. The Betti

sequence is the constant sequence βi (S1)= 1 for i ≥ 0.

For more background on modules over path algebras we refer the reader to
[Auslander et al. 1995; Assem et al. 2006].

We make frequent use of difference tables of polynomials. Given a polynomial
p(n) of degree n, the difference table of p(n) is a table of rows and columns,
D = {di, j }, i ≥ 1, j ≥ 0 such that {di,0} = p(i) and the other entries are defined
recursively as di, j = di+1, j−1− di, j−1. That is, the j-th column in the difference
table of p(n) is the difference between the elements in the ( j−1)-th column. We
then refer to the j-th column as the j-th difference of p(n).

Example 2.3. The difference table for the polynomial p(n)= n2 is

1 3 2 0 · · ·

4 5 2 0 · · ·

9 7 2 0 · · ·

16 9 2 0 · · ·

...
...

...
...

. . .

Note that each column produces a sequence that is polynomial of degree one less
than the previous column, until we reach a column of zeros.
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The difference tables of polynomials eventually reach a column of zeros. Thus,
we will refer to the tables only up to, but not including, the first column of zeros.

3. Pyramidal algebras

In this section we examine the behaviour of projective resolutions over pyramidal
algebras. We begin with a key observation that describes the syzygies of a projective
resolution of a simple module.

Before proceeding with the results, we remark that for 2-pyramidal algebras all
syzygies are semisimple. This is because these algebras have radical squared zero.
Hence it is sufficient to work with dimension vectors when calculating the syzygies
in a resolution.

Lemma 3.1. In a 2-pyramidal algebra of the form,

1 2

n+2

n n+1x1

y1 y2

xn

yn yn+1

. . .

the multiplicity of Sk as a direct summand in the syzygy �i (S1), i ≥ k− 1, is( i−1
k−2

)
x1x2 · · · xk−1

if 2≤ k ≤ n+ 1 and

y1+

n∑
j=1

( i−1
j

)
x1x2 · · · x j y j+1

if k = n+ 2 and i ≥ 1.
In the case where k 6= n+2 and i ≤ k−2, or k = n+2 and i ≤ 1, the multiplicity

of Sk in �i (S1) is zero.

Proof. Note that Sk appears as a summand of �i (S1) if and only if there is a walk
of length i from vertex 1 to vertex k in the underlying quiver. The final statement
in the lemma is an immediate corollary of this fact.

We will prove the first case where 2≤ k ≤ n+1 by double induction on the state-
ment “the multiplicity of Sk as a direct summand in the syzygy �i (S1), i ≥ k−1, is( i−1

k−2

)
x1x2 · · · xk−1.”

We will induct on i and k, in that order. When inducting on i , the base case is k = 2,
i = 1, as this is the first syzygy in which S2 appears. We then proceed by varying i
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and fixing k = 2 to complete the induction on i . When inducting on k, we must start
with the base case i = k− 1, as this is the smallest value of i in which Sk appears
as a summand of �i (S1). Finally, we induct on k given an arbitrary fixed i ≥ k− 1.

For k = 2 and i ≥ 1 arbitrary, we see that the multiplicity of S2 in �i (S1) is x1

always. This is equal to
(i−1

0

)
x1, so this concludes the first part of the induction.

Assume the statement holds for i = k − 1 and consider the multiplicity of Sk

as a direct summand in �k−1(S1). Because there is no Sk in �k−2(S1), only the
multiplicity of Sk−1 in �k−1(S1) contributes to the multiplicity of Sk in �k−1(S1).
By the induction hypothesis, there are(

k− 3
k− 3

)
x1x2 · · · xk−3xk−2 = x1x2 · · · xk−3xk−2

copies of Sk−1 in the (k−2)-th syzygy. Thus the multiplicity of Sk in the (k−1)-th
syzygy is

x1x2 · · · xk−2xk−1 =

(k−2
k−2

)
x1x2 · · · xk−2xk−1.

Now assume the statement holds up to k − 1 and i − 1. By induction, the
multiplicity of Sk−1 in the (i−1)-th syzygy is given by( i−2

k−3

)
x1x2 · · · xk−3xk−2.

Similarly the multiplicity of Sk in the (i−1)-th syzygy is( i−2
k−2

)
x1x2 · · · xk−1.

Therefore, the multiplicity of Sk in �i (S1) is

xk−1

( i−2
k−3

)
x1x2 · · · xk−2+

( i−2
k−2

)
x1x2 · · · xk−1=

(( i−2
k−3

)
+

( i−2
k−2

))
x1x2 · · · xk−1

=

( i−1
k−2

)
x1x2 · · · xk−1,

and the induction is complete. A similar argument can be made for the multiplicity
of Sn+2 as a direct summand of the i-th syzygy. �

Example 3.2. To see an example of this lemma, consider the 2-pyramidal algebra

1 2 3

4

x1 x2

y2 y3
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with y1 = 0 and x1 = x2 = y2 = y3 = 1, i.e., there is one arrow from vertex 2 to 3,
one from vertex 2 to 4, and one from vertex 3 to 4.

The projective resolution of S1 is

· · · P2⊕ P3⊕ P4→ P2→ P1→ S1,

with syzygies

�1(S1)= 2, �2(S1)= 234, �3(S1)= 23243, �4(S1)= 23346,

etc. The multiplicity of S3 in the dimension vector of �4(S1) is 3, while the
multiplicity of S4 in �4(S1) is 6.

Using our formula to calculate the multiplicity of S3 and S4 in the dimension
vector �4(S1) gives the following.

First, for k = 3 and i = 4 we obtain the multiplicity of S3 as(3
1

)
· 1 · 1= 3.

Similarly for k = 4 and i = 4, we get the multiplicity of S4 as
2∑

j=1

(3
j

)
· 1= 3+ 3= 6.

Note that we interpret x j = 0 for j ≥ 3 because their corresponding edges in the
quiver are not present, so further sums do not appear.

Theorem 3.3. Every 2-pyramidal algebra with n + 2 vertices in the underlying
quiver has Betti numbers

βi (S1)=

{
1 for i = 0,
pn(i) for i ≥ 1,

where pn is a polynomial of degree n.

Proof. We proceed by induction on n. If n = 0, then we have an algebra of the form

1 2y1

Because �i (S1) = 2y1 for all i , it follows that βi (S1) = y1 for all i , so βi (S1) is
constant, and thus is a polynomial of degree 0.

Suppose the statement holds for all values less than n, and consider an algebra
of this form with n+ 2 vertices. The Betti numbers are calculated by adding the
multiplicities of the various Sk together. These multiplicities were calculated in
Lemma 3.1, so we see that the i-th Betti number is given by

n−1∑
j=0

( i−1
j

)
x1 · · · x j+1+ y1+

n∑
j=1

( i−1
j

)
x1x2 · · · x j y j+1.
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Now taking the (i+1)-th Betti number and subtracting the i-th Betti number yields
n−1∑
j=0

( i
j

)
x1 · · · x j+1+ y1+

n∑
j=1

( i
j

)
x1x2 · · · x j y j+1

−

(n−1∑
j=0

( i−1
j

)
x1 · · · x j+1+ y1+

n∑
j=1

( i−1
j

)
x1x2 · · · x j y j+1

)

=

n−1∑
j=0

(( i
j

)
−

( i−1
j

))
x1 · · · x j+1+

n∑
j=1

(( i
j

)
−

( i−1
j

))
x1x2 · · · x j y j+1

=

n−1∑
j=1

( i−1
j−1

)
x1 · · · x j+1+

n∑
j=1

( i−1
j−1

)
x1x2 · · · x j y j+1.

Observe that this is the i-th Betti number of the following algebra:

1 2 3

n+1

n−1 n
x1x2

x1 y2 y3

xn

yn yn+1

x3

y4

. . .

By the induction hypotheses, this 2-pyramidal algebra satisfies βi (S1)= pn−1(i),
where pn−1 is a polynomial of degree n−1. Thus we see that the difference between
the terms of the original algebra’s Betti numbers is a polynomial of degree n− 1,
so the Betti numbers follow a polynomial of degree n, as desired. �

It is interesting to mention an alternative approach to the above result, as was
suggested by one of the referees. Namely, we may also analyze the Betti sequence
by means of the action of the syzygy operator �. Because the syzygies of a module
over a radical square zero algebra are semisimple, � acts as an endomorphism on
the Grothendieck group K0(3). The action of � on Si is evidently the dimension
vector of�(Si ). Considering these vectors over all n+2 simple modules, the action
of � is given by the matrix

�=


0 0 0 · · · 0
x1 1 0 · · · 0
0 x2 1 · · · 0
...

...
...
. . .

...

y1 y2 y3 · · · 1

 .
Thus, �m(S1) is the first column of the m-th power of this matrix. Moreover, this
matrix is the transpose of the adjacency matrix of the quiver, so the first column of
�m gives the number of paths starting at vertex 1 that have length m.
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While we have only considered the Betti numbers for the projective resolution
of S1, we may also consider them for projective resolutions of any other simple mod-
ule, say Sj . In this case, by restricting our quiver to the vertices j, j + 1, . . . , n+ 2,
we get another algebra. The Betti numbers of the projective resolution of Sj are
evidently the same as that of the 2-pyramidal algebra below:

1 j

n+2

n n+1
1

yj y j

xn

yn yn+1

. . .

By previous work, we see that the Betti numbers of Sj agree with a polynomial of
degree n+ 2− j .

Theorem 3.3 is quite useful for the theorems in this paper due to the following
corollary.

Corollary 3.4. Let 3 be a 2-pyramidal algebra as in Lemma 3.1. If the first n+ 1
Betti numbers are known to fit a polynomial p of degree n, then βi (S1)= p(i).

Proof. By Theorem 3.3, we know that βi (S1)= pn(i) for some polynomial pn of
degree n. It is well known that given n+ 1 pairs of points {(x j , yj )}

n+1
j=1, there is a

unique polynomial p of degree n such that p(x j )= yj for 1≤ j ≤ n+ 1. Because
βi (S1)= p(i) for 1≤ i ≤ n+ 1, it follows that βi (S1)= p(i) for all i ≥ 1. �

This theorem and its corollary will help us find algebras with Betti numbers of
growth given by βi (S1)= i2, βi (S1)= i3 and βi (S1)= i4. From this, we show that
given any polynomial p(i) of degree 4 or less with nonnegative integer coefficients,
there exists an algebra such that βi (S1)= p(i).

Lemma 3.5. In the following 2-pyramidal algebra, βi (S1)= i2 for i ≥ 1:

1 2 3

4

Proof. By Corollary 3.4, we need only show that the first three terms agree with
βi (S1)= i2. Indeed, we can calculate these quite easily:

�1(S1)= 2, �2(S1)= 2 32 4, �3(S1)= 2 34 44.

Thus βi (S1)= i2 for 1≤ i ≤ 3. Therefore, βi (S1)= i2 for all i ≥ 1. �
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Lemma 3.6. In the following 2-pyramidal algebra, βi (S1)= i3 for i ≥ 1:

1 2 3

5

4
3

4 2

2

1

Proof. Again by Corollary 3.4, we need only show that βi (S1)= i3 for 1≤ i ≤ 4.
We compute the syzygies directly as before. Here we obtain

�1(S1)= 2, �2(S1)= 2 33 54, �3(S1)= 2 36 46 514, �4(S1)= 2 39 418 536.

We see that βi (S1)= i3 for 1≤ i ≤ 4. Therefore, βi (S1)= i3 for all i ≥ 1. �

Lemma 3.7. In the following 2-pyramidal algebra, βi (S1)= i4 for i ≥ 1:

1 2 3

6

4 5
2

13 24

1

28

2

6

Proof. We find the i-th syzygy of S1 for 1≤ i ≤ 5 to show that βi (S1)= i4 for these
values of i . Indeed, the syzygies are as follows:

�1(S1)= 2, �2(S1)= 2 32 613, �3(S1)= 2 34 42 674,

�4(S1)= 2 36 46 54 6239, �5(S1)= 2 38 412 516 6588.

By examining the size of these syzygies, we find

β1(S1)= 1, β2(S1)= 1+2+13= 16= 24, β3(S1)= 1+4+2+74= 81= 34,

β4(S1)=1+6+6+4+239=256=44, β5(S1)=1+8+12+16+588=625=54.

By Corollary 3.4, it follows that βi (S1)= i4 for all i ≥ 1. �

The next lemma will give us a method of constructing algebras with specific
Betti numbers for a simple module.

Lemma 3.8. Let 31 and 32 be truncated path algebras such that the projective
resolution of the simple module at vertex k in 31 follows βi (Sk) = f (i) and the
projective resolution of the simple module at vertex m in 32 follows βi (Sm)= g(i)
for some functions f and g. Then there exists an algebra with Betti numbers given
by βi (S)= f (i)+ g(i) for some simple module S and all i ≥ 1.
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Proof. Begin with the algebras 31 and 32 with underlying quivers 01 and 02.
Let R1 and R2 be the set of relations in 31 and 32 respectively. Create a new
algebra, 33, whose underlying quiver, 03, is obtained by taking the disjoint union
of 01 and 02 and adding a new vertex 1̃. Additionally, for each arrow k α

−→n in31,
there is an arrow 1̃ α̃

−→n in 03, and for each arrow m γ
−→ l in 32, there is an arrow

1̃ γ̃
−→ l in 03. The set of relations of 33, denoted by R3, is defined as

R3 := R1 ∪ R2 ∪ {α̃w1 | αw1 ∈ R1} ∪ {γ̃ w2 | γw2 ∈ R2},

where w1 and w2 could be paths of any length. Note that the elements in the last
two sets of this union are nonzero because the target of α̃ is the same as that of α,
and the target of γ̃ is the same as that of γ . The addition of these relations ensures,
for example, that if 31 and 32 are radical square zero algebras, then 33 is as well.

By construction, there are bijections

{vertices in 01} ∪ {vertices in 02} ⇐⇒ {vertices in 03} \ {1̃},

{paths in 01} ∪ {paths in 02} ⇐⇒ {paths in 03 not involving 1̃},

both induced by inclusion of quivers. Moreover, the bijection of paths is compatible
with the bijection of vertices. This, along with the choice of relations in 33, gives
a bijection

{projective 31−modules} ∪ {projective 32−modules}

⇐⇒ {projective 33−modules} \ {P1̃},

where P1̃ is the indecomposable projective 33-module at vertex 1̃. This correspon-
dence takes radical layers to radical layers bijectively in a manner compatible with
the first two bijections. Let

· · · → Q1→ Q0→ Sk → 0,

· · · → R1 → R0 → Sm→ 0,

· · · → F1 → F0 → S1̃ → 0

be minimal projective resolutions of Sk , Sm , and S1̃ respectively as33-modules. We
will now show that for i ≥ 1, we have Fi ∼= Qi⊕ Ri and �i (S1̃)

∼=�i (Sk)⊕�
i (Sm).

Note that the bijections above imply that the minimal projective resolutions of Sk

and Sm in 33 correspond to those in 31 and 32, so proving this will yield the
lemma.

We proceed by induction on i . We compute rad(F0)= rad(P1̃)=�
1(S1̃). The

simple modules in the k-th radical layer of P1̃ correspond to the vertices at the
end of paths of length k from 1̃ which do not lie in R3. By the construction of 33,
this is precisely the union of the simple modules in the k-th radical layer of Pk

and Pm . Also by construction, we in fact get rad(P1̃)
∼= rad(Pk)⊕ rad(Pm), and so
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�1(S1̃)
∼=�1(Sk)⊕�

1(Sm). Moreover, the projective cover of this syzygy is the
direct sum of the covers of its summands, so F1 ∼= Q1⊕ R1. Note that Fi does not
have P1̃ as a summand for any i > 0.

Suppose that Fi ∼= Qi ⊕ Ri and �i (S1̃)
∼=�i (Sk)⊕�

i (Sm) for i−1, i > 1. The
hypothesis implies that at the (i−1)-th step of the projective resolution for S1̃, we
have a projective cover Qi−1 ⊕ Ri−1→ �i−1(Sk)⊕�

i−1(Sm). By the bijection
of projective modules and the fact that the radical layers are preserved under this
bijection, we get

ker[Qi−1⊕ Ri−1→�i−1(Sk)⊕�
i−1(Sm)] ∼=�

i (Sk)⊕�
i (Sm),

so �i (S1̃)
∼=�i (Sk)⊕�

i (Sm). From this it also follows that Fi ∼= Qi ⊕ Ri , and the
induction is complete. Thus βi (S1̃)= f (i)+ g(i) for all i ≥ 1. �

We apply this lemma to 2-pyramidal algebras to construct Betti sequences that
realize desired polynomials.

Example 3.9. Let p(i)= ai4
+ bi3

+ ci2
+ di + e for some nonnegative integers

a, b, c, d, e. Then there exists an algebra 3, where βi (S) = p(i) for a simple
module S.

Proof. Begin by choosing algebras 34, 33, 32, 31 and 30 and simple modules S4,
S3, S2, S1, and S0 satisfying

β
34
i (S4)= i4, β

33
i (S3)= i3, β

32
i (S2)= i2, β

31
i (S1)= i, β

30
i (S0)= 1,

respectively. Next, take a, b, c, d, and e copies of the algebras 34, 33, 32, 31

and30, respectively, and apply Lemma 3.8 to these algebras to obtain a new algebra
3 with

βi (S)= ai4
+ bi3

+ ci2
+ di + e

for a simple 3-module S. �

We will see in the following section that these polynomials can be realized as
the Betti numbers of some 2-pyramidal algebra.

4. Characterizations

In this section we characterize Betti numbers over 2-pyramidal algebras. We start
with some general statements and proceed to provide a characterization of the
polynomials that give the growth of Betti sequences over these algebras.

Lemma 4.1. Let p be a polynomial such that p(1) ∈ Z+, and let p′ be the polyno-
mial generating the first differences in the difference table of p. Then there exists a
2-pyramidal algebra in which βi (S1)= p(i) if and only if there exists a 2-pyramidal
algebra such that βi (S1)= p′(i).
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Proof. The forward direction of this proof is made trivial by a fact in the proof of
Theorem 3.3. In this proof, we saw that the n-th element of the first difference of
the Betti numbers are the Betti numbers of S1 over the algebra

1 2

n+1

n−1 n
x1x2

x1 y2 y3

xn

yn yn+1

. . .

This concludes the first part of the proof.
For the reverse direction, let p(1)= k ∈ Z+ and let p′ correspond to the Betti

numbers of

1 2

n+1

n−1 n
x2

y2 y3

xn

yn yn+1

. . .

(4-1)

We now consider the algebra

1 2 3

n+2

n n+1

k−1

x2

y2 y3

xn

yn yn+1

. . .

Now this algebra has the property that β1(S1)= k and the differences are the Betti
numbers of (4-1). Because the Betti numbers of (4-1) are given by p′, the differences
are given by p′, as desired. �

We can now use this result to provide some necessary and sufficient conditions
that a polynomial must meet in order to represent the Betti numbers of some
2-pyramidal algebra.

Theorem 4.2. A polynomial p is such that βi (S1) = p(i) for some 2-pyramidal
algebra if and only if the difference table of p consists of only positive integers.

Proof. We will prove the forward direction by induction on the columns of the
difference table of p. Let p be a polynomial of degree n and let 3 be a 2-pyramidal
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algebra such that βi (S1)= p(i). We first show that the zeroth difference, that is p,
has all positive entries. Because x1 is positive and there is an arrow from 2 to itself,
it follows that p(1)= β1(S1)≥ x1 and in fact, p(i)≥ x1 for all i .

Suppose the statement holds for the k-th difference, and consider the (k+1)-th
difference. The k-th difference is given by a polynomial of degree n− k and gives
the Betti numbers of some algebra. Because the first entry of the k-th column is
positive, it follows from the forward direction of Lemma 4.1 that the (k+1)-th
difference is also a polynomial of this form. By the first step, it follows that all
entries for this polynomial are positive, and the induction is complete.

We now prove that every difference gives the Betti numbers over some 2-
pyramidal algebra. We proceed by reverse induction on the columns of the difference
table of p. Suppose p is a polynomial whose difference table contains only positive
integers. In particular, the column of constants is some positive integer m. This
polynomial represents βi (S1) of the 2-pyramidal algebra,

1 2m

so the base case holds.
Assume that the statement holds for the (n−k)-th column, and consider the

(n−(k+1))-th column. Because the first entry of the (n−(k+1))-th column is
positive, it follows from the reverse direction of Lemma 4.1 that this column gives
the Betti numbers of some 2-pyramidal algebra. This completes the induction, and
thus p gives the Betti numbers of some 2-pyramidal algebra. �

Note that in this proof, we only used the fact that the first entry in every column
must be a positive integer. Indeed, this leads to a slightly stronger formulation of
the theorem.

Corollary 4.3. A polynomial p is such that βi (S1) = p(i) for some 2-pyramidal
algebra if and only if the first row of the difference table of p contains only positive
integers.

5. Producing pyramidal algebras given a polynomial

So far we have examined the types of polynomial growth possible for the Betti
numbers of 2-pyramidal algebras. Another question that arises is: given a polyno-
mial described in Corollary 4.3, can we produce a 2-pyramidal algebra whose Betti
numbers follow this polynomial? Moreover, can we produce all algebras of this
form that correspond to this polynomial?

We answer both of these questions in the affirmative. First, we need to define
some notation. Let p be a polynomial. We then define Dk(p) to be the k-th entry
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of the first row of the difference table for p. As before, we denote the columns
starting at 0 and ending at n.

Theorem 5.1. Let p be a polynomial of degree n such that βi (S1)= p(i) for some
2-pyramidal algebra. Then

Di (p)=


x1+ y1 if i = 0,
x1x2 · · · xi−1xi (xi+1+ yi+1) if 1≤ i ≤ n− 1,
x1x2 · · · xi−1xi yi+1 if i = n.

Proof. The first case is immediate. We prove the second case by induction on i by
looking at the algebras associated with the differences of p. For i = 1, we know
that the first difference of p gives the Betti numbers for the 2-pyramidal algebra

1 2

n+1

n−1 n
x1x2

x1 y2 y3

xn

yn yn+1

. . .

Hence, D1 = x1x2+ x1 y2 = x1(x2+ y2). For the induction step, we assume that
the k-th difference of p produces the Betti numbers over 3k , shown below:

1 2

n−k+2

n−k n−k+1x1x2 · · · xk+1

x1x2 · · · xk yk+1 yk+2

xn

yn yn+1

. . .

Then Dk(p)= x1x2 · · · xk(xk+1+ yk+1). By previous work, the first difference of
the Betti numbers of the simple module S1 over 3k are the Betti numbers of the
simple module S1 over

1 2

n−k+1

n−k−1 n−kx1x2 · · · xk+2

x1x2 · · · xk+1 yk+2 yk+3

xn−1

yn−1 yn

. . .
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Note that this is also the algebra with the simple module S1 whose Betti numbers
are the (k+1)-th difference of p, and thus Dk+1 = x1x2 · · · xk xk+1(xk+2 + yk+2).
This completes the induction for the second case.

For the last case, we know by the previous case that the (n−1)-th difference is
given by the Betti numbers of the simple module S1 over the 2-pyramidal algebra

1 2

3

x1x2 · · · xn

x1x2 · · · xn−1 yn yn+1

The difference of the Betti numbers of S1 is given by the Betti numbers of the
simple module S1 over

1 2x1x2 · · · xn yn+1

which is clearly the constant x1x2 · · · xn yn+1. �

This theorem provides a way to determine restrictions on the xi in order to
produce a pyramidal algebra with a simple module S1 whose Betti numbers follow a
given polynomial. We now reformulate the previous theorem with added emphasis
on the values of the xi .

Corollary 5.2. Let 3 be a 2-pyramidal algebra such that βi (S1)= p(i) for some
polynomial p. Then x1x2 · · · xk |Dk(p) and xk ≤ Dk−1(p)/(x1x2 · · · xk−1) for
all k ≤ n.

Theorem 5.3. Let p be a polynomial of degree n and x1, x2, . . . , xn be positive
integers such that x1x2 · · · xk |Dk(p) and xk≤Dk−1(p)/(x1x2 · · · xk−1) for all k≤n.
Then there exists a unique 2-pyramidal algebra such that βi (S1)= p(i), and, for
1≤ k ≤ n, the number of arrows between vertex k and vertex k+ 1 is xk .

Proof. We need only show that given these restrictions, we can choose the ap-
propriate yk such that Dk(p) is the required value. For k = 1, simply choose
y1 = D1(p)− x1. Because D1(p) and x1 are positive integers with D1(p) > x1, we
know y1 is a nonnegative integer as required.

Suppose that 2 ≤ k ≤ n− 1. Then choose yk = Dk−1(p)/(x1x2 · · · xk−1)− xk .
This value is a nonnegative integer by assumption.

Finally, choose yn+1 = Dn/(x1x2 · · · xn−1xn) to ensure that we have the equality
x1x2 · · · xn−1xn yn+1 = Dn .

At each step in this process, there is only one choice for the value of yk . Thus
the 2-pyramidal algebra exists and is unique. �



TRUNCATED PATH ALGEBRAS AND BETTI NUMBERS OF POLYNOMIAL GROWTH 935

Given a polynomial p of degree n with Dk(p) ∈ Z, this theorem allows us to
construct a 2-pyramidal algebra with βi (S1)= p(i). Simply choose the 2-pyramidal
algebra on n + 2 vertices with xk = 1 and yk = Dk−1(p) − 1 for all k. The
existence and uniqueness of these algebras given the appropriate choice of {xi }

n
i=1

also provides a method of finding the number of algebras of this form whose Betti
numbers correspond to a given polynomial.

Corollary 5.4. Let p be a polynomial of degree n. Then the number of 2-
pyramidal algebras such that βi (S1) = p(i) is equal to the number of n-tuples
{(x1, x2, . . . , xn)} such that xi ∈ Z+ for all i and x1x2 · · · xk |Dk(p) for all k and
xk ≤ Dk−1(p)/(x1x2 · · · xk−1) for all k ≤ n.

6. Generalizing by changing the ideal

Up until now, we have been examining algebras with rad23 = 0. We will now
consider algebras with radm 3= 0 for m > 2 and provide results analogous to the
m = 2 case.

We use the following notation throughout this section. Given an algebra 3 with
radm 3 = 0 for some m > 2, let 3′ be the algebra that has the same underlying
quiver as 3 with the relations rad23′ = 0. Denote by S′1 the simple 3′-module
at vertex 1, by βk(S′1) the i-th Betti number and by �i (S′1) the i-th syzygy of the
simple module S′1 over the algebra 3′.

Lemma 6.1. Let 3 be an m-pyramidal algebra with m ≥ 2. Let

Q : · · · → Q2→ Q1→ Q0→ S1→ 0

be a minimal projective resolution of S1, and let

Q′ : · · · → Q′2→ Q′1→ Q′0→ S′1→ 0

be a minimal projective resolution of S′1 over 3′. Then the number of indecompos-
able projective summands of Qi is equal to the number of projective summands of
Q′(i/2)m if i is even, and Q′((i−1)/2)m+1 if i is odd. Hence, the Betti numbers of the
3-module S1 are given by

βi (S1)=

{
β(i/2)m(S′1) i is even,
β((i−1)/2)m+1(S′1) i is odd.

Note that for m = 2, the number of indecomposable projective modules in Qi and
Q′i are equal, and βi (S1)= βi (S′1) for all i .

Proof. The m = 2 case is trivial. Let m > 2 be fixed and let 3 be an m-pyramidal
algebra. We construct a list representing simple modules as follows. For each walk
of length j starting at vertex 1 in the underlying quiver of 3, record the vertex at
the end of the walk in row j of the list. We use the convention that the trivial walk
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from a vertex to itself along no edges is a walk of length 0, and the first written
row, which is always a 1, is row 0.

For example, the 2-pyramidal algebra

1 2

generates the list

1
1 2

1 2 2
1 2 2 2
...

Observe that the projective module appearing in step j of a minimal projective
resolution of S′1 is precisely ⊕

k∈row j

P ′k .

With this in mind, we will prove the first statement by proving the following: for
even i

Qi =
⊕

k∈row(i/2)m

Pk

and for odd i
Qi =

⊕
k∈row((i−1)/2)m+1

Pk .

We will prove this by induction on i . For i = 0 we have Q0 = P1. For i = 1,
note that Q1 is the projective cover of rad P1. This is equal to the projective cover
of its top radical layer, which is precisely

⊕
k∈row 1 Sk , and this has projective cover⊕

k∈row 1 Pk .
We examine the syzygies of Q. Note that for any projective 3-module A,

soc A ∼= P(soc A)/ rad P(soc A),

rad A ∼= P(rad A)/ soc P(rad A).

We will show by induction that for even i

�i (Q)= soc Qi−1

and for odd i
�i (Q)= rad Qi−1.

For i = 1, we have

�1(Q)= ker(Q0→ S1)= rad Q0.
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For i = 2
�2(Q)= ker(Q1→ rad Q0)= soc Q1,

because Q1 = P(rad Q0) and

rad Q0 = P(rad Q0)/ soc P(rad Q0)= Q1/ soc Q1.

Assuming i is even and �i (Q)= soc Qi−1, we have

�i+1(Q)= ker(Qi →�i (Q))

= ker(Qi → soc Qi−1)

= ker[P(soc Qi−1)→ P(soc Qi−1)/ rad P(soc Qi−1)]

= rad P(soc Qi−1)= rad Qi .

Assuming i is odd and �i (Q)= rad Qi−1, we have

�i+1(Q)= ker(Qi →�i (Q))

= ker(Qi → rad Qi−1)

= ker[P(rad Qi−1)→ P(rad Qi−1)/ soc P(rad Qi−1)]

= soc P(rad Qi−1)= soc Qi .

We now return to the proof of the structure of the Qi . Assume i is even. Then

Qi = P(�i (Q))= P(soc Qi−1).

By hypothesis,

soc Qi−1 = soc
⊕

k∈row((i−2)/2)m+1

Pk =
⊕

k∈row(i/2)m

Sk .

Because Qi is the projective cover of soc Qi−1, it follows that

Qi ∼=
⊕

k∈row(i/2)m

Pk .

Assuming i is odd, we have

Qi = P(�i (Q))= P(rad Qi−1).

By hypothesis,

rad Qi−1 = rad
⊕

k∈row((i−1)/2)m

Pk .

Now Qi is the projective cover of rad Qi−1, so it is the projective cover of
rad Qi−1/ rad2 Qi−1 as well. Because the radical quotient of rad

⊕
k∈row((i−1)/2)m Pk
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is
⊕

k∈row((i−1)/2)m+1 Sk , it follows that

Qi ∼=
⊕

k∈row((i−1)/2)m+1

Pk . �

The next theorem gives us asymptotic information about the Betti numbers for
m-pyramidal algebras for m ≥ 3. We will be using the following notation.

Definition 6.2. For a function f (x), we write f (x)=2(g) if there exist positive
constants M and N, M ≤ N and a real number x0 such that

Mg(x)≤ f (x)≤ Ng(x)

for all x ≥ x0.

Theorem 6.3. For all m ≥ 3 and n ≥ 1, there exists an m-pyramidal algebra such
that βi (S1)=2(in).

Proof. Let n be a fixed positive integer. Let 3 be the algebra

1 2 3

n+2

n n+1x1

y1

x2

y2 y3

xn

yn yn+1

. . .

with radm 3 = 0. It suffices to show that βi (S1) is bounded above and below by
polynomials of degree n. Using Lemma 6.1 and the fact that the Betti numbers are
strictly increasing for all m ≥ 2, we obtain the inequalities

βi (S′1)≤ βi (S1)≤ βmi (S′1).

By previous work, βi (S′1)= p(i) and βmi (S′1)= p(mi), where p is a polynomial
of degree n. Because both p(i) and p(mi) are polynomials in i of degree n, we
have βi (S1)=2(in). �

Future work

This work prompts some natural questions. We currently have a class of algebras
whose quotients have Betti numbers asymptotic to polynomials of arbitrarily high
degree. When does there exist a path algebra 3 such that, for some m ≥ 3, the
quotient 3/ radm 3 has a simple module whose Betti numbers follow a polynomial
exactly, not just asymptotically? Based on the proof of Lemma 6.1, it seems unlikely
that there exists an algebra that satisfies this property for multiple m, but perhaps
there exists such a path algebra for each m.
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We showed that for polynomials of a certain type, we can construct an algebra
whose Betti numbers at the simple module at vertex 1 satisfy that polynomial.
However, the description of the number of such 2-pyramidal algebras, offered in
Corollary 5.4, is complex. Perhaps there is a simpler description of the number of
these algebras.

The Betti numbers of simple modules for a 2-pyramidal algebras are different
at each vertex. A natural question is whether there exists an algebra where one of
its quotients has the same polynomial Betti numbers at all of its simple modules.
We can produce an algebra in which two simple modules have the same syzygies:
starting with a 2-pyramidal path algebra, add a copy of vertex 1 called 1̃, copy all
of its arrows, and consider the new algebra modulo its radical squared. Then S1

and S1̃ have the same syzygies, and by repeating this process we can produce an
algebra with arbitrarily many such simple modules. However, this process does not
create a path algebra in which all simple modules have the same Betti numbers.
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