Translator Disclaimer
2019 Spectra of Kohn Laplacians on spheres
John Ahn, Mohit Bansil, Garrett Brown, Emilee Cardin, Yunus E. Zeytuncu
Involve 12(5): 855-869 (2019). DOI: 10.2140/involve.2019.12.855

Abstract

We study the spectrum of the Kohn Laplacian on the unit spheres in n and revisit Folland’s classical eigenvalue computation. We also look at the growth rate of the eigenvalue counting function in this context. Finally, we consider the growth rate of the eigenvalues of the perturbed Kohn Laplacian on the Rossi sphere in 2.

Citation

Download Citation

John Ahn. Mohit Bansil. Garrett Brown. Emilee Cardin. Yunus E. Zeytuncu. "Spectra of Kohn Laplacians on spheres." Involve 12 (5) 855 - 869, 2019. https://doi.org/10.2140/involve.2019.12.855

Information

Received: 5 September 2018; Accepted: 26 December 2018; Published: 2019
First available in Project Euclid: 29 May 2019

MathSciNet: MR3954300
zbMATH: 07072550
Digital Object Identifier: 10.2140/involve.2019.12.855

Subjects:
Primary: 32V05
Secondary: 32V30

Keywords: Gershgorin's circle theorem , Kohn Laplacian , Spherical harmonics

Rights: Copyright © 2019 Mathematical Sciences Publishers

JOURNAL ARTICLE
15 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.12 • No. 5 • 2019
MSP
Back to Top