Translator Disclaimer
2019 Quantum metrics from traces on full matrix algebras
Konrad Aguilar, Samantha Brooker
Involve 12(2): 329-342 (2019). DOI: 10.2140/involve.2019.12.329

Abstract

We prove that, in the sense of the Gromov–Hausdorff propinquity, certain natural quantum metrics on the algebras of (n×n)-matrices are separated by a positive distance when n is not prime.

Citation

Download Citation

Konrad Aguilar. Samantha Brooker. "Quantum metrics from traces on full matrix algebras." Involve 12 (2) 329 - 342, 2019. https://doi.org/10.2140/involve.2019.12.329

Information

Received: 5 December 2017; Accepted: 7 March 2018; Published: 2019
First available in Project Euclid: 25 October 2018

zbMATH: 06980505
MathSciNet: MR3864221
Digital Object Identifier: 10.2140/involve.2019.12.329

Subjects:
Primary: 46L30 , 46L89 , 58B34

Keywords: C*-algebras , full matrix algebras , Gromov–Hausdorff propinquity , Lip-norms , noncommutative metric geometry , quantum metric spaces

Rights: Copyright © 2019 Mathematical Sciences Publishers

JOURNAL ARTICLE
14 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.12 • No. 2 • 2019
MSP
Back to Top