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Using PageRank to Locally
Partition a Graph
Reid Andersen, Fan Chung, and Kevin Lang

Abstract. A local graph partitioning algorithm finds a cut near a specified starting
vertex, with a running time that depends largely on the size of the small side of the cut,
rather than the size of the input graph. In this paper, we present a local partitioning
algorithm using a variation of PageRank with a specified starting distribution. We
derive a mixing result for PageRank vectors similar to that for random walks, and we
show that the ordering of the vertices produced by a PageRank vector reveals a cut
with small conductance. In particular, we show that for any set C with conductance
Φ and volume k, a PageRank vector with a certain starting distribution can be used
to produce a set with conductance O(

√
Φ log k). We present an improved algorithm

for computing approximate PageRank vectors, which allows us to find such a set in
time proportional to its size. In particular, we can find a cut with conductance at most
φ, whose small side has volume at least 2b, in time O(2b log2 m/φ2) where m is the
number of edges in the graph. By combining small sets found by this local partitioning
algorithm, we obtain a cut with conductance φ and approximately optimal balance in
time O(m log4 m/φ2).

1. Introduction

One of the central problems in algorithmic design is the problem of finding a cut
where the ratio between the number of edges crossing the cut and the size of the
smaller side of the cut is small. There is a large literature of research papers on
this topic, with applications in numerous areas.

Partitioning algorithms that find such cuts can be applied recursively to solve
more complicated problems, including finding balanced cuts, k-way partitions,
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and hierarchical clusterings [Borgs et al. 04, Kannan et al. 04, Leighton and
Rao 88, Simon and Teng 97, Spielman and Teng 96]. The running time of these
recursive algorithms can be large if the cuts found at each step are unbalanced.
This is particularly evident when applying spectral partitioning, which produces
a cut with approximately optimal conductance, but with no guarantee on the
balance.

Recently, Spielman and Teng addressed this problem by introducing a local
partitioning algorithm called Nibble, which finds a small cut near a specified
starting vertex in time proportional to the size of the small side of the cut. The
small cuts found by Nibble can be combined to form balanced cuts in nearly
linear time, and the resulting balanced cut algorithm, Partition, is used as a
subroutine for finding multiway partitions, sparsifying graphs, and solving di-
agonally dominant linear systems [Spielman and Teng 04]. The analysis of the
Nibble algorithm is based on a mixing result by Lovász and Simonovits [Lovász
and Simonovits 90, Lovász and Simonovits 93], which shows that a cut with
small conductance can be found by simulating a random walk starting from a
single vertex for sufficiently many steps.

In this paper, we present a local graph partitioning algorithm that finds cuts by
computing and examining PageRank vectors. A PageRank vector is a weighted
sum of the probability distributions obtained by taking a sequence of random
walk steps starting from a specified initial distribution. The weight placed on the
distribution obtained after t walk steps decreases exponentially in t, with the rate
of decay determined by a parameter called the teleport probability. A PageRank
vector can also be viewed as the solution of a system of linear equations, which
we will describe in more detail in Section 2. Each of the PageRank vectors we
compute has its starting distribution on a single starting vertex, and we prove
that a PageRank vector produces a cut which approximates the best cut near its
starting vertex. This cut can be found by performing a sweep over the PageRank
vector, which involves examining the vertices of the graph in an order determined
by the PageRank vector, and computing the conductance of each set produced
by this order. The analysis of our algorithm is based on the following results:

• We give an algorithm for approximating a PageRank vector by another
PageRank vector with a slightly different starting distribution, based on a
technique introduced by Jeh and Widom [Jeh and Widom 03]. This allows
us to compute a PageRank vector with teleport probability α and with an
amount of error sufficiently small for finding a cut with volume k, in time
O(k/α). (The volume of a set S is defined to be the sum of the degrees over
all vertices in S, and the volume of a cut is the minimum of the volumes
of the two sides.)
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• We prove a mixing result for PageRank vectors, which shows that if a
PageRank vector with teleport probability α has significantly more proba-
bility than the stationary distribution on some set of vertices with volume
k, a sweep over that PageRank vector will produce a cut with conductance
O(

√
α log k).

• We show that for any set C, and for many vertices v contained in C, a
PageRank vector whose starting vertex is v, and whose teleport probabil-
ity is greater than the conductance of C, has a significant fraction of its
probability contained in C.

Combining these results yields a partitioning result for PageRank vectors: for
any set C with conductance Φ, there are a significant number of starting vertices
within C for which a sweep over an appropriate PageRank vector finds a cut with
conductance O(

√
Φ log k), where k is the volume of C. Such a cut can be found

in time O(k/Φ + k log k).
To produce balanced cuts in nearly linear time, we must be able to remove a

small piece of the graph in time proportional to the volume of that small piece,
rather than the volume of C or the volume of the entire graph. We present the
PageRank-Nibble algorithm that does this. For many starting vertices within a
set C of conductance O(φ2/ log2m), this algorithm finds a cut with conductance
φ and volume O(k) in time O(k log2m/φ2), provided that we can guess the
volume of the smaller side of the cut within a factor of 2. This improves the
Nibble algorithm, which runs in time O(k log4m/φ5) and requires that C have
conductance O(φ3/ log2m).

We can combine cuts found by PageRank-Nibble into a cut whose conductance
is at most φ and whose volume is at least half that of any set with conductance
O(φ2/ log2m), in time O(m log4m/φ2) where m is the number of edges in the
graph. This improves the Partition algorithm, which obtains a cut whose vol-
ume is at least half that of any set with conductance O(φ3/ log2m) in time
O(m log6m/φ5).

2. Preliminaries

Throughout the paper we will consider a graph G that is undirected and un-
weighted. This graph has a vertex set V = {v1, . . . , vn} and an edge set E with
m undirected edges. We write d(v) for the degree of vertex v, and let D be the
diagonal matrix where Di,i = d(vi). We let A be the adjacency matrix, where
Ai,j = 1 if and only if there is an edge joining vi and vj .
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When we consider vectors over the vertex set V , we will write them as row
vectors, so the product of a vector p and a matrix A will be written pA. Two
vectors we will use frequently are the stationary distribution,

ψS(x) =

{
d(x)

vol(S) if x ∈ S,
0 otherwise,

and the indicator function,

χv(x) =
{

1 if x = v,
0 otherwise.

The support Supp(p) of a vector p is the set of vertices where p is nonzero, and
the sum of this vector over a set S of vertices is written as

p(S) =
∑
u∈S

p(u).

If the entries of p are positive and p(V ) is at most 1, we will refer to p(S) as the
amount of probability from p on S.

2.1. PageRank Vectors

The PageRank vector prα(s) is defined to be the unique solution of the linear
system

prα(s) = αs+ (1 − α)prα(s)W. (2.1)

Here, α is a constant in (0, 1] called the teleport probability, s is a vector called
the starting vector, and W is the lazy random walk transition matrix W =
1
2 (I + D−1A). This is superficially different from the standard definition of
PageRank, which uses the standard random walk matrix D−1A instead of the
lazy random walk matrix W , but the two definitions are equivalent up to a
change in α. A proof of this is given in the appendix (Section 8).

PageRank was introduced by Brin and Page [Brin and Page 98, Page et al. 98],
who proposed using PageRank with the starting vector s = �1/n for search
ranking. PageRank vectors whose starting vectors are not uniform, but in-
stead represent a combination of topics and web pages, are called personalized
PageRank vectors and have been used to provide personalized search ranking and
context-sensitive search [Berkhin 06, Fogaras and Racz 04, Haveliwala 03, Jeh
and Widom 03].

We will consider PageRank vectors where the starting vector is a single vertex.
We will also sometimes allow PageRank vectors where the starting vector s has
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both positive and negative entries, so we define the positive part of s as follows,

s+(x) =

{
s(x) if s(x) ≥ 0,
0 otherwise.

Here are some useful properties of PageRank vectors (also see [Haveliwala 03, Jeh
and Widom 03]). The proofs are given in the appendix.

Proposition 2.1. For any starting vector s, and any constant α in (0, 1], there is a
unique vector prα(s) satisfying prα(s) = αs+ (1 − α)prα(s)W.

Proposition 2.2. For any fixed value of α in (0, 1], there is a linear transformation
Rα such that prα(s) = sRα. Furthermore, Rα is given by the matrix

Rα = αI + α
∞∑

t=1

(1 − α)tW t. (2.2)

This implies that a PageRank vector is a weighted average of lazy random walk
vectors,

prα(s) = αs+ α

∞∑
t=1

(1 − α)t
(
sW t

)
. (2.3)

This also implies that a PageRank vector prα(s) is linear in its starting vector s.

2.2. Conductance, Sweeps, and Mixing

We recall that the volume of a subset S ⊆ V of vertices is

vol(S) =
∑
x∈S

d(x)

and the volume of the entire graph is vol(V ) = 2m, where m is the number of
edges in the graph. The edge boundary of a set is defined to be

∂(S) = {{x, y} ∈ E | x ∈ S, y �∈ S} .

The conductance of a set is

Φ(S) =
|∂(S)|

min (vol(S), 2m− vol(S))
.

A sweep is a technique for producing a cut from a vector and is widely used in
spectral partitioning [Mihail 89, Spielman and Teng 96]. We will use the following
degree-normalized version of a sweep. Given a PageRank vector p = prα(s) with
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support size Np = |Supp(p)|, let v1, . . . , vNp
be an ordering of the vertices from

highest to lowest probability-per-degree, so that

p(vi)
d(vi)

≥ p(vi+1)
d(vi+1)

.

This produces a collection of sets, with one set Sp
j = {v1, . . . , vj} for each in-

teger j in {1, . . . , Np}, which we call sweep sets. We let Φ(p) be the smallest
conductance of any of these sweep sets:

Φ(p) = min
j∈[1,Np]

Φ(Sp
j ).

A cut with conductance Φ(p) can be found by sorting p/d and computing the
conductance of each sweep set. This can be done in time O(vol(Supp(p)) +
Np logNp).

To measure how a vector p is distributed in the graph, we define a function p [x]
that gives an upper bound on the amount of probability on any set of vertices
with volume x. We refer to this function as the Lovász-Simonovits curve, since
it was introduced by Lovász and Simonovits [Lovász and Simonovits 90, Lovász
and Simonovits 93]. This function is defined for all real numbers x in the interval
[0, 2m] and is determined by the amount of probability on the sweep sets; we set

p
[
vol(Sp

j )
]

= p(Sp
j ), for each j ∈ [0, n],

and define p [x] to be piecewise linear between these points. In other words, for
any point x ∈ [0, 2m], if j is the unique index where x is between vol(Sp

j ) and
vol(Sp

j+1), then

p [x] = p(Sp
j ) +

x− vol(Sp
j )

d(vj+1)
p(vj+1).

The function p [x] is increasing and concave. It is not hard to see that p [x] is an
upper bound on the amount of probability from p on any set with volume x; for
any set S, we have

p(S) ≤ p [vol(S)] .

As an example of the notation we will use throughout the paper, the PageRank
vector with teleport probability α and starting vector χv is written as prα(χv).
If we let p = prα(χv), the amount of probability from this PageRank vector on
a set S is written as either p(S) or [prα(χv)] (S), and the value of the Lovász-
Simonovits curve at the point x = vol(S) is written as p [vol(S)].
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3. Computing Approximate PageRank Vectors

Instead of computing the PageRank vector prα(s) exactly, we will approximate it
by another PageRank vector with a slightly different starting vector, prα(s− r),
where r is a vector with nonnegative entries. If r(v) ≤ εd(v) for every vertex in
the graph, then we say that prα(s− r) is an ε-approximate PageRank vector for
prα(s).

Definition 3.1. An ε-approximate PageRank vector for prα(s) is a PageRank vector
prα(s− r) where the vector r is nonnegative and satisfies r(v) ≤ εd(v) for every
vertex v in the graph.

We remark that the total difference between an ε-approximate PageRank vec-
tor prα(s− r) and the PageRank vector prα(s) on a given set S can be bounded
in terms of ε and vol(S). Such a bound is given in Section 5.

In this section, we give the ApproximatePR(s, α, ε) algorithm for computing
an ε-approximate PageRank vector with small support. The running time of the
algorithm depends on ε and α, but is independent of the size of the graph.

Theorem 3.2. The ApproximatePR(s, α, ε) algorithm has the following properties.
For any starting vector s with ‖s‖1 ≤ 1, and any constant ε ∈ (0, 1], the algorithm
computes an ε-approximate PageRank vector p for prα(s). The support of p
satisfies vol(Supp(p)) ≤ 2

(1−α)ε , and the running time of the algorithm is O( 1
εα ).

The proof of Theorem 3.2 is based on a series of facts that we describe below.
The starting point is the observation that the PageRank operator commutes with
the lazy walk matrix W ,

prα(s)W = prα(sW ). (3.1)

A proof is included in the appendix. By combining Equation (3.1) with the
equation that defines PageRank, we derive the following equation:

prα(s) = αs+ (1 − α)prα(s)W

= αs+ (1 − α)prα(sW ). (3.2)

Jeh and Widom derived this equation and showed that it provides a flexible
way to compute many PageRank vectors simultaneously [Jeh and Widom 03].
A similar approach was used by Berkhin [Berkhin 06]. The algorithms they
proposed can be used to compute a single approximate PageRank vector in time
O( log n

εα ). The difference of log n between their running time and ours is the



42 Internet Mathematics

overhead that they incur by using a heap or priority queue instead of a FIFO
queue.

Our algorithm maintains a pair of vectors p and r, starting with the trivial
approximation p = �0 and r = s, and applies a series of push operations that
move probability from r to p while maintaining the invariant p = prα(s− r).
Each push operation takes the probability from r at a single vertex u, moves
an α fraction of this probability to p(u), and then spreads the remaining 1 − α

fraction within r by applying a lazy random walk step to the vector (1−α)r(u)χu.
We define the push operation more formally in Definition 3.3, and then verify
that each push operation does maintain the invariant p = prα(s− r).

Definition 3.3. For the push operation, push(u), let p′ = p and r′ = r, except for
these changes:

1. p′(u) = p(u) + αr(u),

2. r′(u) = (1 − α)r(u)/2,

3. for each vertex v such that (u, v) ∈ E, r′(v) = r(v) + (1 − α)r(u)/(2d(u)).

Lemma 3.4. Let p′ and r′ be the result of performing push(u) on p and r. Then,

p = prα(s− r) =⇒ p′ = prα(s− r′).

Proof. After the push operation, we have

p′ = p+ αr(u)χu,

r′ = r − r(u)χu + (1 − α)r(u)χuW.

We will apply Equation (3.2) to r(u)χu to show that p+ prα(r) = p′ + prα(r′).
The lemma will follow by the linearity property of PageRank vectors:

prα(r) = prα(r − r(u)χu) + prα(r(u)χu)

= prα(r − r(u)χu) + αr(u)χu + prα((1 − α)r(u)χuW )

= prα(r − r(u)χu + (1 − α)r(u)χuW ) + αr(u)χu

= prα(r′) + p′ − p.

During each push operation, some probability is moved from r to p, where it
remains. Our algorithm performs pushes only on vertices where r(u) ≥ εd(u),
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Algorithm 1. (ApproximatePR(s, α, ε).)

1. Let p = �0, and r = s.

2. While r(u) ≥ εd(u) for some vertex u:

(a) Pick any vertex u where r(u) ≥ εd(u).

(b) Apply push(u).

3. Return p and r.

which ensures that a significant amount of probability is moved at each step and
allows us to bound the number of pushes required to compute an ε-approximate
PageRank vector.

Algorithm 1 can be implemented by maintaining a queue containing those
vertices u satisfying r(u) ≥ εd(u). At each step, a push operation is performed
on the first vertex u in the queue. If r(u) is still at least εd(u) after the push is
performed, then u is placed at the back of the queue: otherwise, u is removed
from the queue. If a push operation raises the value of r(x) above εd(x) for some
neighbor x of u, then x is added to the back of the queue. This continues until
the queue is empty, at which point all vertices satisfy r(u) < εd(u). We now
show that this algorithm has the properties promised in Theorem 3.2.

Proof of Theorem 3.2. Each push operation preserves the property p = prα(s− r),
and the stopping criterion ensures that r satisfies r(u) < εd(u) at every vertex,
so the algorithm returns an ε-approximate PageRank vector for prα(s).

To bound the running time, let T be the total number of push operations
performed by ApproximatePR, and let di be the degree of the vertex where the
ith push operation was performed. When the ith push operation was performed,
the amount of probability on this vertex was at least εdi, so ‖r‖1 decreased by
at least αεdi. Since ‖r‖1 was at most 1 initially, we must have αε

∑T
i=1 di ≤ 1,

so
T∑

i=1

di ≤ 1
εα
. (3.3)

It is possible to perform a push operation on the vertex u, and to perform the
necessary queue updates, in time proportional to d(u). The running time bound
for ApproximatePR follows from Equation (3.3).

To bound the support volume, notice that for each vertex v in Supp(p), there
is some probability remaining on r(v) when the algorithm terminates. In fact,
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we must have r(v) ≥ ((1 − α)/2) · εd(v), because when the last push operation
was performed at vertex v, r(v) was at least εd(v), and a 1−α

2 fraction of that
probability remained on r(v). It follows that vol(Supp(p)) ≤ 2

(1−α)ε .

4. A Mixing Result for PageRank Vectors

In this section, we prove a mixing result for PageRank vectors that is an analogue
of the Lovász-Simonovits mixing result for random walks. For any PageRank
vector prα(s), we give an upper bound on prα(s) [x] that depends on the smallest
conductance Φ(prα(s)) found by performing a sweep over prα(s). We use this
mixing result to prove the following theorem, which shows that if there exists
a set of vertices S that contains more probability from prα(s) than from the
stationary distribution ψV by a constant amount, then a sweep over prα(s) finds
a cut with conductance O(

√
α log(vol(S))).

Theorem 4.1. If prα(s) is a PageRank vector with ‖s+‖1 ≤ 1, and there exists a set
S of vertices and a constant δ satisfying

[prα(s)](S) − ψV (S) > δ,

then

Φ(prα(s)) <

√
12α log(4

√
vol(S)/δ)

δ
.

In the remainder of this section, we will derive a sequence of lemmas and a
general mixing result that lead to the proof of this theorem. When we eventually
apply this theorem, we will apply it to an ε-approximate PageRank vector. For
the conditions of Theorem 4.1 to hold, ε must be small enough that the approxi-
mate PageRank vector contains more probability than the stationary distribution
on some set of vertices.

The first step toward the proof of Theorem 4.1 is to consider how probability
moves when a lazy random step is applied to an arbitrary vector p. To do so,
we view each undirected edge {u, v} as a pair of directed edges (u, v) and (v, u).
For each directed edge (u, v) we let

p(u, v) =
p(u)
d(u)

,
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and for any set of directed edges A, we define

p(A) =
∑

(u,v)∈A

p(u, v).

When a lazy walk step is applied to the vector p, the amount of probability that
moves from u to v is 1

2p(u, v). For any set S of vertices, we define the set of
directed edges into S,

in(S) = {(u, v) ∈ E | v ∈ S},

and the set of directed edges out of S,

out(S) = {(u, v) ∈ E | u ∈ S}.

The following lemma describes the amount of probability on a set S in terms of
the amount of probability moving across in(S) and out(S).

Lemma 4.2. For any vector p and any set S of vertices,

pW (S) =
1
2

(p (in(S) ∪ out(S)) + p (in(S) ∩ out(S))) .

Proof. The amount of probability from pW on a vertex u can be written as follows:

pW (u) =
1
2
p(u) +

1
2

∑
(v,u)∈E

p(v)
d(v)

=
1
2

∑
(u,v)∈E

p(u, v) +
1
2

∑
(v,u)∈E

p(v, u)

=
1
2
p (in(u)) +

1
2
p (out(u)) .

The amount of probability on a set S can then be written as

pW (S) =
1
2
p(in(S)) +

1
2
p(out(S))

=
1
2
p (in(S) ∪ out(S)) +

1
2
p (in(S) ∩ out(S)) .

Now consider a PageRank vector defined by the usual equation,

prα(s) = αs+ (1 − α)prα(s)W.
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This equation relates prα(s) to prα(s)W . By writing [prα(s)W ](S) in terms of
prα(s) using Lemma 4.2, we can relate prα(s) to itself. As a result, we can bound
the height of the Lovasz-Simonovits curve for prα(s) in terms of other points on
the same curve.

Lemma 4.3. If p = prα(s) is a PageRank vector, then for any set S of vertices,

p(S) = αs(S) + (1 − α)
(

1
2
p (in(S) ∩ out(S)) +

1
2
p (in(S) ∪ out(S))

)
.

Furthermore, for each j ∈ [1, n− 1],

p
[
vol(Sp

j )
] ≤ αs

[
vol(Sp

j )
]

+ (1 − α)
(

1
2
p
[
vol(Sp

j ) − |∂(Sp
j )|]+

1
2
p
[
vol(Sp

j ) + |∂(Sp
j )|]) .

Proof. Let p = prα(s− r) be an approximate PageRank vector. Since r is non-
negative, we have the equation

p = α(s− r) + (1 − α)pW

≤ αs+ (1 − α)pW.

Applying Lemma 4.2, we obtain

p(S) ≤ αs(S) + (1 − α)pW (S)

≤ αs(S) + (1 − α)
(

1
2
p (in(S) ∪ out(S)) +

1
2
p (in(S) ∩ out(S))

)
.

This proves the first part of the lemma. To prove the second part, recall that
p
[
vol(Sp

j )
]

= p(Sp
j ) for any integer j ∈ [0, n]. It can be verified that the curve

p [x] gives an upper bound on the amount of probability moving over any set of
directed edges A. Specifically, we have the bound p(A) ≤ p [|A|]. Using these
facts,

p
[
vol(Sp

j )
]

= p(Sp
j )

≤ αs(Sp
j ) + (1 − α)

(
1
2
p
(
in(Sp

j ) ∪ out(Sp
j )
)

+
1
2
p
(
in(Sp

j ) ∩ out(Sp
j )
))

≤ αs
[
vol(Sp

j )
]
+ (1 − α)

(
1
2
p
[∣∣in(Sp

j ) ∪ out(Sp
j )
∣∣]

+
1
2
p
[∣∣in(Sp

j ) ∩ out(Sp
j )
∣∣]).
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The lemma will follow by bounding the sizes of the sets in the inequality above.
Notice that ∣∣in(Sp

j ) ∪ out(Sp
j )| + |in(Sp

j ) ∩ out(Sp
j )
∣∣ = 2vol(Sp

j ),

and ∣∣in(Sp
j ) ∪ out(Sp

j )
∣∣− ∣∣in(Sp

j ) ∩ out(Sp
j )
∣∣ = 2|∂(Sp

j )|.

This implies that ∣∣in(Sp
j ) ∪ out(Sp

j )
∣∣ = vol(Sp

j ) + |∂(Sp
j )|,

and ∣∣in(Sp
j ) ∩ out(Sp

j )
∣∣ = vol(Sp

j ) − |∂(Sp
j )|.

The result follows.

One consequence of the previous lemma is that a PageRank vector is more
spread out than its starting vector in the sense that the curve prα(s) [x] lies
below the curve s [x]. This monotonicity property is stated in the following
lemma. We remark that this does not imply that prα(s) is less than or equal to
s at any particular vertex.

Lemma 4.4. For any starting vector s, and any x ∈ [0, 2m],

prα(s) [x] ≤ s [x] .

Proof. If we let p = prα(s), Lemma 4.3 implies that for each j ∈ [1, n− 1],

p
[
vol(Sp

j )
] ≤ αs

[
vol(Sp

j )
]
+ (1 − α)

(
1
2
p
[
vol(Sp

j ) − |∂(Sp
j )|]

+
1
2
p
[
vol(Sp

j ) + |∂(Sp
j )|])

≤ αs
[
vol(Sp

j )
]
+ (1 − α)p

[
vol(Sp

j )
]
,

where the last line follows from the concavity of p [k]. This implies that p
[
vol(Sp

j )
]

≤ s
[
vol(Sp

j )
]

for each j ∈ [1, n − 1]. The same equation then holds for all
x ∈ [0, 2m], because s [x] is concave and p [x] is linear between these points.

Lemma 4.3 is stronger than the monotonicity property of Lemma 4.4, because
it shows that for the PageRank vector p = prα(s), the height of the curve p [x]
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at the point vol(Sp
j ) is at most the average of the heights of the same curve at

the two points vol(Sp
j ) − |∂(Sp

j )| and vol(Sp
j ) + |∂(Sp

j )|, plus a small term that
depends on α. In the following theorem, we will use this averaging equation to
derive a series of upper bounds on the curve p [x]. As a result, we can show
that one of the following must be true: either p(S) − ψV (S) is not very large
for any set S of vertices in the graph, or else there is some sweep set Sp

j where
p(Sp

j ) − ψV (S) is fairly large, and where Sp
j has small conductance.

Theorem 4.5. Let p = prα(s) be a PageRank vector with ‖s+‖1 ≤ 1. Let φ and γ be
any constants in [0, 1]. Either the bound

p(S) − ψV (S) ≤ γ + αt+
√

min(vol(S), 2m− vol(S))
(

1 − φ2

8

)t

holds for any set of vertices S and any integer t, or else there exists a sweep cut
Sp

j , for some j ∈ [1, |Supp(p)|], with the following properties:

1. Φ(Sp
j ) < φ,

2. for some integer t,

p(Sp
j ) − ψV (Sp

j ) > γ + αt+
√

min(vol(Sp
j ), 2m− vol(Sp

j ))
(

1 − φ2

8

)t

.

Proof. Let ft(x) = γ+αt+
√

min(x, 2m− x)
(
1 − φ2

8

)t

, and consider the equation

p [x] − x

2m
≤ ft(x) for all x ∈ [0, 2m]. (4.1)

Assuming that there does not exist a sweep cut with both of the properties stated
in the theorem, we will prove by induction that this equation holds for all t ≥ 0.
The theorem will follow.

For the base case t = 0, notice that for any value of x in the interval [0, 2m],

p [x] − x

2m
≤ min(1,min(x, 2m− x)) ≤

√
min(x, 2m− x).

Here, we have used the fact that ‖s+‖1 ≤ 1. This shows that Equation (4.1)
holds at t = 0 for any choice of γ and φ.

Now assume for the sake of induction that Equation (4.1) holds for some
specific t. To prove that Equation (4.1) holds for t+1 at every point x ∈ [0, 2m],
it suffices to show that it holds for t + 1 at the points xj = vol(Sp

j ) for each
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j ∈ [1, |Supp(p)|]. We already know that the equation holds trivially at x0 = 0
and xn = 2m. The result will follow because we will have shown that p [x]−x/2m
is piecewise linear between a set of points for which Equation (4.1) holds, and
because ft+1(x) is concave.

Consider an index j ∈ [1, |Supp(p)|]. We know that either Property 1 or
Property 2 of the theorem does not hold for Sj . If Property 2 does not hold, this
directly implies that Equation (4.1) holds with t + 1 and x = xj . If Property 1
does not hold, then we have Φ(Sp

j ) ≥ φ, and we will apply Lemma 4.3. There are
two cases to consider, depending on whether xj ≤ m or xj ≥ m. We will carry
out the proof assuming that xj ≤ m. The proof for the other case is similar.

p
[
vol(Sp

j )
] ≤ αs

[
vol(Sp

j )
]
+ (1 − α)

(
1
2
p
[
vol(Sp

j ) − |∂(Sp
j )|]

+
1
2
p
[
vol(Sp

j ) + |∂(Sp
j )|])

≤ α+
(

1
2
p
[
vol(Sp

j ) − |∂(Sp
j )|]+

1
2
p
[
vol(Sp

j ) + |∂(Sp
j )|])

= α+
(

1
2
p
[
xj − Φ(Sp

j )xj

]
+

1
2
p
[
xj + Φ(Sp

j )xj

])

≤ α+
(

1
2
p [xj − φxj ] +

1
2
p [xj + φxj ]

)
.

The last step above follows from the concavity of p [x].

Using the induction hypothesis,

p [xj ] ≤ α+
1
2

(
ft(xj − φxj) +

xj − φxj

2m
+ ft(xj + φxj) +

xj + φxj

2m

)

= α+
xj

2m
+

1
2

(ft(xj − φxj) + ft(xj + φxj)) .

Therefore,

p [xj ] − xj

2m
≤ α+

1
2

(ft(xj − φxj) + ft(xj + φxj))

= γ + α+ αt+
1
2

(√
xj − φxj +

√
xj + φxj

)(
1 − φ2

8

)t

.
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By examining the Taylor series of
√

1 + φ at φ = 0, we see that for any x ≥ 0
and φ ∈ [0, 1],

1
2

(√
x− φx+

√
x+ φx

)
≤ √

x · 1
2

((
1 − 1

2
φ− 1

8
φ2 − 1

16
φ3 − . . .

)
+
(

1 +
1
2
φ− 1

8
φ2 +

1
16
φ3 − . . .

))

≤ √
x

(
1 − φ2

8

)
.

Therefore,

p [xj ] − xj

2m
≤ γ + α+ αt+

√
xj

(
1 − φ2

8

)(
1 − φ2

8

)t

= ft+1(xj).

We will now derive Theorem 4.1.

Proof of Theorem 4.1. Let φ = Φ(prα(s)). Theorem 4.5 implies that for any integer
t ≥ 0 and any set S,

[prα(s)](S) − ψV (S) ≤ αt+
√

min(vol(S), 2m− vol(S))
(

1 − φ2

8

)t

.

If we set

t =
⌈

8
φ2

log(4
√

vol(S)/δ))
⌉
≤ 9
φ2

log(4
√

vol(S)/δ),

then we have √
min(vol(S), 2m− vol(S))

(
1 − φ2

8

)t

≤ δ

4
.

This gives the bound

[prα(s)](S) − ψV (S) ≤ α
9
φ2

log(4
√

vol(S)/δ) +
δ

4
.

On the other hand, we have assumed that [prα(s)](S) − ψV (S) > δ. Combining
these upper and lower bounds yields the following inequality,

3δ
4
< α

9
φ2

log(4
√

vol(S)/δ).

The result follows by solving for φ.
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5. Cuts from PageRank Vectors

Consider the following procedure: pick a starting vertex v and a value of α,
compute an ε-approximate PageRank vector for prα(s), and perform a sweep
over the resulting approximation. In this section, we show that for any set C
of conductance O(α) and for many of the vertices v within C, this procedure
finds a set with conductance O(

√
α log(vol(C))). To prove this, we identify a

set of vertices v within C for which we can give a lower bound on the amount of
probability from prα(χv) on the set C, and then we apply the results from the
previous section.

Theorem 5.1. For any set C and any constant α in (0, 1], there is a subset Cα ⊆ C

with volume vol(Cα) ≥ vol(C)/2 such that for any vertex v ∈ Cα, the PageRank
vector prα(χv) satisfies

[prα(χv)](C) ≥ 1 − Φ(C)
α

.

Proof. Theorem 5.1 states that a set C with small conductance contains a signif-
icant amount of probability from prα(χv) for many of the vertices v in C. We
first show that this holds for an average of the vertices in C, by showing that
the PageRank vector prα(ψC) satisfies

[prα(ψC)](C̄) ≤ Φ(C)
1 − α

2α
. (5.1)

We then observe that if we sample a vertex from the distribution ψC , at least
half of the time prα(χv) is less than twice its expectation, which is prα(ψC).

We will prove Equation (5.1) by examining the movement of probability during
the single step from prα(ψC) to prα(ψC)W . The amount of probability that
moves from C to C̄ in the step from prα(ψC) to prα(ψC)W is bounded by
1
2prα(ψC) [|∂(C)|], so

[prα(ψC)W ]
(
C̄
) ≤ [prα(ψC)]

(
C̄
)

+
1
2
prα(ψC) [|∂(C)|] .

We combine this observation with the PageRank equation to obtain the following:

[prα(ψC)]
(
C̄
)

= [αψC + (1 − α)prα(ψC)W ]
(
C̄
)

= (1 − α)[prα(ψC)W ]
(
C̄
)

≤ (1 − α)[prα(ψC)]
(
C̄
)

+
1 − α

2
prα(ψC) [|∂(C)|] .
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This implies that

[prα(ψC)](C̄) ≤ 1 − α

2α
prα(ψC) [|∂(C)|] .

This equation bounds the amount of probability outside of C in terms of
1
2prα(ψC) [|∂(C)|], which is an upper bound on the amount of probability that
leaves C at each step. This quantity can be bounded in terms of the conductance
of C. Using the monotonicity property from Lemma 4.4,

prα(ψC) [|∂(C)|] ≤ ψC [|∂(C)|]
=

|∂(C)|
vol(C)

= Φ(C).

This implies that

[prα(ψC)](C̄) ≤ 1 − α

2α
Φ(C).

To complete the proof, let Cα be the set of vertices v in C satisfying

prα(χv)(C̄) ≤ Φ(C)
α

.

Let v be a vertex chosen randomly from the distribution ψC , and define the
random variable X = prα(χv)(C̄). The linearity property of PageRank vectors
from Proposition 2.2 implies the following bound on the expectation of X:

E [X] = prα(ψC)(C̄) ≤ 1 − α

2α
Φ(C) ≤ Φ(C)

2α
.

Applying Markov’s inequality yields

Pr [v �∈ Cα] ≤ Pr [X > 2E [X]] ≤ 1
2
.

Since Pr [v ∈ Cα] ≥ 1
2 , the volume of Cα is at least 1

2vol(C).

We can give a similar lower bound on the amount of probability within C from
an ε-approximate PageRank vector. We use the following lemma to bound the
amount of probability that is lost in the approximation.

Lemma 5.2. For any ε-approximate PageRank vector prα(s− r) and any set S of
vertices,

[prα(s)](S) ≥ [prα(s− r)](S) ≥ [prα(s)](S) − εvol(S).
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Proof. Since the vector r is nonnegative,

prα(s− r) = prα(s) − prα(r) ≤ prα(s).

To prove the other half of the lemma, we use the monotonicity property from
Lemma 4.4 to bound the difference between prα(s) and an ε-approximate
PageRank vector prα(s− r). For any set S, we have

[prα(r)](S) ≤ prα(r) [vol(S)] ≤ r [vol(S)] ,

and so

[prα(s− r)](S) = [prα(s)](S) − [prα(r)](S)

≥ [prα(s)](S) − r [vol(S)]

≥ [prα(s)](S) − εvol(S).

We now know that if v is a vertex in Cα and if prα(χv − r) is an ε-approximate
PageRank vector, then

[prα(χv − r)](C) ≥ 1 − Φ(C)
α

− εvol(C).

If both Φ(C)/α and ε are small, there is still a significant amount of probability
on the set C, so we can apply the mixing result from Theorem 4.1 to show that
a sweep over prα(χv − r) finds a cut with small conductance.

Theorem 5.3. Let α be a constant in (0, 1], and let C be a set satisfying

1. Φ(C) ≤ α/10,

2. vol(C) ≤ 2
3vol(G).

If p̃ = prα(χv − r) is an ε-approximate PageRank vector where v ∈ Cα and
ε ≤ 1

10vol(C) , then a sweep over p̃ produces a cut with conductance Φ(p̃) =

O(
√
α log(vol(C))).

Proof. Let p̃ = prα(χv − r) be an ε-approximate PageRank vector for prα(χv) sat-
isfying the assumptions of the theorem. Combining Theorem 5.1 with Lemma 5.2
gives a lower bound on p̃(C),

p̃(C) ≥ 1 − Φ(C)
α

− εvol(C).
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Since Φ(C)/α ≤ 1/10 and ε ≤ 1/(10vol(C)), we have p̃(C) ≥ 4/5, which implies

p̃(C) − ψV (C) ≥ 4
5
− 2

3
=

2
15
.

Theorem 4.1 then implies

Φ(p̃) <
√

90α log(30
√

vol(C)).

As a corollary, there is some starting vertex v and value of α for which a sweep
over prα(χv) finds a cut with conductance near the minimum conductance in the
graph.

Corollary 5.4. Let ΦG be the minimum conductance of any set of vertices in the
graph, and let Copt be a set achieving this minimum. If p̃ is an ε-approximate
PageRank vector for prα(χv), where α = 10ΦG, v ∈ Copt

α , and ε ≤ 1
10vol(Copt) ,

then
Φ(p̃) = O(

√
ΦG log(vol(Copt))).

Corollary 5.4 follows from Theorem 5.3 by setting C = Copt.

6. Finding Small Cuts in Nearly Linear Time

In the previous section, we showed that to find a cut within a set C, it suffices
to compute an ε-approximate PageRank vector with ε roughly 1/vol(C). This
requires time proportional to vol(C), but the resulting cut S may have much
smaller volume. This leaves us with a problem similar to the one facing recursive
spectral partitioning: we do not want to spend a large amount of time to find a
cut whose volume is small.

In this section, we extend our local partitioning techniques to find a cut with
small conductance in time proportional to the volume of the smaller side of the
cut found. Essentially, we consider what would happen if we were to compute
an approximate PageRank vector with different levels of error. We show that if
a given level of error yields a cut whose volume is too small, we could have found
a cut with similar volume more quickly by using a larger amount of error.

The result is an algorithm called PageRank-Nibble, which takes a constant
φ ∈ (0, 1] and a scale b ∈ [1, logm] as part of its input and attempts to find a
cut with conductance φ and volume at least 2b−1. We prove that PageRank-
Nibble finds a set with these properties for at least one choice of b in the range
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Algorithm 2. (PageRank-Nibble (v, φ, b).)
Input: a vertex v, a constant φ ∈ (0, 1], and an integer b ∈ [1, B], where
B = �logm�.

1. Let α = φ2

225 log(100
√

m)
.

2. Compute an ε-approximate PageRank vector p = prα(χv − r),
with ε ≤ (2b · 48�logm�)−1.

3. For each j ∈ [1, |Supp(p)|], check whether Sp
j obeys the following

conditions:

• conductance: Φ(Sp
j ) < φ,

• volume: 2b−1 < vol(Sp
j ) < 2

3vol(G),

• probability: p
[
2b
]− p

[
2b−1

]
> 1

48�log m� .

4. If some set Sp
j satisfies all of these conditions, return Sp

j . Otherwise,
return nothing.

[1, �logm�] whenever v is a good starting vertex for a set C with sufficiently small
conductance. In addition, we show that the resulting set has a large intersection
with the set C.

Theorem 6.1. PageRank-Nibble(v, φ, b) (Algorithm 2) can be implemented with run-
ning time O(2b log2 m

φ2 ).

Proof. An ε-approximate PageRank vector p with ε ≤ (
2b · 48�logm�)−1 can

be computed in time O(2b log m
α ) using ApproximatePR. By Theorem 3.2, the

support of this vector has volume O(2b logm), and the number of vertices in the
support is Np = O(2b logm). It is possible to check each of the conditions in
step 3 of PageRank-Nibble, for every set Sp

j with j ∈ [1, Np], in the amount of
time required to sort and perform a sweep, which is

O(vol(Supp(p)) +Np logNp) = O(2b log2m).

Since we have set α = Ω(φ2/ logm), the running time of PageRank-Nibble is

O(2b logm
α

+ 2b log2m) = O(2b log2m

φ2
).
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Theorem 6.2. Let C be a set such that

vol(C) ≤ 1
2
vol(G)

and Φ(C) ≤ φ2/(22500 log2 100m), and let v be a vertex in Cα for the value of
α used in PageRank-Nibble, which is φ2/(225 log(100

√
m)). Then, there is some

integer b ∈ [1, �logm�] for which PageRank-Nibble(v, φ, b) finds a set S meeting
all of its criteria. Any such set has the following properties:

• conductance: Φ(S) < φ,

• volume: 2b−1 < vol(S) < 2
3vol(G),

• intersection: vol(S ∩ C) > 2b−2.

Proof. Consider the PageRank vector prα(χv). We have assumed that v is in Cα

and have set Φ(C) to ensure that Φ(C) ≤ α/(100�logm�). This implies that

prα(χv) [vol(C)] − ψV (C) ≥ (1 − φ(C)
α

) − 1
2

≥ 1
2
− 1

100
.

We have set α so that if t0 = � 8
φ2 log(100

√
m)�, then αt0 ≤ 1/25. With this

choice of t0, we have

αt0 +
√

vol(C)
(

1 − φ2

8

)t0

<
1
25

+
1

100
.

Since 1
2 − 1

100 >
5
12 + 1

25 + 1
100 , the following equation holds:

prα(χv) [vol(C)] − vol(C)
2m

>
5
12

+ αt0 +
√

vol(C)
(

1 − φ2

8

)t0

. (6.1)

Let B = �logm�. For each integer b in [1, B], let γb = 5
12 ( 9

10 + 1
10

b
B ). We will

consider the following equation:

prα(χv) [x] − x

2m
> γb + αt+

√
x

(
1 − φ2

8

)t

. (6.2)

We have already shown that this holds with b = B, x = m, and t = t0, in
Equation (6.1). Let b0 be the smallest value of b for which this equation holds
for some x0 ≤ 2b and for some value of t. We will show that PageRank-Nibble
succesfully returns a cut when it is run with b = b0.
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When PageRank-Nibble is run with b = b0, it computes an ε-approximate
PageRank vector prα(χv − r) with ε ≤ (2b048B)−1. With this amount of error,
we have

prα(χv − r) [x0] ≥ prα(χv) [x0] −
(

2−b0

48B

)
x0

≥ prα(χv) [x0] − 1
48B

≥ prα(χv) [x0] − (γb0 − γb0−1) +
1

48B
,

where the last line follows because γb0 −γb0−1 ≤ 1
24B . Since Equation (6.2) holds

for b0 and x0, we have for some integer t ≥ 0,

prα(χv − r) [x0] − x0

2m
>

(
γb0 + αt+

√
x0

(
1 − φ2

8

)t
)

−(γb0 − γb0−1) +
1

48B

>

(
γb0−1 +

1
48B

)
+ αt+

√
x0

(
1 − φ2

8

)t

.

Theorem 4.5 then shows that there exists a sweep cut Sj , with Sj = S
prα(χv−r)
j

for some value of j in the range [1, |Supp(prα(χv − r))|], such that Φ(Sj) ≤ φ,
and such that the following lower bound holds for some integer t′:

prα(χv − r)(Sj) − vol(Sj)
2m

>

(
γb0−1 +

1
48B

)
+ αt′ +

√
vol(Sj)

(
1 − φ2

8

)t′

,

(6.3)
where vol(Sj) = min(vol(Sj), 2m−vol(Sj)). We will show that this cut Sj meets
all the requirements of PageRank-Nibble, which will prove that the algorithm
outputs some cut when run with b = b0.

First, assume for the sake of contradiction that vol(Sj) ≤ 2b0−1. Since Equa-
tion (6.2) cannot hold with b = b0 − 1 and x ≤ 2b0−1, this implies that for any
integer t ≥ 0,

prα(χv − r)(Sj) − vol(Sj)
2m

= prα(χv − r) [vol(Sj)] − vol(Sj)
2m

≤ prα(χv) [vol(Sj)] − vol(Sj)
2m

≤ γb0−1 + αt+
√

vol(Sj)
(

1 − φ2

8

)t

.
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Since vol(Sj) = vol(Sj) when x ≤ 2b0−1, this contradicts the lower bound from
Equation (6.3). Therefore, it must be true that vol(Sj) > 2b0−1.

It must also be true that vol(Sj) < 2
3vol(G). Otherwise, the lower bound from

Equation (6.3) would imply that for some integer t′ ≥ 0,

prα(χv − r)(Sj) >
vol(Sj)

2m
+ γb0−1 + αt′ +

√
vol(Sj)

(
1 − φ2

8

)t′

>
2
3

+ γb0−1

≥ 2
3

+
9
10

5
12
.

This implies prα(χv − r)(Sj) > 1, which is a contradiction.
We will now prove that there is a significant difference in probability between

prα(χv − r)
[
2b0
]

and prα(χv − r)
[
2b0−1

]
. Since Equation (6.3) does not hold

with b = b0 − 1 and x = 2b0−1, we know that for every integer t ≥ 0,

prα(χv − r)
[
2b0−1

]− x0

2m
≤ γb0−1 + αt+

√
2b0−1

(
1 − φ2

8

)t

. (6.4)

We also know that for some integer t′,

prα(χv − r) [x0] − x0

2m
>

(
γb0−1 +

1
48B

)
+ αt′ +

√
x0

(
1 − φ2

8

)t′

. (6.5)

By plugging t′ into Equation (6.4), we obtain the following inequality:

prα(χv − r)
[
2b0
]− prα(χv − r)

[
2b0−1

] ≥ prα(χv − r) [x0]

−prα(χv − r)
[
2b0−1

]
>

1
48B

.

We have shown that Sj meets all the requirements of PageRank-Nibble, which
proves that the algorithm outputs some cut when run with b = b0. We now prove
a lower bound on vol(S ∩ C), which holds for any cut S output by PageRank-
Nibble, regardless of whether the algorithm was run with b = b0 or with some
other value of b. Let p′ [x] = p [x]− p [x− 1]. Since p′ [x] is a decreasing function
of x,

p′
[
2b−1

] ≥ p
[
2b
]− p

[
2b−1

]
2b − 2b−1

>
1

2(b−1)48B
.
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It is not hard to see that combining this lower bound on p′
[
2b−1

]
with the upper

bound p(C̄) ≤ Φ(C)
α gives the following bound on the volume of the intersection:

vol(Sj ∩ C) ≥ 2b−1 − p(C̄)
p′ [2b−1]

> 2b−1 − 2b−1

(
48B

Φ(C)
α

)
.

Since we have assumed that Φ(C)
α ≤ 1

100B , we have

vol(S ∩ C) > 2b−1 − 2b−2 = 2b−2.

7. Local Graph Partitioning

PageRank-Nibble improves the running time and approximation ratio of the
Nibble algorithm of Spielman and Teng [Spielman and Teng 04]. In their paper,
Nibble was called repeatedly with randomly chosen starting vertices and scales
to create an algorithm called Partition, which finds a cut with small conductance
and approximately optimal volume. Partition was applied recursively to create
algorithms for multiway partitioning, graph sparsification, and solving diagonally
dominant linear systems.

The PageRank-Partition algorithm can be created by calling PageRank-Nibble
instead of Nibble. The algorithm takes as input a parameter φ and a graph,
and it has expected running time O(m log4m/φ2). If there exists a set C with
Φ(C) = O(φ2/ log2m), then with high probability PageRank-Partition finds a
set S such that vol(S) ≥ vol(C)/2 and Φ(S) ≤ φ.

In Table 1, we compare our local partitioning algorithms with the existing
ones. The running times are stated in terms of φ, which is the conductance of
the cut returned by the algorithm. The approximation ratios are described by
stating what Φ(C) must be to guarantee that the algorithm will find a cut of
conductance φ with high probability.

Running time Approximation

Nibble 2b log4 m/φ5 φ3/ log2 m

PR-Nibble 2b log2 m/φ2 φ2/ log2 m

Partition m log6 m/φ5 φ3/ log2 m
PR-Partition m log4 m/φ2 φ2/ log2 m

Table 1. Comparison of local partitioning algorithms.
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Figure 1. Two orderings of the adjacency matrix of a graph derived from the
Internet Movie Database, created by applying spectral partitioning (left) and
PageRank-Nibble (right). Each dot represents an edge in the graph, which rep-
resents an appearance of an actress in a movie. The shade of the dot is determined
by the country in which the movie was produced.

Finding balanced cuts in nearly linear time with PageRank-Partition is one
important application of our local partitioning techniques. Recently, Khandekar,
Rao, and Vazirani, introduced an algorithm that produces balanced cuts quickly
using a different method [Khandekar et al. 06]. Their algorithm produces an
O(log2 n) approximation for the balanced cut problem using O(log4 n) single
commodity flow computations.

Figure 1 depicts two orderings of the adjacency matrix of a bipartite graph
derived from the Internet Movie Database.1 The graph contains 198,430 nodes,
each representing either an actress or a movie, and 1,133,512 edges, with an edge
appearing between a movie and an actress if and only if the actress appears in
the movie. The ordering on the left was created by applying spectral partitioning
recursively. The ordering on the right was created by applying PageRank-Nibble
many times with random starting vertices and scales to obtain a large collection
of cuts. Each vertex was then assigned the value of the smallest conductance
cut from the collection of which it was a member, and the vertices were ordered
from left to right in increasing order of this value. Both orderings make the
adjacency matrix of the movie graph approximately block-diagonal, with blocks
corresponding to different countries.

1http://www.imdb.com/
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8. Appendix

The following proposition shows that the definition of PageRank used in this
paper, which uses the lazy random walk matrix W = 1

2 (I+D−1A), is equivalent
to the standard definition, which uses the random walk matrix M = D−1A.

Proposition 8.1. Let p = prα(s) be the unique solution to the equation

p = αs+ (1 − α)pW,

where W = 1
2 (I +D−1A). Then, p is also the unique solution of the traditional

PageRank equation

p = α′s+ (1 − α′)pM,

where α′ = 2α/(1 + α) and M = D−1A.

Proof Proof. The proof is just algebra.

prα(s) = αs+ (1 − α)prα(s)W

= αs+
(

1 − α

2

)
prα(s) +

(
1 − α

2

)
prα(s)(D−1A).

This implies that

(
1 + α

2

)
prα(s) = αs+

(
1 − α

2

)
prα(s)(D−1A),

and so

prα(s) =
(

2α
1 + α

)
s+

(
1 − 2α

1 + α

)
prα(s)(D−1A).

The result follows.

Proof of Proposition 2.1. The solutions of the PageRank equation p = αs + (1 −
α)pW are the solutions of the linear system p (I − (1 − α)W ) = αs. The matrix
(I − (1 − α)W ) is nonsingular, since it is strictly diagonally dominant, so this
equation has a unique solution.

Proof of Proposition 2.2. The sum that defines Rα in Equation (2.2) is absolutely
convergent for α ∈ (0, 1], and the following computation shows that sRα obeys



62 Internet Mathematics

the steady state equation for prα(s):

αs+ (1 − α)sRαW = αs+ (1 − α)s

(
αI + α

∞∑
t=1

(1 − α)tW t

)
W

= αs+ s

(
α

∞∑
t=1

(1 − α)tW t

)

= sRα.

Since the solution to the this equation is unique by Proposition 2.1, it follows
that prα(s) = sRα.

Proof of Equation 3.1. The following sequence of equations shows that prα(s)W obeys
the PageRank equation for prα(sW ). This equation has a unique solution, and
so prα(s)W = prα(sW ):

prα(s) = αs+ (1 − α)prα(s)W

prα(s)W = αsW + (1 − α)prα(s)W 2

(prα(s)W ) = α(sW ) + (1 − α)(prα(s)W )W.
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