
Internet Mathematics Vol. 1, No. 2: 177-192

Guessing Secrets with Inner
Product Questions
Fan Chung, Ronald Graham, and Linyuan Lu

Abstract. We suppose we are given some fixed (but unknown) subsetX of a set Ω = Fn2 ,
where F2 denotes the field of two elements. Our goal is to learn as much as possible
about the elements of X by asking certain binary questions. Each “question” Q is just
some element of Ω, and the “answer” to Q is just the inner product Q · x ∈ F2 for
some x ∈ X. However, the choice of x is made by a truthful (but possibly malevolent)
adversary A, whom we may assume is trying to choose answers so as to yield as little

information as possible about X. In this note, we investigate several aspects of this
problem. In particular, we are interested in extracting as much information as possible

about X from A ’s answers. Although A can prevent us from learning the identity of

any particular element of X, with appropriate questions we can still learn quite a bit
about X. We determine the maximum amount of information that can be recovered

under these assumptions and describe explicit sets of questions for achieving this goal.

For the case that |X| = 2, we give an O(n3) algorithm for recovering the desired

information. On the other hand, when |X| ≥ 3, we show that no polynomial-time

algorithm can exist for producing a secret set consistent with the answers given, unless

P = NP .

1. Introduction

The following information-theoretic identification problem was introduced in

[Chung et al. 01a, Chung et al. 01b]. A fixed (but unknown) subset X of

some finite set Ω is given. A game is played between two players: the “seeker”

S and the “adversary” A. The goal of S is to learn as much as possible about

X by asking A binary questions. In general, each question can be thought of as

some map Q : Ω→ {0, 1}, so that Ω is partitioned into Ω = Q−1(0) ∪Q−1(1).
© A K Peters, Ltd.
1542-7951/04 $0.50 per page 177

178 Internet Mathematics

For each Q, A is allowed to choose some element x ∈ X , and answers Q with the
value Q(x) ∈ {0, 1}. In this case, S knows that X ∩ Q−1(Q(x)) W= ∅. Of course,
A could always use the same fixed element x ∈ X to answer every question

S asks, and then Swould never learn anything about any of the other elements

of X.

As noticed in [Chung et al. 01a, Chung et al. 01b], with |X | = k, S can

always choose a sufficiently rich set of questions so that no matter how A selects

the answers, the surviving set of possible k-element sets (or “k-sets”) of secrets

consistent with all the answers forms an intersecting k-uniform hypergraph, i.e.,

a family F of k-sets of Ω so that any F, F I ∈ F satisfy F ∩F I W= ∅. Furthermore,
this is the most that S can hope to achieve, i.e., once this state is reached, then

A can prevent any additional k-set from being excluded as a possible secret set.

Any set of questions which always results in an intersecting hypergraph will be

called a separating strategy for S .

We point out here that we will only be concerned with oblivious strategies for

S , i.e., those in which all questions must be specified before any answers are

given. This can be contrasted to (more powerful) adaptive strategies in which

the choice of questions can depend on earlier answers (for results on adaptive

strategies, consult [Alon et al. 02] and [Chung et al. 01b]).

Our current interest in these questions arose from certain Internet routing

algorithms in use by Akamai Technologies. In particular, it was desired to be

able to associate with each client IP address the IP addresses of the nameservers

the client is using (those are the “secrets”). Unfortunately, in neither the DNS

nor the HTTP protocols do the client’s IP address and the nameserver’s IP

address appear together. However, it is possible to gain a very limited amount

of information about the nameserver’s IP address (e.g., one bit of the address)

by clever local routing. Of course, if the client has multiple nameservers, then

one does not know which address is supplying the answers. It turns out that

very similar problems have occurred previously in the literature in the study

of asynchronous sequential machines [Friedman et al. 69] where the relevant

concept is that of an (r, s)-separating system. This is just a family F of subsets

of a set Ω such that for any pair of disjoint subsets X and Y of Ω, with |X | = r,
|Y | = s, there is an F ∈ F such that F contains one of the sets X and Y ,

and is disjoint from the other one. Related questions have also arisen in the

construction of hash functions and various authentication protocols (see [Alon

et al. 02, Cohen et al. 01, Kőrner and Simonyi 88, Segalovich 94]).

In this note, we will take Ω to be Fn2 for some integer n, where F2 denotes the
field of two elements. Each question Q will be specified by some element of Fn2 ,
and an answer to the question Q will be the inner product Q · x for some x ∈ X
(all arithmetic will be performed in F2). One reason for restricting ourselves to

Chung et al.: Guessing Secrets with Inner Product Questions 179

questions of this type is that they can be specified succinctly, that is, with n

bits. Of course, the most general questions for Fn2 require 2n bits to describe.
The price you pay for this restriction is that S can no longer guarantee that the

final surviving possible secret k-sets will be intersecting. Rather, the best that

S can hope for, and in fact, which can always be achieved, is that a family of

larger sets will be intersecting. We next describe these larger sets.

2. Separating Strategies for k Secrets

The first issue we must address is the question of just how much separation can

be achieved by inner product questions.

For any k-set X = {X1, . . . , Xk} ⊆ Fn2 , define

Odd(X) = {
k3
i=1

6iXi : 6i ∈ F2 and

k3
i=1

6i = 1}

(where addition in the first sum is taken on Fn2 , and addition in the second sum
is in F2).

Lemma 2.1. For k-sets X = {X1, X2, . . . , Xk} and Y = {Y1, Y2, . . . , Yk} in Fn2 , the
following conditions are equivalent:

(i) X1 + Y1 W∈ �X1 +X2, . . . , Xk−1 +Xk, Y1 + Y2, . . . , Yk−1 + YkX
(where �w1, . . . , wi, . . . , wrX denotes the vector space over F2 spanned by
the wi’s);

(ii) There exists Q ∈ Fn2 such that
Q ·X1 = Q ·X2 = · · · = Q ·Xk W= Q · Y1 = Q · Y2 = · · · = Q · Yk;

(iii) Odd(X) ∩Odd(Y) = ∅.

Proof. (i) ⇒ (ii).

Define ∆I0 = X1 + Y1 and ∆i = Xi +Xi+1,∆k−1+i = Yi + Yi+1, 1 ≤ i ≤ k − 1.
Choose a basis for W = �∆1,∆2, . . . ,∆2k−2X, say W = �∆I1, . . . ,∆IrX where each
∆Ii is some ∆j . Since ∆

I
0 W∈ W by hypothesis, then the matrix

∆I =

∆I0
∆I1
·
·
·
∆Ir

180 Internet Mathematics

has rank r + 1 over F2. Hence, there exists an n× (r + 1) matrix D satisfying

∆ID = Ir+1,

where Ir+1 is the (r+1)× (r+1) identity matrix. In particular, the first column
D1 of D satisfies

∆I ·D1 =

1

0

·
·
·
0

 .

Since all the ∆i, 1 ≤ i ≤ 2k − 2, are linearly dependent on the ∆Ij , 1 ≤ j ≤ r,
then ∆i ·D1 = 0, 1 ≤ i ≤ 2k− 2, while ∆I0 ·D1 = 1. Thus, (ii) holds as required.
(ii) ⇒ (iii).

Suppose Odd(X) ∩Odd(Y) W= ∅. Thus, there exist δi, 6i ∈ F2 such that

k3
i=1

δi = 1 =

k3
i=1

6i and

k3
i=1

δiXi =

k3
i=1

6iYi.

However, we can write

k3
i=1

δiXi = X1 +

k−13
i=1

δIi(Xi +Xi+1),

where δIi = 1 +
�i

j=1 δi, since δ
I
k−1 = δk. Thus, (using the same argument for

the Yi), we have

X1 +

k−13
i=1

δIi(Xi +Xi+1) = Y1 +
k−13
i=1

6Ii(Yi + Yi+1), δIi, 6
I
i ∈ F2.

This now immediately implies the negation of (ii).

Chung et al.: Guessing Secrets with Inner Product Questions 181

(iii) ⇒ (i).

Observe that

∆I0 ∈ �∆1, . . . ,∆2k−2X

⇒ X1 + Y1 =

k−13
i=1

δi(Xi +Xi+1) +

k−13
i=1

6i(Yi + Yi+1), δi, 6i ∈ F2,

⇒ X1 +

k−13
i=1

δi(Xi +Xi+1) = Y1 +

k−13
i=1

6i(Yi + Yi+1)

⇒ X1(1 + δ1) +X2(δ1 + δ2) + · · ·+Xk−1(δk−2 + δk−1) +Xkδk−1
= Y1(1 + 61) + Y2(61 + 62) + · · ·+ Yk−1(6k−2 + 6k−1) + Yk6k−1

⇒ Odd(X) ∩Odd(Y) W= ∅.

We have shown (i)⇒ (ii), (ii)⇒ (iii), and (iii)⇒ (i), so Lemma 2.1 is proved.

Observe now that two k-sets X and Y can be “separated” by some question

Q if and only if (ii) holds. In that case, whichever answer is given by A , one

of the two k-sets is eliminated of a possible k-set of secrets. Hence, by Lemma

2.1, X and Y cannot be separated by any inner product question if and only if

Odd(X) ∩Odd(Y) W= ∅. This proves

Theorem 2.2. By using suitable inner product questions, S can guarantee that for the
family X of surviving possible k-sets, i.e., consistent with all the answers given,

the family Odd(X) = {Odd(X) : X ∈ X} is an intersecting family. Furthermore,
this is the most that S can guarantee. That is, for any family X I such that
Odd(X I) is intersecting, A can always answer in such a way that all X ∈ X I
survive.

We will call any such set of questions a weakly separating strategy for A . Our

next goal will be to exhibit a simple explicit weakly separating strategy.

For a positive integer m, define F(m) ⊆ Fn2 by:

F(m) = {X ∈ Fn2 : X has at least one and at most m coordinates equal to 1}.

In other words, F(m) consists of all X ∈ Fn2 with “weight” w(X) satisfying
1 ≤ w(X) ≤ m.

Theorem 2.3. F(2k − 1) is a weakly separating strategy for secret sets of size k.
However, this is not true for F(2k − 2).

182 Internet Mathematics

Proof. Suppose X is a family of k-sets so that Odd(X) is not intersecting. Thus,
there are X = (X1, X2, . . . , Xk) ∈ X , Y = (Y1, Y2, . . . , Yk) ∈ X such that

Odd(X) ∩ Odd(Y) = ∅. Adopting the notation of Lemma 2.1, then by Lemma
2.1, the matrix ∆I has row rank r + 1. Hence, it also has column rank r + 1,
which implies there are r+ 1 columns of ∆I, say ∆I(a1), . . . ,∆I(ar+1) which are
linearly independent over F2. Thus, there are 6i ∈ F2 such that

r+13
i=1

6i∆
I(ai) =

1

0

0
...

0

r+1

.

Since ∆1,∆2, . . . ,∆2k−2 are all linearly dependent on the ∆Ii, 1 ≤ i ≤ r, there
we have

r+13
i=1

6i∆(ai) =

1

0

0
...

0

2k−1

where ∆(j) denotes the jth column of the matrix

∆ =

∆I0
∆1
∆2
...

∆2k−2

 .

Hence, the question Q = (Q1,Q2, . . . , Qr) with

Qj =

F
1 if j = ai and 6i = 1, 1 ≤ i ≤ r + 1,
0 otherwise,

satisfies

Q ·∆I0 = 1, Q ·∆i = 0, 1 ≤ i ≤ 2k − 2.
Thus, the question Q can be used to separate X and Y . However, Q only has

weight w(Q) ≤ r + 1 ≤ 2k − 1. Applying the argument recursively, we see that
we must eventually arrive at a family X I with Odd(X I) intersecting, using only
questions with weight at most 2k − 1. This shows that F(2k − 1) is a weakly
separating strategy for secret sets of size k.

Chung et al.: Guessing Secrets with Inner Product Questions 183

To show that F(2k − 2) need not be weakly separating, let n = 2k − 1 and
consider the two k-sets X = {X1, X2, . . . , Xk} and Y = {Y1, Y2, . . . , Yk} defined
by:

Xi = (Xi(1), Xi(2), . . . , Xi(2k − 1)), 1 ≤ i ≤ k,

with Xi(j) =

F
1 if j = i,

0 otherwise

and

Yi = (Yi(1), Yi(2), . . . , Yi(2k − 1)), 1 ≤ i ≤ k,

with Yi(j) =

F
0 if j = k − 1 + i,
1 otherwise.

First, observe that x ∈ Odd(X) ⇒ w(x) is odd and y ∈ Odd(Y) ⇒ w(y) is

even. This shows that Odd(X) ∩ Odd(Y) = ∅. We now claim that X and

Y cannot be separated by any question Q with w(Q) < 2k − 1. For suppose
Q = (Q1, Q2, . . . , Q2k−1), and Q separates X and Y . This means that

Q ·X1 = Q ·X2 = · · · = Q ·Xk W= Q · Y1 = Q · Y2 = · · · = Q · Yk.

However, this implies Q1 = Q2 = · · · = Qk (because of the way the Xi are

defined) and Qk = Qk+1 = · · · = Q2k−1 (because of the way the Yi are defined).
Thus, the only such Q which can separate X and Y is the all 1s question, which

has weight 2k − 1. This completes the proof of Theorem 2.3.

3. Inverting the Answers for k = 2

In this section, we restrict our attention to the case k = 2 with F(3) = {Q ∈
Fn2 : 1 ≤ w(F) ≤ 3} as our separating strategy. Since |X| = 2⇒ Odd(X) = X,

then any two surviving pairs must be intersecting, i.e., must share a common

element. Thinking of pairs of elements of Fn2 as edges of a graph with vertex set
Fn2 , then the only possible intersecting sets are a star with some center X0, or
a triangle T on three vertices {X1, X2, X3}. In the first case, it follows that X0
must be one of A ’s secrets. In the second case, S can only conclude that A ’s

secret pair is either {X1, X2}, {X1, X3}, or {X2, X3} (and in particular, cannot
assert that any specific element is in A ’s secret set).

We will now describe a recursive algorithm ALG for inverting the answers to

F(3) which runs in time O(n3) on Ω = Fn2 . We will assume (inductively on n)
that ALG on Fn2 (denoted by ALG(n)) gives the following information on the
surviving intersecting set E of edges:

184 Internet Mathematics

(i) E is a star with some center X0 (but no other information about the edges

in the star), or

(ii) E is a triangle on the set {X1,X2, X3}. In this case, all edges XiXj , i W= j,
have survived.

Note that in case (i), E might consist of a single edge, in which case X0 could

be either endpoint. Also note for n ≤ 3, we can determine the information (star
center or triangle) needed by ALG in O(1) questions. (More precisely, since

there are at most 23 = 8 points, and so at most
D
8
2

i
= 28 edges, and |F(3)| ≤ 7,

then testing each possible edge requires at most 196 questions.) The main idea

of ALG(n) is the following: For some n > 3, we first ask all the
D
n
1

i
+
D
n
2

i
+
D
n
3

i
questions in F(3).
We next partition [n] := {1, 2, . . . , n} into three subsets:

J1 := {1 ≤ x < n/3}, J2 = {n/3 ≤ x < 2n/3}, J3 = {2n/3 ≤ x ≤ n},

and we define three (overlapping) complementary subsets Ik ⊆ [n] by:

Ik = [n] \ Jk, 1 ≤ k ≤ 3.

We then examine the answers given to the questions which are supported entirely

in Ik, k = 1, 2, 3. This corresponds to executing ALG on the smaller index set

Ik, and we denote the output of these by ALG(Ik). By induction, this will be

either a star center or a triangle for each value of k. We will then show that it

will always be possible to put this partial information together and recover the

full information (star center or triangle) required by ALG(n).

We first introduce some notation. If X ∈ Fn2 , then we can write X = X1X2X3,

where Xk denotes the restriction of X to Jk. Further, we denote the restriction

of X to I1 by X |I1, and we write this as X|I1 = ∗X2X3 (where the * denotes
the fact that I1 omits the coordinates in J1). Similarly, X |I2 = X1 ∗ X3 and
X|I3 = X1X2∗.
Suppose E is the set of (intersecting) edges which survive after executing

ALG(n), i.e., any {U, V } ∈ E is consistent with the answers given to all the

questions in F(3) asked by S . How will such an edge show up in the output

of ALG(I1), for example? It is easy to see that if ALG(I1) outputs ∗A2A3 as a
star center, then either U |I1 = ∗A2A3 or V |I1 = ∗A2A3 (with similar remarks
applying to I2 and I3). Also, it is clear that if ALG(I1) outputs a triangle

{∗A2A3, ∗B2B3, ∗C2C3}, then both U |I1 and V |I1 are vertices of this triangle
(with similar remarks applying to I2 and I3.)

Since each Ik has fewer than n elements, we know by induction that each

ALG(Ik) outputs either a star center or a triangle. Our argument will have

Chung et al.: Guessing Secrets with Inner Product Questions 185

three cases, namely, if none of these outputs is a triangle, if exactly one of them

is a triangle, or if at least two are triangles.

Case 1: ALG(I1) outputs a star center A = ∗A2A3,
ALG(I2) outputs a star center B = B1 ∗B3,
ALG(I3) outputs a star center C = C1C2 ∗ .

In this case, we will show that ALG(n) must also output a star center. Let us

call two restrictions, say ∗A2A3 and B1 ∗ B3, compatible, if they agree where
they overlap, i.e., A3 = B3 in this case. We can define the compatibility graph

H on the vertex set {∗A2A3, B1 ∗ B3, C1C2∗} with edges joining each pair of
compatible vertices.

By the assumption in this case, for any surviving edge {U,V } ∈ E in ALG(n)
with U = U1U2U3, V = V1V2V3, we must have:

∗ A2A3 ∈ {∗ U2U3 , ∗ V2V3},
B1 ∗B3 ∈ {U1 ∗ U3 , V1 ∗ V3},
C1C2 ∗ ∈ {U1U2 ∗ , V1V2 ∗}.

That is, the restriction {U |Ii, V |Ii} of {U, V } must survive in ALG(Ii), i=1,2,3.
Thus, some point, say U , must be chosen for at least two of the choices above.

Without loss of generality, let us assume

∗A2A3 = ∗U2U3, B1 ∗B3 = U1 ∗ U3,

i.e.,

U2 = A2, U3 = A3, U1 = B1, U3 = B3 = A3.

This implies that ∗A2A3 and B1 ∗B3 = B1 ∗A3 are compatible, so that H will

always have at least one edge which comes from an element of {U, V } (in this
case, U = B1A2A3). If H has just one edge, then U must belong to every edge

of E in ALG(n) so that U is a star center in this case.

Similarly, if H has three edges, then the vertices must have the form ∗A2B3,
B1 ∗A3, B1A2∗. However, this implies as before that B1A2A3 ∈ {U, V }, and so
is a star center in ALG(n).

So we are left with the case that H has exactly two edges, say the vertices of

H are ∗A2A3, B1∗A3, C1A2∗ with B1 W= C1. Hence, in this case, we can conclude
that either B1A2A3 is in {U, V } and any other “mate” (i.e., the other element
possibly paired with B1A2A3) has the form C1A2∗, or C1A2A3 is in {U, V } and
any other mate has the form B1∗A3. Our next task is to resolve this uncertainty.
Since B1 W= C1, there must be some coordinate i0 ∈ J1 such that B1(i0) W=

C1(i0) (i.e., B1 and C1 differ in their i
th
0 coordinates). We now examine the set

186 Internet Mathematics

of |J2||J3| answers to the questions Qi0,j,k, j ∈ J2, k ∈ J3, where Qi0,j,k denotes
the vector in F(3) having 1’s in position i0, j and k.
Suppose for some j ∈ J2, k ∈ J3 that B1(i0) + A2(j) + A3(k) = α ∈ {0, 1}.

Thus, C1(i0) + A2(j) + A3(k) = 1 − α. If A answers Qi0,j,k with the answer α,

then any point of the form B1D2A3 with D2(j) W= A2(j) is ruled out as a possible
mate for C1A2A3 (since in this case, both points C1A2A3 and B1D2A3 would

give the answer 1− α to this question). By the same token, if A answers Qi0,j,k
with the answer 1−α, then any point of the form C1A2D3 with D3(k) W= A3(k)
is ruled out as a possible mate for B1A2A3. This now implies that at the end of

this process, one of the points B1A2A3 and C1A2A3 will have all possible mates

ruled out, except for its “trivial” mate, i.e., B1A2A3 and C1A2A3 are trivial

mates.

For, ifB1D2A3 and C1A2D3 survived as possible mates of C1A2A3 andB1A2A3,

respectively, with D2(j0) W= A2(j0), D3(k0) W= A3(k0) for some j0 ∈ J2, k0 ∈ J3,
then the question Qi0,j0,k0 would clearly rule out one of these possibilities. So,

if, for example, the only possible mate for B1A2A3 is C1A2A3 (whereas C1A2A3
had more possible mates than B1A2A3), then C1A2A3 is the desired star center

output of ALG(n). Even if B1A2A3 and C1A2A3 end up having only each other

as possible mates (so that only one edge survived in E), the choice of C1A2A3
works. This concludes the proof for Case 1.

Case 2: ALG(I1) outputs a star center A = ∗A2A3,
ALG(I2) outputs a star center B = B1 ∗B3,
ALG(I3) outputs a triangle {P1P2∗, Q1Q2∗, R1R2∗}.

Suppose {U, V } ∈ E. There are two possibilities.
(i) A3 W= B3. Then ∗A2A3 and B1 ∗ B3 are restrictions of different

points in {U, V }, for example, U |I1 = ∗A2A3, V |I2 = B1 ∗ B3. Since

{P1P2∗, Q1Q2∗, R1R2∗} contains the I3 restrictions of both U and V , then
there is only a small number of possible pairs to test (on all answers to the

questions in F(3)) to discover the surviving edges, which still could be a
star or a triangle.

(ii) A3 = B3. Then we claim B1A2A3 must belong to every surviving edge in E

for ALG(n). For suppose not. Then the two restrictions ∗A2A3 and B1∗A3
must come from different points, say U |I1 = ∗A2A3 and V |I2 = B1 ∗ A3.
Since ALG(I3) yields the triangle {P1P2∗, Q1Q2∗, R1R2∗}, then each of
the pairs {P1P2∗, Q1Q2∗}, {P1P2∗, R1R2∗}, and {Q1Q2∗, R1R2∗} must be
a possible surviving pair for ALG(I3). However, each of these pairs must

be equal to {U |I3, V |I3}. This implies that two of P1P2, Q1Q2, R1R2 must
be equal, which is a contradiction. Thus, in this case, B1A2A3 is a star

center for ALG(n), and case (ii) is done.

Chung et al.: Guessing Secrets with Inner Product Questions 187

Case 3: At least two of the restricted outputs are triangles, say

ALG(I1) = {∗A2A3, ∗B2B3, ∗C2C3}
ALG(I2) = {P1 ∗ P3, Q1 ∗Q3, R1 ∗R3}.

In this case, all possible secrets can be found by combining compatible pairs

from ALG(I1) and ALG(I2). Each can be tested against all the answers to see

if it survives in ALG(n). This completes Case 3, and the proof of the induction

step of the algorithm. If c(m) denotes the number of comparisons needed for

ALG(n), then it follows from the preceding analysis that

c(n) ≤ 3 · c(2n
3
) +

w
9

2

Ww
n

3

W
+ o(n3), (3.1)

which implies c(n) ≤ 54n3 + o(n3).
Our implementation of this algorithm (available upon request) easily handles

values of n around 500 in a few seconds on a standard Unix workstation.

4. Finding a Valid Secret Set

The algorithm described in the preceding section will always identify either a

star center (which must belong to every valid secret pair) or a triangle (in which

case, the valid secret pairs correspond to the three edges of the triangle). In the

first case, however, it does not automatically produce a specific secret pair, i.e.,

a viable mate for the star center. It is easy to extend the algorithm to achieve

this goal, however, as follows. Suppose X is identified as the star center. Let Y

denote some potential mate for X, i.e., the pair {X,Y } satisfies all the answers
A(Q) given by A to each question Q ∈ F(3). Now, if Q · X W= A(Q), then we
must have Q · Y = A(Q). This represents a linear constraint on the coordinates
of Y . The collection of all the linear constraints arising from all Q such that

Q ·X W= A(Q) forms a system of linear equations in the coordinates of Y . It is

now straightforward to find (by Gaussian elimination, for example) the desired

Y (and conclude that no such Y exists in case X, in fact, was not a star center).

This augmented algorithm clearly still runs in polynomial time.

For k ≥ 3, however, the solution appears to be quite different. Namely, there
is strong evidence that no such polynomial time algorithm exists for finding a

valid secret k-set. To see this, we focus on the case k = 3.

Suppose F is some weak separating strategy for Fn2 with k = 3. Let Qi,j
denote the weight 2 question (=vector) having 1s in positions i and j with i < j.

Denote by F+ the strategy F ∪ {Qi,j : 1 ≤ i < j ≤ n}. Let G denote a given

188 Internet Mathematics

graph with vertex set [n] = {1, 2, . . . , n} and edge set E(G). We now suppose
that the answer AG(Q) that A gives to each question Q ∈ F+ is as follows:

AG(Q) =
F
1 if Q = Qi,j and {i, j} ∈ E(G),
0 otherwise.

Claim 4.1. There is a valid secret triple of the form {0, X, Y } if and only if G is

4-chromatic.

Proof. First, assume G is 4-chromatic. There we can partition the vertex set [n] =
C1∪C2∪C3∪C4 so that every edge in E(G) has endpoints in different Ci. Define
two points X = (X(1), X(2), . . . , X(n)) ∈ Fn2 , Y = (Y (1), Y (2), . . . , Y (n)) ∈ Fn2 ,
as follows:

X(i) : =

F
1 if i ∈ C1 ∪ C2
0 if i ∈ C3 ∪ C4

Y (i) : =

F
1 if i ∈ C1 ∪ C3
0 if i ∈ C2 ∪ C4.

It is now easy to check that {0, X, Y } is a valid secret triple for the answers
AG(Q) supplied by A .
For the other direction, assume {0, P1, P2} is a valid secret triple for A ’s

answers. Define the two sets

Ai := {j : Pi(j) = 1},

and let Bi := [n]\Ai, i = 1, 2. Let Gi = Gi(Ai, Bi) denote the complete bipartite
graph on the vertex sets Ai and Bi, i = 1, 2. Then A(Qi,j) can only be 1 if {i, j}
is an edge in either G1 or G2 (or both). In particular, since {0, P1, P2} is valid,
every edge of G must be an edge of G1 or G2, which implies G is 4-chromatic.

This proves Claim 4.1.

Observe that if {X,Y, Z} is a valid secret triple, then any 3-element subset of
Odd(X,Y, Z) = {X,Y, Z,X + Y + Z} also is.
Now suppose there is a polynomial time algorithm which can produce some

solution {X,Y, Z, X + Y + Z} as an Odd 4-set satisfying the specified answers
AG(F+). Thus, F+ must have polynomial size. If 0 ∈ {X,Y, Z,X + Y + Z},
then by the preceding remarks, we can conclude that G is 4-chromatic.

On the other hand, suppose 0 W∈ {X,Y, Z,X+Y +Z}. Since F (and therefore
F+) is a weak separating strategy, then any two satisfying Odd 4-sets must
intersect. Thus, if G is 4-chromatic, then there must be a satisfying Odd 4-set

of the form {0, C,D,C +D}, and this set must intersect {X,Y, Z,X + Y + Z}.

Chung et al.: Guessing Secrets with Inner Product Questions 189

Since 0 W∈ {X,Y, Z,X + Y + Z}, then at least one of C, D, or C + D must be

equal to one of X,Y, Z or X+Y +Z. However, each one of these possibilities can

be checked in polynomial time by the method previously described for finding

a star center mate when k = 2. Namely, for example, assume C = X . So we

must check whether there exists a W so that {0, X,W} is a valid triple, etc.
Consequently, we see that G is 4-chromatic if and only if the process succeeds

if some element of {X,Y, Z,X + Y + Z} can be successfully paired with 0 (and
generating a compatible third element W).

Thus, our hypothesized polynomial time algorithm for finding a valid secret

triple from these answers AG(F+) could be used to determine whether or not
G is 4-chromatic. However, it is well known [Garey and Johnson 79] that this

implies P = NP , a statement not widely believed.

This is the basis for our skepticism in the existence of a general polynomial

time algorithm for producing valid secret k-sets for k ≥ 3.

5. Concluding Remarks

We conclude with several remarks for our original secret guessing game with

Ω = [N], and any Q : Ω → {0, 1} allowed as a question. Let fk(N) denote
the minimum number of queries needed for any adaptive separating strategy

(with k-element secret sets), and let gk(N) denote the corresponding minimum

for nonadaptive strategies. It was shown in [Chung et al. 01a] that

3 log2N − 5 ≤ f2(N) ≤ 4 log2N + 3, N > 2.

We still do not know the truth here.

For nonadaptive strategies, it can be shown that

3.5276 log2N < g2(N) <
3

log2(8/7)
log2N < 15.573 log2N.

The lower bound is due to N. Alon [Alon et al. 02] (and uses coding theory

and linear programming bounds). The upper bound comes from a probabilistic

construction.

In [Alon et al. 02], Alon, Guruswami, Kaufman, and Sudan give a beautiful

construction of an explicit set of O(logN) queries for which the desired inter-

secting graph (star center or triangle) can be recovered in time O(log3N). They

use techniques based on small 6-biased spaces and list decoding. Is it possible to

construct such small sets of queries which can be “inverted” in time O(logN)?

We remark that a straightforward probabilistic argument shows that

g3(N) ≤ 5

log2(32/31)
log2N < 109.16 log2N.

190 Internet Mathematics

Very recently, Vukičević [Vukicevic 02] has shown this can be reduced for adap-

tive strategies to

f3(N) <
2 + 1

2 log2 43
3
2 + log2

32
31

log2N +O(1).

(The coefficient is ≈ 104.4.)
We should point out here that even the problem of explicitly describing the

possible families of intersecting k-sets is not simple when k > 2. Of course, for

k = 2, we just have either a star or a triangle. We can represent these as:

(i) 1x where 1 denotes some fixed element of Ω, and x denotes any other

element of Ω, and

(ii) 12, 13, 23 where 1, 2, and 3 denote any three distinct elements of Ω.

The first case is an example of an extendible intersecting family, while the

second is an example of a nonextendible intersecting family.

For k = 3, the situation is much more complicated. The complete list of

maximal intersecting families of 3-uniform hypergraphs is given in the following

list (where (i)-(vii) are extendible):

(i) 1xy (i.e., all triples containing some fixed element)

(ii) 12x, 13y, 14z

(iii) 123, 14x, 24y, 34z

(iv) 145, 234, 235, 12x, 13y

(v) 134, 135, 145, 234, 235, 245, 12x

(vi) 134, 156, 235, 236, 245, 246, 12x

(vii) 134, 156, 235, 236, 246, 136, 12x

(viii) 123, 145, 167, 246, 257, 347, 356, the seven lines (= triples) of PP (2), the

projective plane of order 2.

(ix) 123, 145, 167, 246, 247, 346, 356

(x) Any set of 10 triples from {1, 2, 3, 4, 5, 6} which does not contain a triple and
its complement, and which is not one of the previous cases. There are five

of these, as was shown by Frankl, Ota, and Tokushige [Frankl et al. 96].

This list incorporates the helpful remarks of Matthew Cook [Cook 02], who

pointed out that the earlier version of this, given in [Chung et al. 01a], was

incomplete. At present, a characterization of maximal intersecting k-uniform

hypergraphs seems out of reach for k > 3.

Chung et al.: Guessing Secrets with Inner Product Questions 191

Of course, there remain many variants of these problems which have not been

investigated. For example, what happens if we allow queries with more than

two possible answers? Or what if the adversary is allowed to be untruthful

some number (or fraction) of times? Or what if the adversary chooses answers

probabilistically? Clearly much remains to be done.

Acknowledgments

An extended abstract of this paper has appeared in the Proceedings of the Thirteenth

SIAM-ACM Symposium on Discrete Algorithms, (2002), 247—253. The research of Fan

Chung and Linyuan Lu was supported in part by NSF Grant No. DMS 0100472 and

ITR 0205061.

References

[Alon et al. 02] N. Alon, V. Guruswami, T. Kaufman, and M. Sudan. “Guessing Se-

crets Efficiently via List Decoding.” In Proceeding of the Thirteenth SIAM-ACM

Symposium on Discrete Algorithms, pp. 254—262, Philadelphia: SIAM, 2002.

[Alon 02] N. Alon. Private communication, 2002.

[Chung et al. 01a] F. Chung, R. Graham, and F. T. Leighton. “Guessing Secrets (Ex-

tended Abstract). In Proceedings of the Twelfth Annual ACM-SIAM Symposium

on Discrete Algorithms, pp. 723—726, Philadelphia: SIAM, 2001.

[Chung et al. 01b] F. Chung, R. Graham, and F. T. Leighton. “Guessing Secrets.”

Electronic Journal of Combinatorics 8 (2001), #R13.

[Cohen et al. 01] G. D. Cohen, S. B. Encheva, and H. G. Schaathun. “On Separating

Codes.” Technical Report, ENST, 2001.

[Cook 02] Matthew Cook. Private communication, 2002.

[Edelman 99] A. Edelman. “Akamai Technologies: A Mathematical Success

Story.” SIAM News 32:1 (1999), 12—13. Available from World Wide Web

(http://www.siam.org/siamnews/12-99/akamai.pdf), 1999.

[Frankl et al. 96] P. Frankl, K. Ota, and N. Tokushige. “Covers in Uniform Intersecting

Families and a Counterexample to a Conjecture of Lovász.” J. Comb. Theory (A)

74 (1996), 33—42.

[Friedman et al. 69] A. D. Friedman, R. L. Graham, and J. D. Ullman. “Universal

Single Transition Time Asynchronous State Assignments.” IEEE Trans. Comput.

C-18 (1969), 541—547.

[Garey and Johnson 79] M. R. Garey and D. S. Johnson. Computer and Intractability,

A Guide to the Theory of NP-Completeness. San Francisco: W. H. Freeman and

Co., 1979.

[Kőrner and Simonyi 88] J. Kőrner and G. Simonyi. “Separating Partition Systems

and Locally Different Sequences.” SIAM J. Discrete Math. 1 (1988), 355—359.

192 Internet Mathematics

[Segalovich 94] Y. L. Segalovich. “Separating Systems.” Problems of Information

Transmission 30:2 (1994), 105—123.

[Vukicevic 02] D. Vukičević. “A Note on Guessing Secrets.” Preprint, 2002.

Fan Chung, University of California, San Diego, La Jolla, California (fan@euclid.ucsd.edu)

Ronald Graham, University of California, San Diego, La Jolla, California (graham.ucsd.edu)

Linyuan Lu, University of California, San Diego, La Jolla, California (llu@math.ucsd.edu)

Received June 16, 2003; accepted June 19, 2003.

