Translator Disclaimer
2020 Maximal cocliques in the Kneser graph on plane-solid flags in $\mathrm{PG}(6,q)$
Klaus Metsch, Daniel Werner
Innov. Incidence Geom. Algebr. Topol. Comb. 18(1): 39-55 (2020). DOI: 10.2140/iig.2020.18.39

Abstract

For q27 we determine the independence number α(Γ) of the Kneser graph Γ on plane-solid flags in PG(6,q). More precisely we describe all maximal independent sets of size at least q11 and show that every other maximal example has cardinality at most a constant times q10.

Citation

Download Citation

Klaus Metsch. Daniel Werner. "Maximal cocliques in the Kneser graph on plane-solid flags in $\mathrm{PG}(6,q)$." Innov. Incidence Geom. Algebr. Topol. Comb. 18 (1) 39 - 55, 2020. https://doi.org/10.2140/iig.2020.18.39

Information

Received: 24 April 2019; Revised: 5 May 2020; Accepted: 22 May 2020; Published: 2020
First available in Project Euclid: 26 November 2020

MathSciNet: MR4177440
Digital Object Identifier: 10.2140/iig.2020.18.39

Subjects:
Primary: 05B25, 05C35, 05C69, 51E20

Rights: Copyright © 2020 Mathematical Sciences Publishers

JOURNAL ARTICLE
17 PAGES


SHARE
MSP
Back to Top