PERIODIC TRANSFORMATIONS OF 3-MANIFOLDS'

BY
P. A. Smit

1. M will denote a triangulated 3-manifold, G a finite group, (G, M) an
effective simplicial action, orientation-preserving whenever M s orientable.
Concerning the action we assume that (1) for every ¢ ¢ G, the fixedpoint set
F = F(g) is a subcomplex of M ; (2) the natural cell structure of the orbit space
M = M /@G and the projection ¢ : M — 9N are simplicial and (3) ¢ maps each
simplex homeomorphically and (4) if o, ¢’ are oriented simplexes of M, then
¢o = ¢o’ implies ¢’ = go for some ¢ € G.

From the piecewise linear point of view, these conditions are not restrictive.
In fact if (G, M) is simplicial, there is an induced action (G, M), M, a sim-
plicial subdivision of M, which satisfies (1). If (G, M) satisfies (1), it is a
straightforward exercise to show that the induced action (G, M ", where M" is
the second barycentric subdivision, satisfies (1), (2), (3), (4).

We shall assume from here onthat G = Z,,p > 2and F = F(@) is a simple
closed curve. From condition (1), F is a polygon, subcomplex of M.

Moise [1] proved

TuaeoreM 1.  If M is homeomorphic lo a euclidean 3-sphere there exists a com-
pact orientable polyhedral 2-manifold Y in M (4.e. piecewise linearly tmbedded in
M) such that’ Y = F and such that the p images of Y — F are disjoint.

Moise showed further that if F is unknotted in the 3-sphere M, then (G, M)
is equivalent to a rotation. It is sufficient to prove

TueorEM 2. If M s homeomorphic to a euclidean 3-sphere and F is un-
knotted, there exists a manifold Y which has the properties stated in Theorem 1
and s a disc.

The proof of Theorem 1 in [1] employs a number of special technical devices.
We give here an alternative proof which seems shorter and more direct. The
same proof in conjunction with Dehn’s lemma gives Theorem 2. Theorem 1
will be proved essentially by producing a 2-manifold € in M /G such that
9@ = F(=¢F). The required 2-manifold in M is the union of F and a com-
ponent of ¢ (€ — € n F).

If M is oriented and without boundary, and if the induced action
(G, M — F) is free, then 9N = M /G is an oriented manifold without boundary.
For let z be a vertex of M, « = ¢x, W, = St(x, M) (= starof zin M). Since
¢ | M — F is a local homeomorphism, one sees that if z ¢ M — F, ¢ maps W,
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2 9X denotes the boundary of X in the sense of manifold theory. If X is oriented,
so is 9X.
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isomorphically onto St(x, 9). If xeF, there is an induced orientation-
preserving action (G, dW,). dW.is a 2-sphere and the action leaves fixed two
vertices say a, b and is free in W, — {a, b}. Clearly ¢(dW,) is an orientable
2-manifold and a count of simplexes shows that its Euler characteristic is 2,
hence it is a 2-sphere. Hence ¢W,, which equals St(x, ) is the join of
¢(dW,) with «, hence is a 3-ball around . It follows that 9 is a manifold
without boundary. Let M be oriented by a fundamental cycle 2 (infinite if the
complex is infinite). We may write z = ., D:go; where oy, 03, -+ are
oriented 3-simplexes such that no relation go; = ¢, (7 # j, g € G) exists. Then
#(2) = p 2 o:is not zero. 9N is oriented by ¢(z2).

2. LemMma 1. Let P be an oriented (simple) polygon, subcomplex of M and
let © be the inclusion P — M. If 14« Hi(P) = 0 there exists a compact oriented
polyhedral 2-manifold Y in M such that Y = P.

A proof of this lemma under the additional assumption that P C dM is given
in [3, Lemma (5.2)]. The general case follows immediately. (As it happens,
the assumption P C M holds in the situation where the lemma is to be
applied.)

LemMA 2. Let (K, ¢) be a regular covering of a connected manifold X [4,
p.195]andletx e K, « = ¢(x). Let T = m(K, «)/¥+ m(K, ) (the subgroup
is normal by regularity). There isa free action (T, K) such that ygy = yy for
gel,ye K. Let %Y be an arcwise connected subset of X containing ~ and let ¢ be
the inclusion Yy C K. If

(1) ix m(Y, =) C ¥x m(K, x)

there exists a set Y C K such that the sets gY, g e T, are disjoint, their union s
¥, and each is mapped homeomorphically onto % by .

(K, ¢) can be realized as the totality of equivalence classes of paths modulo
¥s m(K, x) emanating from « [4, p. 189]; ¥ maps each class onto the common
terminal point of its members. The action of I'is obvious. Referring to (1),
one sees that those classes having representatives which lie in ¢ form a subset
Y with the stated properties.

LEmMma 3. Let (T, K) be a free action in which T is finite and K is a connected
manifold. Let X = K/T and lety be the projection K — X. Let x e K, « = yu.
Then X is a connected manifold, (K, ¢) a regular covering, and

T2 m(X, «) /¥« m(K, z).
(See [4, p. 195].)
3. Toroidal neighborhoods of F. Let M be orientable, without boundary.

Denote successive barycentric subdivisions by M/, M”, --- . Letwy, -+ , 01
be the vertices of F’ named in cyclic order; the indices are to be taken as ele-
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ments of Z; . Let L; = St(v;, M") and let b; be the barycenter of v; viyy .
Let D; = L;n Liy: . D;is a dise, union of those 2-simplexes ¢ of M” such that
onF = b;. If the M"-stars of v;, v; (¢ # j) intersect, so do the interiors of
the corresponding M’-stars. Then v; is a vertex of the M’-star of v;, and
v; v; is then a 1-simplex of M’ hence of F’, and this implies that ¢ — j = &1,
It follows that L; meets L; if and only if ¢ = j = 0, 1, or —1. The discs D; are
therefore disjoint. Since each L; is a 3-ball and M is orientable, L = UL, is a
solid torus, neighborhood of F.

Let T = 9oL, T, =TnL;,J; =TnD;. T;isan annulus and 97, =
J i—1 U J i

Let P be a T-circuit, that is a simple polygon in T' which meets each J; in a
single point ¢;. Since k > 3, each P, = P n T is a simple arc in T'; with ends
ei1,e;. Let A(P) = UQ(P;) where Q(P;) is the join of »; and the simple arc
biaei1u P;uesb;. Q(P;) is a polyhedral disc in L; and

6Q(P¢) = b; 161U P;ubie;ub;1b;.
Hence A(P) is an annulus in L and dA(P) = Fu P.

4. Notation. Let X be an oriented simple closed curve in some set W and
let 7 be the inclusion X — W. We denote by A(X) the generator of H;(X)
which corresponds to the orientation and by A(X, W) the element 7xh (X) of
H(W).

Let J = J, oriented (any J; would do). Note that if P s any oriented
T-circuit h(J, T') and h(P, T') generate H,(T).

(4.1) If M 1s oriented without boundary and iof Hi(M) = Ho(M) = 0, there
exists an ortented T-circuit P such that h(P, M — F) = 0.

Proof. In the exact homology sequence for (M, M — F) the connecting
homomorphism « : Hy(M, M — F) — H,(M — F) is bijective. Now
Hy(M,M — F) = Z,in fact a generator is represented by a fundamental cycle
for Dymod J. The image of this generator under « is h(J, M — F). Hence
h(J, M — F) isa generator of Hy(M — F) = Z. Let P*be any fixed oriented
T-circuit. Then h(P*, M — F) = gh(J, M — F), g aninteger. Consider the
generators h(P*, T), h(J, T) of Hy(T). It is easy to see that there existsa
T-circuit P such that h(P, T) = h(P*, T) — qh(J, T). SinceT € M — F,
this relation holds when T is replaced by M — F. Hence h(P, M — F) = 0.

6. Let M be orientable, without boundary and assume that the induced
action (G, M — F) isfree. The projection ¢ : M — N maps F isomorphically
ontoF = ¢F. Let L, T, L;, D;,J;be asin §3 and let £, 3, - - - be the cor-
responding subcomplexes of 9. Evidently ¢ St(e;, M) = St(vs, M);
hence ¢ '€ = L; hence L is invariant under the action.

(5.1) Let M be orientable, without boundary, and assume that (G, M — F) 4s
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free. If P is an oriented T-circuil, there exists an oriented 3-circuit ® such that
o h(P, T) = h(®, 3).

Proof. Write P = UP; asin §2. Then ¢P; is a polygonal arc, not neces-
sarily simple, which joins g, ; to J; and, except for its endpoints, lies in the
interior of the annulus 3;. By a homotopy in 3; with fixed endpoints, ¢P; is
homotopic to a simple polygonal arc which, except for its endpoints lies in
Int 3;. Thus ¢P is homotopic in 3 to an oriented 3-circuit ® and so
é«h(P, T) = h(®, 3).

Notation. From here on we shall write X, for X — X n F, and X, for
X —AnT.

(5.2) Let M be orientable, without boundary and assume that (G, M,) 1s free.
Let P, ® be oriented T- and 3-circuits such that ¢s h(P, T') = h(®, 3) and let
@ = A(®). There exists a polyhedral annulus A tn M such that (1) ¢ maps A
homeomorphically onto @; (2) the sets gA, , g € G, are disjoint; (3) ¢ '@ = UgA;
(4) dA = F u B where B is a polygon in M.

Proof. First we show that there exists in L, a set Y which is mapped homeo-
morphically onto @, by ¢ and is such that the images of Y are disjoint and their
union is ¢ '@, . This will be a consequence of lemmas 2 and 3 with I' = @,
K=L,y=9¢|L,Y = @,, provided we show that

U (@, =) C dx m(Ly,, 2), zel,,

where « = ¢z and 7 : @, — £, is the inclusion. Since T is a strong deforma-
tion retract of L, ,

1l'1(T, x) = 1r1(L1,,x) = Z X Z

Thus m1(@®, , =) and w1(L, , x) are abelian and it is sufficient therefore to show
that 2« H1(Q,) C ¢« Hi(L,). Since @ is a strong deformation retract of
@, , H:1(@,) is generated by h(®, @,). Hence 7% 3¢:(®,) is generated by

tx h(®, @) = h(®, &) = ¢x h(P, L,) C ¢x(H\(L))

and so the inclusion in question follows. Now let A = Y u F so that
A, = Y. ¢ maps 4 onto @ and the map ¢; = ¢ | 4 of A onto @ is bijective.
We assert that ¢; ' is continuous. It is sufficient to prove continuity at an
arbitrary point fof §. Let é1 { = fand let U be an open neighborhood of f.
It is sufficient to show that there exists an open neighborhood U of { such that
¢r'una@ c U. Let V= N,gU (geG). V is an open neighborhood of f
and is invariant, hence a union of orbits so that ¢ ¢V = V. Let U = ¢V.
Since ¢ is an open map, U is an open neighborhood of {. We have

gi'@nw) c¢(@nuw) c¢u=VcU.

Since the domain @ of ¢1" is compact, ¢; " is a homeomorphism. Hence 4 is
an annulus. It is readily seen that A is polyhedral since ¢ is simplicial.
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6. Proof of Theorem 1. Assume that the hypotheses of Theorem 1 are satis-
fied. The induced action (G, M,) is free [5, remark on p. 708]. Choose P, ®
so that (P, M,) = 0, ¢+ (P, T) = h(®,3) ((4.1) and (5.1)). The second
relation holds with 3 replaced by 91, and the first then implies A(®, 9%,) = 0.
Now the manifold 9 — Int £ is a strong deformation retract of M, , hence
h(®, M — Int £) = 0. From the definition of £ (§3), ® is a subcomplex of
(M — Int £)”. By Lemma 1 there exists in 9 — Int £ a compact oriented
polyhedral manifold W with 0W = ®. Let @ = A(®) (§3) and let @ and F
be oriented so that @ = F u (—¢®) (which implies 4@, = —@®). Then
€ = W u @ is an oriented 2-manifold with boundary &, and @, is an oriented
(noncompact) manifold without boundary. Now ¢ | M, is a local homeo-
morphism and hence ¢'@, , ¢ W, ¢ e, , are oriented manifolds and ¢ '@, =
'@, u ¢ W. Since ¢ '@, is without boundary (because @, is), we have

(2) A0 'q, = — ¢ W,

If we refer to (4.2) and keep in mind that ¢ge = ¢ (g € @) for every oriented
simplex ¢ of M we see that there exists an oriented annulus A such that
¢~'@, = UgAd, (disjoint union) and such that ¢ maps A homeomorphically
onto @ with preservation of orientation. We have 94 = Fu (—B),
94, = — B, where B is an oriented polygon in 3, such that ¢B = @ and F is
oriented so that ¢F = F. From (2) we have

(3) o w = UgB.

Let W be a component of ¢ &w. Then dW = U ¢’B where ¢’ ranges over a
subset G’ of G. Let ¥ = (Ug’A) u W. From (3) and the relations
dgA = F u (—¢'B), we have, formally at least, Y = kF where k is the
number of elementsin G’. Thus Y is, so to speak, an oriented 2-manifold with
oriented boundary kF. This simply means that Y is homeomorphic to the
complex obtained from a compact oriented surface with & boundary curves by
identifying the boundaries with orientations matching. Suppose that & > 1.
A simple cell decomposition shows that Ho(Y, Z,) = Zi, H(Y, Z;) = 0 if
(7, k) = 1. By the Alexander duality theorem M — Y has two components
which, again by duality, implies that H.(Y, Z;) = Z; for every 7 > 1, which is
impossible. We conclude that ¥ = 1, s0 ¥ = W u ¢’A for some ¢’ ¢ G, and
dY = F. The images of Y, are disjoint. For if Y, meets gY,, ¢ 5 1, then
W meets gW since A n gA = @. Since W is a component of the invariant set
¢ W so is gW; hence W = ¢gW. Hence B = ¢B which is impossible since
B — A. This concludes the proof.

7. Proof of Theorem 2. Assume that the hypotheses of Theorem 2 hold.
Orient F. Since F is unknotted, there exists an oriented polyhedral disc Ain
M such that dA = F. Then ¢A is a singular disc in 9 with boundary §. We
shall modify A to obtain A; say, such that no singularity of ¢A; lies on §. By
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Dehn’s lemma [2] there exists a polyhedral disc @ in 9 with boundary §. By
Lemmas2and 3withT' = G, K = M, ,X = M, ,¢ = ¢ | M, , ¥ = Q, thereis
a set Y in M, with disjoint images and mapped homeomorphically onto Q, by
¢. Then Y u F is the required disc in M (see proof of (5.2)).

To obtain A, , decompose A : A = A* u E where A® is an oriented disc, £ an
oriented annulus, 0A* = B*say, 9F = (—B*)u F. Let this be done in such
a way that £ C L.

Let A, B, @, ® be as in §6 and recall that 4 = (—B) u F and that ¢ maps
A, B homeomorphically onto @, ®. Evidently ¢ maps B n L; (§3) homeo-
morphically onto ® n £; from which we see that B is a T-circuit. Hence
h(B,T),h(J, T) generate H,(T) = Z X Z and since T is a strong deformation
retract of L,, h(B, L,) and h(J, L,) generate H(L,) = H(T). Hence
h(B* L,) = ah(B, L,) + bh(J, L,) say. This holds with L, replaced by M,
and since h(J, M,) = 0 (see proof of (4.1)) and h(B*, M,) = 0, we have
b = 0so that h(B*, L,) = ah(B, L,). This holds with L, replaced by L and
since 94 = (—B) u F and 0E = (—B*) u F, we see that h(B*, L) =
R(F,L) = h(B, L); hence a = 1. Hence h(B*, L,) = h(B, L,). Since the
fundamental group of L, is abelian, there is a singular annulus A, in L, with
boundary (—B*)u B. Then A, = A u A;u A™ is a singular disc with bound-
ary (—B*)u B. Then A, = A u 4, u A¥ is a singular dise with boundary 7.
Since 4 is non-singular and A; u A* © M, , no singularity of A,isin F. Since
¢ maps A homeomorphically, no singularity of ¢4, is in &.
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