AN ANALYTIC CRITERION FOR THE EXISTENCE OF INFINITELY
MANY PRIMES OF THE FORM %(n* + 1)

BY
DANIEL SHANKS

A well-known unsolved problem is that of proving the existence of infinitely
many primes of the form n’ + 1. Although there is much evidence that there
exist infinitely many, e.g., [1], [2], [3], [4], a proof has not been found. A very
similar problem is that of showing infinitely many primes of the form
1(n® 4+ 1); in fact, the heuristic arguments, say of Bateman and Horn [5],
and the known empirical evidence, both make it probable that the number of
positive integers n between 1 and N such that #»° -+ 1 is prime is asymptotic
to the number of positive integers n between 1 and N such that 3(n® + 1)
is prime.

The primes of the form %(n’ 4+ 1) are not at all rare, and thousands of large
primes such as

17019940501 = (184499° + 1)

are known [1, page 82]. A few very much larger primes of this form have
been discovered by Brillhart [6, page 427]. These include

M+ 1)

where M, = 2" — 1l and n = 229, 184, 177, ete.

In the theorem that follows we give an analytic criterion for the existence
of infinitely many primes of the form 3(n* 4+ 1). While we cannot assert
that the criterion is “practical,” in the sense that we know how to use it to
settle the question, it is not precluded that it could be so used. The proof of
the theorem is elementary.

THEOREM. Let

f@) =142+ +2+2°+2°+ -+,
9(2) = fi(z) — 3f(2).

If, for m > 0, the initial value of the m™ derivative of g(2) is negative, that ss, if

d"g(z)

dz™ =0

and let

<0,

then 4m + 1 is a prime of the form 3(n® 4 1), and conversely. There are thus
infinitely many such primes if, and only if, there are infinitely many such deriva-
tives.
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Proof. Since

(1) g9(2) = =2+ {f(z) — 1}* = {f(2) — 1},

the condition
d"g(2)/de" | .= < 0 (mz1)

implies that the corresponding coefficient in {f(z) —1)}* vanishes, while that
in {f(z) — 1} equals one. Thus

(2) m = 3a(a + 1)
for some a > 0, but
(3) m 7= 3b(b + 1) + Le(c + 1)

for any b and ¢ > 0. From (2),
dm+1=3{(2+ 1)+ 1} = 3=’ + 1)
forn = 2a + 1. Now 4m + 1 equals the sum of two squares:
dm + 1 = d* + (a + 1)%

and, since ¢ is relatively prime to a + 1, if 4m 4+ 1 were composite, there
would be at least one other representation:

4m + 1= (22)" + (2y + 1)’, 20, y=0.
That implies  # yand z # y + 1. Butif x < y, consider
=3z+y@+y+1)+3iy—2)(y—z+1),
while if z > y + 1, consider
=iz+y@+y+1)+i3@—y—1LE—y).
Since these are impossible by (3), 4m -+ 1 must be prime.
Conversely, assume that

dm+1=3n"+1) =2+ 1)+ 1

is prime. Then, since

m+1=d+ (a+1)°

is its only representation as a sum of two squares, it follows that we cannot
have
dm+1=0b+c+ 1)+ (b-c) bzec>0
or
m = 3b(b + 1) + 3e(c + 1), bzc¢>0.

Hence, since m = 3a(a + 1), we have
d"g(2)/dZ" | =0 < 0.
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