GEODESIC SPHERES IN GRASSMANN MANIFOLDS

BY
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1. Introduction

Let G, »(F) denote the Grassmann manifold consisting of all n-dimensional
subspaces of a left k-dimensional hermitian vectorspace F*, where F is the
real number field, the complex number field, or the algebra of real quater-
nions. We view G, :(F) as a Riemannian symmetric space in the usual way,
and study the connected totally geodesic submanifolds B in which any two
distinet elements have zero intersection as subspaces of F¥.  Our main result
(Theorem 4 in §8) states that the submanifold B is a compact Riemannian
symmetric space of rank one, and gives the conditions under which it is a
sphere. The rest of the paper is devoted to the classification (up to a global
isometry of G, ,(F)) of those submanifolds B which are isometric to spheres
(Theorem 8 in §13). If Bis not a sphere, then it is a real, complex, or quater-
nionic projective space, or the Cayley projective plane; these submanifolds
will be studied in a later paper [11].

The key to this study is the observation that any two elements of B, viewed
as subspaces of F*, are at a constant angle (isoclinic in the sense of Y.-C.
Wong [12]). Chapter I is concerned with sets of pairwise isoclinic n-dimen-
sional subspaces of F**, and we are able to extend Wong’s structure theorem
for such sets [12, Theorem 3.2, p. 25] to the complex numbers and the qua-
ternions, giving a unified and basis-free treatment (Theorem 1 in §4). KEs-
sentially, we introduce a ‘‘closure” operation on the collection of all such
sets, and characterize the ‘“closed” sets by means of linear transformations
which satisfy some equations studied by A. Hurwitz [6] in connection with
quadratic forms permitting composition. We give the closed sets the name
tsoclinic sphere; the first result of Chapter IT is that an isoclinic sphere on
F*" is a totally geodesic submanifold of G, s,(F) which is isometric to a sphere
(Theorem 2 in §6). We then prove a strong converse (Theorem 3 in §7)
which allows us to prove our main result (Theorem 4 in §8) by reducing it
to the case where B is an isoclinic sphere on a 2n-dimensional subspace of F.

Chapter ITI is devoted to the classification of isoclinic spheres on 2n-dimen -
sional subspaces of F*, up to equivalence under the full group of isometries of
G, :(F). We first consider the case &k = 2n. Our structure theorem for
isoclinic spheres (Theorem 1) shows that isoclinic spheres can all be obtained
from certain representations of Clifford algebras. Sections 10 and 11 are
devoted to the study of these representations, and yield (Theorem 6 in §11)
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a complete description of the conditions for their existence and equivalence.
From this, we obtain (Theorem 7 in §12) the classification of isoclinic spheres
on F** under the unitary group, which in turn gives us our final classification
theorem (Theorem 8 in §13).

Sections 10 and 11 are based on well-known techniques with semisimple
associative algebras. In the course of §10, we give a unified treatment over
the real numbers, the complex numbers, and the quaternions, of the Hurwitz-
Radon problem on quadratic forms permitting composition. The result
(Theorem 5) seems to be new for the quaternions.

I am deeply indebted to Y.-C. Wong’s memoir [12]. While our Sections
3, 4, 5, 10, 11, and 12 extend all the results of [12] and often use different
techniques, many of the ideas are due to Wong.

CuAPTER I. ISOCLINIC SUBSPACES
2. Notation and terminology

F will denote one of the real division algebras R (real), C (complex), or
K (quaternion), with conjugation « — & over R and norm |a| = (aa)"’.
For every integer m > 0, F” will denote a left vectorspace of dimension m
over F endowed with a positive-definite hermitian inner product %-v, and
U(m, F) will denote the group of linear transformations of F” which preserve
the inner product (the unitary group). Scalar multiplication is an action on
the left, and linear transformations act on the right. With respect to any
given basis of F”, every linear transformation is represented by a matrix.
If the basis is orthonormal, then it is well known in case F % K, and easy to
verify in case F = K, that a linear transformation with matrix A is unitary
(in U(m, F)) if and only if A™ = ‘A, where ¢ denotes transpose and the bar
denotes conjugation of each matrix entry.

Let X and Y be subspaces of F”, and let 7x : F" > X and =y : F" - Y
be the orthogonal projections. We will say that X and Y are isoclinic if
F has elements o and 8 such that

mx(y1) 7x(¥2) = ayi-ye and  wy(21) -7y (22) = Br1-72

for any z; e X and y; € Y. The possibilities #; = z» and y; = ¥, then show
that « and 8 are real. It is easily verified that X and Y are isoclinic if and
only if either they are orthogonal (X L Y), or dimensions satisfy dim X =
dim Y and one of the =’s satisfies the condition above. As the word suggests,
this means that X and Y are at a constant angle.

3. Subspaces isoclinic to a given subspace

Let B be a collection of n-dimensional subspaces of V = F** whose every
element is isoclinic to some given element B ¢ B, and let b = {b;, --- , by}
be an orthonormal basis of B. We will construct a certain real vectorspace
& of linear transformations of V such that B C By = &(B).
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If B = {B, B*}, then choose J ¢ U(2n, F) with square —I (I = identity)
and J(B) = B*, and define © to be the R-vectorspace with basis I and J,
s0 By = &(B) = {S(B) : S ¢ &}.

If B # {B, B}, then we define &, to be the R-vectorspace with basis I and
B, = {B}. Now suppose that &;_; and B,_; are defined. If B C B,_,,
then we define By = B and & = &;,_;. If B has an element B; ¢ B,_;,
By, # B*, then the fact that B; is isoclinic to B gives us an orthonormal basis
{ug of By with u; = v; + w;, v; € B, and w; ¢ B*, such that {yv;} is an or-
thonormal basis of B for some real v > 1. It follows that B, has an ortho-
normal basis {u§k>} with u® = B b; + az b for some nonzero real 8 and
ax , and some orthonormal basis {b"} of B*. Ji(b;) = b and J,(b®) =
—b; defines a unitary automorphism of V with J; = —I, J,(B) = B*, and
By = (Bu I + ar Ji)(B). Define B, = &S;(B) where &; is the R-vectorspace
generated by J; and ©;_;. By finite-dimensionality of V, this recursive
procedure will eventually give us a smallest B, containing B; we then set
Bi=B,and & = &, .

In general By has elements which are not isoclinic to B.

4. Mutually isoclinic subspaces

Now assume that the elements of B are mutually (pairwise) isoclinic.
We will look into the structure of © and see that the elements of By are
mutually isoclinic.

Suppose that b" = {byys, -+ , ben } is an orthonormal basis of B*, and that

J; has matrix <_9 1. ‘:1)’) in the basis {b, b’} of V' (where ¢ denotes transpose
and the bar means that we conjugate every entry). We want to show that
each A;‘A; + A;'A;is a real scalar matrix. Observing this to be invariant

under conjugation by <£ X), we see that it is independent of choice of b’.

Thus we may assume 4, = I and must prove that 4; 4 ‘A, is a real scalar.
It suffices to prove A; + ‘A, scalar; it will clearly then be real.
Choose nonzero real ¢ and 7 with B; = (I 4+ oJ;)Band B, = (I + +J;)B.

In our basis, J; has matrix <_0 I (I)> , 80 B; has basis {b, + 0buig}e<a and

Bj has basis { —ob; + baigle<n. If A = (ag), then B; has a basis {x},<n
which has expressions

bq + T le;l Qg bn+k = Zq
= > raoa(be 4 obngr)+ Dbt o — b + bugs)

for some matrices S = (o4) and T' = (74). S and T are proportional to
F-unitary matrices because B; and B; are isoclinic. Equating coefficients
of the by, , we see S = T + I, whence S + ‘Sand T + T are scalar. Equat-
ing coefficients of the b, ., we see that 4, is a linear combination of S and T';
thus 4; + ‘A, is scalar.
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Let 11 be the real-linear set of all matrices A for which, in the fixed ortho-

normal basis {b, b’} of V, & has an element with matrix (_Ot i fé) The A;
above form a basis of 11 over R, and the preceding paragraphs show that U
has a positive-definite inner product (U; , Us) given by

U 'Us + U, Uy = 2 (U, U I

in which || 4;]| = 1. The idea of finding such an inner product, due to
Wong [12], is crucial: Let {U;, --- , U,} be an orthonormal basis of U,
and let S; be the element of & with matrix (—(‘)U %1) in the basis {b, b’} of V;

then the S; satisfy the Hurwitz equations, giving us a basis-free version of an
extension of Wong’s main result [12, Theorem 3.2]:

TarorEM 1. Let B be a collection of mulually isoclinic n-dimensional sub-
spaces of V. = F** where F is a real division algebra. Given B e B, there is a
real vectorspace @ of F-linear transformations of V' such that

(1) Bx = &'(B) s a collection of mutually isoclinic n-dimensional sub-
spaces of V which contains B.

(2) & has a basis {I, Sy, -+, Sy} over R such that each S; e U(2n, F),
each S;(B) = B*, and the S; satisfy the Hurwilz equations
(*) S¢ Sj + Sj Si = ‘—'25,;,' I.

Conversely, if B' is an n-dimensional subspace of V and &' is a real vectorspace
of F-linear transformations of V satisfying (2), then B' = &' (B') is a collec-
tion of mutually isoclinic n-dimensional subspaces of V.

Proof. We have found &" and proved (2), and B € By by construction.
We will prove that the elements of By are mutually isoclinic as a consequence
of (2); this will complete the proof of (1) and demonstrate the last assertion
of the theorem.

Let P and @ be elements of By,

P = (pl + Z:=1pisi)B and Q = (gl + Z;=1Qi S:)B.

If po = Oorif g = 0, then P = B* or @ = B* and we are done, for every
element of By is easily seen to be isoclinic to B by (%) and is thus isoclinic
to B*. Again using (), we write P = (I 4+ S)Band Q = (I + T)B where
T = qo > qiSsand S = py’ > ps S; are proportional to unitary transfor-
mations. In an appropriate orthonormal basis b’ of B*, T has matrix
<_Oa I Og), and S has matrix <—(ZU g) in the basis {b, b’} of V for some real
a > 0. Now U -+ 'U is a real scalar matrix gI, 28 = (U, I). We have
matrices 8’ = (og) and T' = (rg4) such that the basis {z} = (I + S)b
of P has expressions, where U = (uq),

bq + ZILI Mgk bn+k = Tq = le;l G'qk(bk + Oébn+k) + 212;1 qu(—abk —+ bn+k).
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Equating coefficients we have 8" = I + oT" and U = oS + T'. Thus
U= ol +~T" wherey = o + 1> 0,and U = —a " I + 58" where 6 =
a4+ ot > 0. From U + ‘U scalar, it follows that 77 + 7”7 and 8" + ‘S’
are scalar. Thus 8" 4+ 8" = I + a(T" + 'T") + o’T"-*T" shows that 7"
is proportional to an F-unitary matrix. It follows that P is isoclinic to Q*,
and is thus isoclinic to @, Q.E.D.

Remark 1. To view Theorem 1 from the viewpoint of Wong’s memoir,
one considers the space 1l rather than the space &@". 1 is a real vectorspace
of F-unitary n X n matrices which depends on the choice of an orthonormal
basis b" of B*. If b’ is chosen such that U, = I in an orthonormal basis
{Uy, -+, U,} of U, thens < r implies

0= Ui'trjr‘l‘ Ur'tU¢= Ui+t17i = Uz“l‘ U;—I

(so Ui = —I), whence j < r implies U; U; + U; U; = —28;; I. This is
equivalent to (2) of Theorem 1.

DerintTioN. The sets By and B’ of Theorem 1 will be called isoclinic r-
spheres on V.

Thus Theorem 1 can be rewritten as

Tueorem 1. Every collection of mutually tsoclinic n-dimensional subspaces
of V.= F* is contained in an isoclinic sphere on V, and every isoclinic sphere
on V 1s a collection of mutually zsoclinic n-dimensional subspaces.

CHAPTER II. GRASSMANN MANIFOLDS
5. Definitions and preliminaries

Given integers 0 < n < k and a real division algebra F, G, (F) will denote
the Grassmann manifold consisting of all n-dimensional subspaces of F*. The
action of U(k, F) on F* induces an action on G, (F); U(k, F) is transitive
on the elements of G, (F). Given B ¢ G, (F), this allows us to identify
G, (F) with the coset space of U(k, F) by its isotropy subgroup

Ky = {T ¢U(k, F) : T(B) = B)

at B, which gives G,,:(F) the structure of a real analytic manifold.

G,.»(F) carries a unique (up to real scalar multiplication) U(n, F)-in-
variant Riemannian structure, described as follows: There is a vectorspace
direct-sum decomposition U(n, F) = K + B (German letters denote Lie
algebras) where Pz = {3 under the Killing form f on U(n, F), and a natural
identification of Pz with the tangentspace to G,.(F) at B under the differ-
ential of the projection T — T'(B) of U(n, F) onto G, .(F); thus —f de-
termines an invariant Riemannian metric on G, ;(F). G, :(F) will always
be understood to carry this structure, and is thus a Riemannian symmetric
space.
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If V is a particular left hermitian vectorspace of dimension &k over F, then
G, (V) will denote G, (F) where the elements are viewed as subspaces of V.

If N is a submanifold of a Riemannian manifold M, then N inherits a
Riemannian structure from M. We say that N is totally geodesic if every
geodesic of N is also a geodesic of M. This implies that, for every 2-dimen-
sional subspace S of a tangentspace of NV, the sectional curvature of N along
S is the same as that of M along S.

6. Isoclinic spheres as spheres

Let B be an isoclinic sphere on V = F*"*. We will examine B as a submani-
fold of the Grassmann manifold Gy 2. (F).
Choose B ¢ B. Theorem 1 says that there is a real vectorspace &' of linear

transformations of V' with basis {I, S;, --- , S} such that S; ¢ U(2n, F)
and S;(B) = B* for each 7; 8;8; + 8;8; = —26;;I, and B = &'(B).
S} = —1I shows that each S, is skew-hermitian, and may thus be viewed as an

element of 1(2n, F). Itiseasily checked that each S; ¢ B where U(2n, F) =
s + Bz, asin §5. Let & be the subspace of P spanned by the S;, and
let B ¢ B. Then B’ = (aoI + 2 a: S:)(B), and we may assume Y o a;: = 1.
We define

a=(21a)" and S=a7) a8,

observe that B’ = (aoI + aS)(B) and exp(t8) = cos(t)I + sin(t)S, and
conclude that B’ eexp(&)(B). Thus B = exp(&)(B).

Let ® be the curvature tensor on G, (F). If X, Y, and Z are tangent-
vectors to G,,2,(F) at B, then we view them as elements of Pz and have [8]

®(X, Y)-Z = —[IX, Y], Z].

In particular, ®(S;, S;)-8; = —48;if 7 £ j. A short calculation shows the
existence of a real number p > 0 such that f(S;, S;) = —&; p "~ where f is
the Killing form. As we have chosen —f for metric, the sectional curvature
of G, 2. (F) along a 2-dimensional subspace of the tangentspace at B with
(—Jf)-orthonormal basis {X, Y} is given by —{—f(®(X, ¥V)-X, Y)}. It
follows that G, ..(F) has sectional curvature 4p* along every 2-dimensional
subspace of ©. But [S, [&, €]] € & (i.e., © is a Lie triple system), which
implies that exp(&)(B) is a totally geodesic submanifold of G, 2.(F), and
the preceding paragraph showed that B = exp(&)(B). We conclude that
B is a totally geodesic submanifold of constant positive curvature 4p* in
G, 2 (F). The number p depends only on n and F.

If F = R, then Y.-C. Wong has shown [12, p. 62] that a maximal isoclinic
sphere on F*", regarded as a submanifold of G, 2,(F), is homeomorphic to a
sphere. More generally, we may see that B is homeomorphic to an r-sphere
as follows. Let G be the subgroup of U(n, F) with Lie algebra ® = T + &,
T =[8,&]. &isspanned by the S;, and thus has dimensionr. ¥ isspanned
by the 8; S; (¢ < j), and thus has dimension r(r — 1)/2. As G acts tran-
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sitively and almost-effectively by isometries on B,and as Bhas constant posi-
tive curvature, it follows that G is locally isomorphic to the orthogonal group
O(r+1) = U(r +1,R). Thus (see [10], for example) B isthe sphere or the
projective space. Every geodesic of B through B passes through B*; this
shows that B is not the projective space.

We have now proved

TrEOREM 2. Let B be an isoclinic r-sphere on V- = F°" for some real division
algebra F, and view B as a subset of the Grassmann manifold G, 2n(F). Then
B is a totally geodesic submanifold of Guen(F), and there is a real mnumber

q > 0, depending only on Gy, 2.(F), such that B is isometric to the sphere of radius
. r-+1
gin R,

7. A characterization of isoclinic spheres

Let V be a subspace of dimension 2n in F*, and let B be an isoclinic sphere
on V. As G,(V) is a totally geodesic submanifold of G, »(¥), Theorem 2
shows that B is a totally geodesic submanifold of G, »(F) which is isometric
to a sphere. B also has the property that any two distinct elements, viewed
as subspaces of F*, have intersection 0. We will see that these properties
characterize isoclinic spheres on 2n-dimensional subspaces of F*.

TueoreM 3. Let B be a submanifold of the Grassmann manifold G, ,(F)
where 0 < 2n = k and F is a real division algebra. Then these are equivalent:

(1) B is an isoclinic sphere on a 2n-dimensional subspace of F*.

(2) B C G,(V) for some 2n-dimensional subspace V of F*, any two distinct
elements of B, viewed as subspaces of F*, have intersection 0, and B is a connected
totally geodesic submanifold of Gy x(F).

(8) Any two distinct elements of B have tntersection 0, the fundamental
group m1(B) has odd finite order, and B is a connected totally geodesic submanifold
of constant positive curvature in G, (F).

(4) Any two distinct elements of B have tntersection 0, and B s a totally
geodesic submanifold of G,.x(F) which is isometric to an (ordinary) sphere.

Proof. We have just seen that (1) implies (4), and (4) clearly implies
(8). We must prove that (3) implies (2) and (2) implies (1).

Choose B ¢ B, let U(k, F) = & + Pz be the decomposition of §5, and let
& be the subspace of B which is the tangentspace to B at B. As Bis a
connected totally geodesic submanifold of G, :(F), we have B = exp(&)(B)
and [©, [©, ©]] € &. Let E,; denote the k X k& matrix whose only nonzero
entry is a 1 in the (¢, j)-place. From the fact that G, ,(F) is a Riemannian
symmetric space of rank n, it follows that, given X ¢ Bz, we have an ortho-
normal basis x of F* such that (a) the first n elements of x span B and the
last k& — n elements span B*, and (b) the matrix of X with respect to x is of
the form D1 0i(Es isn — Eiyn,;) With a; e R, Suppose further that X ¢ &.
As B = exp(&)(B) cannot have two elements in a (2n — 1)-dimensional
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subspace of F*, the matrix of exp(tX) (¢t ¢ R) relative to x cannot have a
nonzero entry in the (¢, j)-place with 7 < n < 7 whenever some

eXp(tam(Em,m+n - Em+n,m)) ==+ I

Replacing 2,4, by —Z;4, if necessary, we may now assume that each o; > 0.
By normalizing X so that the largest «;is , each a; must be = because exp (X)
is diagonal in x. Thus we may assume that all the «; are equal. In particu-
lar, every element of B = exp(®)(B) is isoclinic to B. It follows from the
proof of the last part of Theorem 1 that (2) implies (1).

Let {X;, ---, X,} be a basis of & which is orthonormal relative to the
negative of the Killing form of ll(n, F). Asabove, we choose an orthonormal
basis x of F* whose first n elements span B, whose last & — n elements span
B*, and with respect to which X; has matrix a)r1(E:iiin — BEiin,:) for
some real a > 0. Pz is easily seen to consist of all linear transformations of

F* with matrix of the form <___0t 1 %), for some n X (k — n) matrix A
over F, with respect to x. Let {a = 1, ay, - -+, g} be the usual basis of F

over R: of = —1, and distinct «; anticommute for z > 0. Then P, has
basis (over R) consisting of all linear transformations with matrix (relative
tox) Bypw — Eyuor ai(Byy+ Eyw)forl Susn<v=kandl =7=gq
Let B3 be the subspace of B3 spanned by those basis elements with » < 2n.
If every X; e B, then B will consist of subspaces of the span of {1, - - -, T2}
because B = exp(&)(B), and (2) will follow. Thus we need only prove that
each X, e P provided that B has constant positive curvature and that its
(necessarily finite) fundamental group is of odd order, and we will have
proved that (3) implies (2).

Suppose that B is of constant positive curvature and with fundamental
group of odd order. Then let B" denote the element of B such that, under
the universal Riemannian covering of B by a sphere, B’ is the image of the
point antipodal to some point in the inverse image of B. Let

X = a—le = Z:'L=1(Ei,z+n - Ei+n,i);

then B' = exp(3wX)(B), has basis {xn41, -+, 2}, and is preserved by
[6,&]. Ifu=n<v,then[X, Fynir + Frioul = —(Briunio £ Bnivniu);
thus [X,, X,] cannot preserve B’ if X, ¢ B3, proving that (3) implies (2),
Q.E.D.

Remark 2. Given0 < n < k, there is an isometry L : G, (F) — Gpn i (F)
given by B— B*. Thus, if 2n = k (ie., if 2(k —n) < k), and if A is a
submanifold of G, (F), then Theorem 3 shows that these are equivalent:

1. A™is an isoclinic sphere on a 2n-dimensional subspace of F*.

2. F* has a subspace V* of dimension k — 2n such that A;nd, = V*
for any two distinct A; ¢ A, and A is a connected totally geodesic submanifold
of G, «(F).

3. F* = A, 4 A, for any two distinct 4, ¢ A, and A is a connected totally



GEODESIC SPHERES IN GRASSMANN MANIFOLDS 433

geodesic submanifold of constant positive curvature and fundamental group
of odd order.

4. A is a totally geodesic submanifold of G, ;(F) which is isometric to a
sphere any two of whose elements span F”.

Remark 3. If N is a connected totally geodesic submanifold of a
Riemannian (or even affine) symmetric space M, then N is preserved by
the symmetry of M at any point of N. If N is of constant positive curvature,
it follows that N is isometric either to a sphere or to a real projective space.
Thus Theorem 3 tells us the following:

Let N be a connected totally geodesic submanifold of constant positive cuivature
in the Grassmann manifold G, ,(F) where 0 < 2n = k and F s a real division
algebra, and suppose that any two distinct elements of N (viewed as subspaces of
F*) have zero intersection. If N C G, (V) for some 2n-dimensional subspace
V of F*, then N {s isometric to a sphere (and is an isoclinic sphere on V). Other-
wise, N s tsometric to a real projective space.

This will also follow from Theorem 4.
We give an example to show that the latter case occurs. Suppose k = 3n,
define (relative to an orthonormal basis x of F*)

X = Zz;l(Ei,ii—n - Ei+n,i),
Y = Z:’L=1(Ei,i+2n - Ei+2n,i),
4 = Z?=1(Ei+2n,i+n — Eitn,iton)y

and observe that [X,Y]=Z7,[Z,X]=Y and [Z,Y] = —X. Thus the
subgroup G of U(k, F), with Lie algebra @ spanned by X, Y, and Z, is locally
isomorphic to SO(3). Let B be the subspace of F* with basis {z; , - - -, .},
and define N = G(B). N is of constant positive curvature because it
carries an SO(3)-invariant Riemannian metric, and is a totally geodesic
submanifold. It follows that N is isometric to a real projective space Gy,3(R)
of dimension 2.

Remark 4. Let B be a connected totally geodesic submanifold of G, .(F)
where 0 < 2n < k. The proof that (2) implies (1) in Theorem 3 shows that
any two elements of B are isoclinic if and only if any two distinct elements of
B have zero intersection. If that is the case, and if k¥ = 2n, then B is isometric
to a sphere.

8. Symmetric spaces of rank one

Recall that the compact Riemannian symmetric spaces of rank one are the
spheres, the real projective spaces, the complex projective space, the quater-
nionic projective spaces, and the Cayley projective plane. They are char-
acterized among Riemannian symmetric spaces by the fact that they have
every sectional curvature positive. Theorem 3 shows that a totally geodesic
submanifold of G, (F) (2n = k), which has every two elements isoclinic
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and is contained in G,(V) for some 2n-dimensional subspace V of F*, is a
symmetric space of rank one.
We can now state and prove the basic result of this paper:

TrEOREM 4. Let B be a connected totally geodesic submanifold of the Grass-
mann manifold G, ,(F), where 0 < 2n = k and F s a real division algebra, and
suppose that any two distinct elements of B have zero intersection as subspaces of
F*. Then B is a compact Riemannian symmelric space of rank one, and these
are equivalent:

(1) B is isometric to a sphere.

(2) F* has a 2n-dimensional subspace which contains every element of B.

(3) B s an isoclinic sphere on a 2n-dimensional subspace of F*.

Proof. The second assertion is contained in Theorem 3, and B is Rie-
mannian symmetric because it is totally geodesic in G, (F). It suffices to
prove that every sectional curvature of B is nonzero; such a curvature will
then be positive because it is a curvature of G, (F), and it will follow that B
is compact and of rank one.

Let B ¢ B; we will prove that every sectional curvature of B at B is non-
zero. Let U(k,F) = R + Pz be the decomposition mentioned in §5, let
& C P» be the tangentspace to B at B, and let {X, Y} € & be linearly
independent; it suffices to prove that [X, Y] # 0. Let x = {1, - -+, 24} be
an orthonormal basis of F*whose first n elements span B, chosen such that
X is a real multiple of the linear transformation with matrix

Z?=1(Ei,z'+n - Ei+n,i)

relative to x. This was seen to be possible during the proof of Theorem 3.
We may replace X by that multiple. Retaining the notation of the proof of
Theorem 3, Bz is spanned by the linear transformations with matrix

ai(Eu,v - a?Ev,u)

relative to x, where 1 £ u = n < v = k and {ag is our basis of F over R.
P» was the subspace for which v < 2n; let Bz be the subspace for which
v > 2n. Finally, let T : Bz — Bz be the transformation Z — [X, [X, Z]I.

Suppose that [X, Y] = 0. In particular, T(¥Y) =0. Now Y =Y’ 4+ Y”
with Y e Py, T(Z) = —Z for Z ¢ B3, and T(B5) < Ps. It follows that
YePn. Let @ =SnPs. [Pz, [P,B] C Bs and [S, [&, ] c &;
it follows that

€, &, 8lcenPs =&,

ie., & is a Lie triple system. Thus B’ = exp(&')(B) is a totally geodesic
submanifold of G, (F). Two distinct elements of B’ have zero intersection
in F* because they are elements of B. By construction of &', every element
of B’ lies in the subspace of F* with basis {x; , - - -, #24} ; it follows from Theorem
3 that B’ is isometric to a sphere. In particular, two independent elements
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of & must have nonzero bracket. As X and Y lie in &', this contradicts
[X,Y] =0, QE.D.

Remark 5. Suppose, in Theorem 4, that B is not a sphere. Then B is a
real, complex, or quaternionic projective space, or the Cayley projective
plane. Each of its projective lines is isometric to an s-sphere, where s = 1,
2, 4, or 8, respectively. It can be proved that B has no totally geodesic
submanifold isometric to an (s 4+ 1)-sphere, for two projective lines have a
unique point of intersection. Thus we may choose x so that B’ is an s-sphere,
but we cannot choose x such that B’ is an (s + 1)-sphere. This will be the
basis for our classification when B is a projective space.

CuapreER III. TuE CLASSIFICATION OF ISOCLINIC SPHERES
9. The connection with Clifford algebras

Recall that the abstract Clifford algebra €, is the real associative algebra with
identity 1, generators {e;, - - -, e}, and relations e;e; + e;e; = —26;; where
8:; is the Kronecker symbol. €, denotes the real subspace of €, with basis
{1, er, -+, e}. A representation of €, on F" is a homomorphism
¢ € — G(F™)r of R-algebras where ¢(1) = I; here G(F™) denotes the
F-algebra of all linear transformations of F™, the subscript R means that we
view it as an algebra over R, and I denotes the identity transformation.
¢ is equivalent (resp. unitarily equivalent) to another representation y if
G(F™) has an invertible (resp. unitary) element T such that each
Y(z) = T-¢(x)-T .

We define ¢ to be unitary if each ¢(e;) e U(m, F), and to be translational
(with basepoint U) if U is a subspace of F™ such that each ¢(e;) (U) = U™
If (¢, U) and (¢, P) are translational representations with basepoint of
S, on F”, then we say that they are strictly equivalent if there exists
T ¢ U(m, F) such that T(U) = P and each y(z) = T-¢(x)-T

It is clear from Theorem 1 that translational representations with basepoint
correspond to isoclinic spheres under

(¢, U) = (C) (1)

and that strict equivalence of (¢, U) results in unitary equivalence of ¢( CH(0).
On the other hand, (¢, U") is a translational representation with basepoint
not necessarily strictly equivalent to (¢, U), while ¢(G,)(U) = ¢( &) (U*).
But we will see that the unitary equivalence class of ¢( G, )(U) determines the
pair consisting of the strict equivalence class of (¢, U) and that of (¢, U*).
This will allow us to classify the isoclinic spheres up to unitary equivalence.
We will then see that unitary equivalence of isoclinic spheres is the same as
equivalence under the full group of isometries of the Grassmann manifold.

10. Translational representations

We will collect some information on translational representations which
will be useful in §11. Let W denote a vectorspace F™.
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Lemma 1. Every representation of €, on W s equivalent to a unitary repre-
sentation. If r is even, then every representation of €, ¢s faithful, and any two
unitary representations are unitarily equivalent.

Proof. {ei,---,e} generates a finite multiplicative group @, in €, , and
every F-representation of a finite group is equivalent to an F-unitary repre-
sentation; thus every representation of €, on W is equivalent to a unitary
representation. Now suppose that r is even, whence [4, §2.2] €, is a central
simple (= normal simple) algebra over R. 1 — I £ 0 shows every repre-
sentation nonzero, and thus faithful by simplicity of €, .

Let ¢ and ¢ be unitary representations of €, (r even) on W. They are
faithful, so we have an isomorphism h : ¢(GC,) = ¢(G,). If F = C, then
&(W)r is central simple over R and [1, Theorem 4.14] & extends to an auto-
morphism &’ of &(W)z; k' is conjugation by some invertible element of
G(W) because E(W)z is central simple. If F = C, then h extends to an
isomorphism h” between the complexifications of ¢(€,) and ¢(€,) because
@, is central simple over R, and (W) is central simple over C; thus [1,
Theorem 4.14] h” extends to an automorphism &’ of (W), and A is conjuga-
tion by an invertible element.

We have just seen that ¢ and ¢ are equivalent. In particular, they induce
equivalent F-representations of G, . Thus they induce F-unitarily equivalent
F-representations of G, (the usual proof is valid over K). In conclusion,
¢ and ¢ are unitarily equivalent, Q.E.D.

Lemma 2. G, (r > 0) has a translational representation on W if and only
if W has some even dimension 2n, and has an n-dimensional subspace U on
which there is a representalion of €,_y. Any two translational representations
of &, on W are unitarily equivalent.

Proof. The first statement is clear from §4, and the second statement
follows from Lemma 1 in case r is even. Now let ¢ and ¢ be translational
representations of €, (r odd) on W. Replacing ¢ by a unitary equivalent,
we have a subspace B of W such that y(e;)(B) = B* = ¢(e;)(B) for
1 ¢ £ 7. Letb be an orthonormal basis of B, and let ¢ be an orthonormal
basis of B*. In the orthonormal basis {b, ¢} of W, ¢(e,) has some matrix
(—QX §> and ¥(e,) has matrix <—0t17 Ig), where X and Y are F-unitary
matrices. Let Z be the unitary automorphism of W whose matrix in {b, ¢} is
<é X91Y>' Then Z(B) = B and Z-¥(e,)-Z " = ¢(e,). Thus we may
assume ¥ (e,) = ¢(er).

Now let b’ = ¢(e,) (b), orthonormal basis of B* such that ¢(e,) = ¢¥(e,)

has matrix (_0 7 (I)> in the orthonormal basis {b, b’} of W. 1In {b, b}, ¢(e.)
1%

has matrix (_Qﬁi %i>,and Y(e;) has matrix <—(t)17¢ Oi) forl =2=r—1,
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where U; and V; are F-unitary matrices. The relation e; e; + e;e; = —26;,
gives U;U; + U; U; = —28;;-1 = V,;V; + V; V,;, whence we have unitary
representations of €,_; on B defined by: ¢ (e;) has matrix U;, and ¢'(e;)
has matrix V; in the basis b. By Lemma 1, we have an F-unitary matrix 4
such that AU; A7 = V., for r — 1 is even (because r was assumed odd).
Now let D be the unitary automorphism of W with matrix <64‘ X) in the
basis {b, b}, and we have D-¢(e;)-D™" = ¢(e;) for 1 < ¢ < r, proving that
¢ and ¢ are unitarily equivalent, Q.E.D.

The following result, stated as a theorem because of its historical interest,
solves a classical problem of quadratic forms permitting composition over a
real division algebra F. For F = C, the problem was formulated and solved
by A. Hurwitz [6]; later, J. Radon solved it for F = R [9]. The problem
was solved for composition of a form with itself over an arbitrary commutative
field by A. A. Albert [2], and representation-theoretic proofs for the case
F = R have been given by B. Eckmann [5] and H. C. Lee [7]. Our proof,
based on a close look at subalgebras of a total matrix algebra, gives a brief
and unified treatment of the three possibilities for F. We believe the result
to be new for F = K.

TaeoreM 5. Let U be a left vectorspace of dimension n over a real division
algebra F,n = 2%t = 2% where u is odd and 0 < b £ 3. Then G,_; has a
representatton on U if and only if

(1) F=R: r=<8a+2"

(2) F=C: r=8 +2b+2=2¢+ 2.

(38) F=K: r=<8a+2"+3(b+2)(3—b).

Proof. If M is an algebra with identity element 1, then A < I will
mean that A is a subalgebra of I and 1 is the identity element of . If
9 is central simple, then [1, Theorem 4.6] I has a subalgebra A" such that
M is the Kronecker product (= tensor product) % ® A’; this result will be
used without reference. M (F) will denote the algebra of k& X k matrices
over F as an algebra over F; M, (F)z denotes Mx(F) viewed as an algebra
over R.

The Clifford algebras have the following structure (see [4, Chapter II]):

G, = Peae(R), Csipa = Me2e(Clr,
Csere = Wase(K)r, Coers = Copz @ Carye,
Csips = Maser1(K)r, Coiqs = Maae+2(Clg,
Csirs = Mase+s(R), Csir = Csips @ Caegs -

In the cases where €, is not simple, none of the e; lie in a simple summand.
Thus €, has a representation on U if and only if

m = 8 and Phe(R) C E(U)r = Mu(F)z,

=
=
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or m = 8-+ 1 and Mu:(C)e C Mu(F)z,
or m = 8 +2 and PMy:(K)r € Mu(Fz,
or m = 8 +3 and Po:(K)r € Mu(F)z,
or m = 8 +4+4 and Nha+1(K)r € Mu(F)z,
or m = 8+ 5 and Na+2(C)p C Mu(Fz,
or m = 8+ 6 and Pu+s(R) C Mu(F)r,
or m = 8+ 7 and Mpu+s(R) < Pu(F)z .

If we use the fact that ,(F)z C M(F)r, Mp(C)e € Da(R),
PV (K)e € DMas(R), Mp(R) € M(Chr, Mp(K)z € Do (C)

Mo(R) € M(K)z, and M,(C)r € M,(K)z are each equivalent to s being
divisible by p, it follows that &,_; has a representation on U if and only if

Table I holds.

TABLE I

F=R F=¢C F=K
r—1=8t r=2¢+1 r=2¢+1 r=2+41
r—1=8-+1 r < 2q r <29+ 2 r=<2q+4+ 2
r—1=8+2 r=29g—1 r<2¢+1 r=2¢+ 3
r—1=84+3 r = 2q r<2¢+ 2 r<2¢+ 4
r—1=8-+4 r=2q—1 r<2¢+1 r=2¢+3
r—1=8+5 r = 29 rs 29+ 2 r=2g+ 2
r—1=28-46 r=2¢+1 r<2¢+1 rs2¢+1
r—1=8+7 r< 294+ 2 r<2¢+ 2 r=<2¢+ 2

Let s be the largest integer such that €,_; has a representation on U. Then
@©,_1 has a representation on U if and only if » < s, and our considerations
show that s is given by Table II.

TABLE II
F=R F=¢C F=K
g = 4a s =294+ 1 s =29+ 2 s =29+ 4
qg=4a-+1 s = 2¢q s =29+ 2 s =29+ 3
g =40+ 2 s = 2¢q s =29+ 2 s =29+ 2
qg=4a+ 3 s =2q¢+ 2 s =29+ 2 s =29+ 2
Thus
s=8a+2° if F=R,
s=8a+2b+2=29+4 2 if F=C,
s=8s+2"+1(b+2)(3—0b) if F=K,

which proves the theorem, Q.E.D.
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11. Translational representations with basepoint

The study of translational representations with basepoint is facilitated by
the algebra

D=6 +5s5GC: se;5 = —e, =1
and the behavior of its elements
2= See " e, a=314+2), a=3(1-—2).

For if (¢, U) is a translational representation with basepoint (see §9 for
definitions) of €, on W, then we have an induced representation of D, on
W by

¢ x4 sy—>o(x) + Su-d(y) (x,yeG,)

where Sy is the unitary transformation of W which is 7 on U and is —1 on
U*. On the other hand, if ¥” is a representation of D, on W (r > 0), then
its restriction ¢ to €, is a representation of €, on W; if ¢ is unitary, then
W = P @ P* where ”(s) is I on P and —I on P* and where each y(e;)
interchanges P and P*, because each y(e;) anticommutes with y”(s) and
¥’ (s)® = I, whence (¢, P) is a translational representation with basepoint
and ¢/ = ¢”.

We will only use ©, when 7 is even. In that case, the center 3 of D, is
spanned by 1 and 2z, and D, = €, ®z 3.

&= (=18 (e )t = (—=1)"-(=1)""*",
whence 32 Cifr =2 (mod4) and 3R ® Rifr =0 (mod4). Thus
D, (r even) is given by
Vs = Pt (R) @ Myae(R),
Dtz = Mt (K) @2 C = NMypee+1(C
Dsrra = Maee+1(K)z @ Mase+1(K)g
Dstgs = Maee+3(R) @z C = Myee+3(C)y .

Finally, it is easy to verify that two translational representations with base-
point of €, are strictly equivalent if the associated representations of D, are
equivalent.

LemMa 3. If r 4s odd, or if r = 2 (mod 4) and F % C, then any two trans-
lational representations with basepoint of €, on W are strictly equivalent.

Proof. If r is odd, this was seen during the proof of Lemma 2.

Now let r = 2 (mod 4) and F = C. By the preceding discussion, we need
only take a complex matrix algebra I, (C) and prove that two R-algebra
representations ¢ and ¢ of it on W are equivalent. LetJ = v/ —1 1 ¢ 0t (C).
As F = C,¢(J) is conjugate to y¥(J) because they both have square
—1 e @(W); thus we may assume ¢(J) = J = ¢(J). Let % be the cen-
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tralizer of J' in G(W); ¥ carries the structure of a complex matrix algebra
in which J* = 4/—1 I, and ¢ and ¢ are C-algebra homomorphisms of 9t,(C)
into A. It follows [1, Theorems 4.5 and 4.14] that ¢ and ¢ are equivalent
by an element of 9, Q.E.D.

The obstacles to extending Lemma 3 are made explicit in the following
definition.

DerinirioN. Let (¢, U) be a translational represeniation with basepoini
of G, on W, and let ¢' e the associated representation of D, on W. If F = C
and r = 2 (mod 4), then W = Wy ® W, where ¢ (2) is scalar multiplication
by v/ —1 on Wy and by —/—1 on W, ; we define the index v(¢, U) to be the
ordered pair {dim W, dim Wy. If r =0 (mod 4), then W = W, ® W,
where qb'(z) s scalar multiplication by +1 on Wi and by —1 on W, ; we define
the index v(¢p, U) to be the ordered pair {dim W, , dim W}.

Lemma 4. If r =0 (mod 4), or if F = C and r = 2 (mod 4), then two
translational representations with basepoint of €, on W are strictly equivalent if
and only if their indices are equal; a translational representation with basepoint
(¢, U) of €, on W extends to a translational representation with basepoint
(7, U) of Cpp1 on W if and only if u = v where v($, U) = {u,1}.

Proof. Let (¢, U) and (¢, P) be translational representations of €, on
W. If they are strictly equivalent, then ¢ and Y are equivalent repre-
sentations of ®©, on W, whence ¢'(z) is conjugate to ¢'(z), proving that
v(¢, U) = v(¢, P). Now suppose »(¢p, U) = »(¢, P); we will prove that
(¢, U) is strictly equivalent to (¢, P). Submitting (¢, P) to a strict equiv-
alence, we may assume that ¢'(z) = ¢'(z). Nowlet W = W; @ W, be the
(necessarily orthogonal) direct-sum decomposition of W described in the
definition of »(¢, U), let w; be an orthonormal basis of W, and let 2 be the
centralizer of ¢’ (2) = ¢'(2) in (W). Itis clear that % = G(W;) @ G(Wy).

Suppose first that r=2 (mod 4), r=2, and F = C. Then
D, = My (C), and ¢’ and ¢ each defines C-algebra homomorphisms of D,
into &(W;) and into (W,) which carry 1 to I and zto &=+/—1 I. It follows
that

¢ =¢1 @ and Y =y @ s,

where ¢; and ¥, are C-representations of - (C) on W, with 2z viewed as
V=11 ey (C), and ¢» and y, are C-representations of P (C) on W,
with z viewed as —v/—1 I ¢ Myr(C). As ¢, is equivalent to y; [1, Theorems
4.5 and 4.14], ¢ is equivalent to ¢, whence (¢, U) and (¢, P) are strictly
equivalent.

Now let » = 0 (mod 4), 50 D, = a1- D, ® a2-D, where a; is the identity
element of a;+D,, and a; D, is isomorphic to M, (R) (if r = 0 (mod 8)),
orto My (K)z (if r = 4 (mod 8)). Asabove,¢ = ¢; @ ¢ppandy = ¢y @ ¢,
where ¢; and ¢, are R-representations of a;-®, on W, which send a; to 1.
If F 5 C, then [1, Theorems 4.5 and 4.14] ¢; is equivalent to ¢, , and it follows
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that (¢, U) is strictly equivalent to (¢, P). Now assume F = C. Then
¢:; and ¢; extend to C-representations of a;9D, ®zC = a;- (D, ®C) on
W;, and the same argument shows that (¢, U) is strictly equivalent to
(¥, P).

If (¢, U) extends to a translational representation with basepoint (7, U)
of G,y on W, then

S€r41 8_1 = —€r41 and (ei- L 'er)er+1 = er+l(el' cee 'er)

show that r'(z) anticommutes with 7(e.41); it follows that 7(e.) inter-
changes W; and W, , and thus that dim Wy = dim W, , proving that v = v
where v(¢, U) = {u, v}.

Now let »(¢, U) = {u, u}. The representations ¢; and ¢» of D, on W; and
W, are equivalent under some unitary transformation of W; onto W, . Thus
we may assume the orthonormal basis we of W, chosen such that ¢(e;) has

matrix (‘?)1 —OA-> in the basis {w;, wa} of W. We define 7(e;) = ¢(e;)

for 1 = ¢ =7 and define 7(e,q1) to be the unitary transformation with
matrix <_0 I é) in the basis {wy, wi}. Then 7(e,y1) anticommutes with

each of the other r(e;), so 7 defines a representation of €,;; on W which
extends ¢. 7(e-41) commutes with ¢(e;- --- -e,) because r is even, and

anticommutes with ¢’ (z) because it has matrix <(I) _0 I> in the basis {w; , Wy} ;

thus 7(e,4s) anticommutes with ¢'(s). It follows that 7(e,41) interchanges
U and U™, so (r, U) is a translational representation with basepoint of €,
on W which extends (¢, U), Q.E.D.

We now summarize the last two sections in

TuroreM 6. Let V be a positive-definite hermitian vectorspace of dimension

2n over a real division algebra F, express n = 2w = 2%w with w odd and
0 = b = 3, and define

J(V) =8a+2° if F=R,
f(V)=8a+2b+2=2+2 if F=C,
f(V) =8a+2°+4(b+2)(3—0b) i F=K.

Then G, has a translational represeniaition on V if and only of r < f(V), and
any two translational representations of €, on V are undtarily equivalent. Let
(¢, U) and (¢, P) be translational representations with basepoint of €, on V.
Then (¢, U) 1s strictly equivalent to (Y, P) if r is odd or if both r = 2 (mod 4)
and F = C; ¢fr =0 (mod 4), or 4f r = 2 (mod 4) and F = C, then (¢, U) s
strictly equivalent to (Y, P) if and only if the index v(¢, U) = »(y, P). Ifr
1s odd, or if r = 2 (mod 4) and F = C, or if v(¢, U) = {n, n}, then (¢, U)
extends to a translational representation with basepoint (v, U) of €y on V;
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TABLE III
F r index conditions?
R,C, K 8t {2ttc, 2n — 2ttc} 1=t=[(g+ 1)/4] and
0 é c é 2q—4t+1w
where ¢ # 2044y
R, C, K 8t + 4 {24t+3=2¢ 2 — 24t+3—zc} 0=t=10(g—2+ z)/4] and
dimpF = 2¢ 0 =< ¢ < 204t 2ty
where ¢ % 204t=3+tzy
C 4s + 2 {2¢+1d, 2n — 2¢*1d} 0 = s = [¢/2] and
0=<d =22y
where d = 2021y
R hit2) F(V) # 0 (mod 4),
ie,b=0o0rbdb=1
K F(v) f(V) # 0 (mod 4),
ie,b=1lordb =2

otherwise, (¢, U) does not extend to a translational representation with basepoint
(0, U) of Copa on V, 1., (¢, U) s maximal. In particular, the strict equiv-
alence classes of maximal translational representations with basepoint of €, on
V are enumerated in Table I11.

Theorem 6 extends the results of Part II of Y.-C. Wong’s memoir [12].

12. Unitary classification of isoclinic spheres

According to Theorem 1, every set of pairwise isoclinic n-dimensional
subspaces of V (dim V = 2n) lies in an isoclinic sphere B = ¢(G,)(U)
where (¢, U) is a translational representation with basepoint of &, on V.
We will say that B and (¢, U) are associated. As remarked earlier, (¢, U)
determines B” but B” does not determine (¢, U); in fact, B" is associated with
(¢, U*), which need not be strictly equivalent to (¢, U) (in which case
v(¢, U) = {u,v} and »(¢, U*) = {v,u}). This lack of uniqueness is clari-
fied by

LemMA 5. Let B™ be an isoclinic r-sphere on V, and let (¢, U) and {¢, P)
be translational representations with basepoint associated with B'. If these
representations are not strictly equivalent, and if v(¢, U) = {u, v}, then

v(¥, P) = {v, u}.

Proof. Given B ¢ B’, the constructions of §3 and §4 show that the set
&" of Theorem 1 is uniquely determined. As the inner product on & is

2 Here, of course, [y] denotes the integral part of y ¢ R.
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canonical, the orthonormal basis {I, Sy, - -+, S/} of &" is determined by B up
to an orthogonal transformation of the S; ; it follows that B determines the
product S = 8; 8, -+ S, up to sign, and thus determines Zz = Sz S; -+ S,
up to sign, where Sp is the unitary transformation of ¥V which is +1 on B
and is —1 on B*. If we move B in B’, then Zz moves continuously. The
lemma now follows from Lemma 3 and the definition of the indices »(¢, U)
and »(¢, P), QE.D.

In view of Lemma 5, if r = 0 (mod 4), or if » = 2 (mod 4) and F = C,
we define the sndex »(B") of an isoclinic r-sphere B" on V' to be the unordered
pair {u, v} where B" is associated with some (¢, U) of index {u, v}.

Combining Theorem 1, Theorem 6, and Lemma 5, we have the unitary
classification of isoclinic spheres:

TurorEM 7. Let V be a positive-definite hermitian vectorspace of dimension
2n over a real division algebra F. Express n = 2w = 2%w with w odd
and 0 £ b = 3, define f(V) to be 8a +2° if F=R, 2¢+2 if F = C, and
8a+2°+3(b+2)(3—0b) if F=K. Then every faomily of pairwise
isoclinic n-dimensional subspaces of V is a subset of an isoclinic sphere on V,
and every isoclinic sphere on V is a family of pairwise isoclinic n-dimensional
subspaces of V. There is an isoclinic r-sphere on V if and only of r = f(V);
if r is odd, or if r = 2 (mod 4) and F £ C, then any two isoclinic r-spheres on
V' are unttarily equivalent (under the unitary group of V); ¢f r = 0 (mod 4),
or if r =2 (mod 4) and F = C, then two isoclinic r-spheres on V are unitarily
equivalent if and only if they have the same tndex. Every isoclinic sphere lies
m o maximal isoclinic sphere, any two monmaximal isoclinic r-spheres on V
are unitarily equivalent, and the unitary equivalence classes of maximal <soclinic
r-spheres on V are enumerated in Table IV.

TABLE 1V
F T index conditions?
R,C, K 8t (242, 2n — 24t} 1=¢=1[(¢g+ 1)/4] and
0 = ¢ < 204y,

R,C, K 8t + 4 (248+8-ac, O — Qtt+Iac) 0st=g— 2+ 2)/4]
dimp F = 2% and 0 < ¢ < 204 3tay),
C 4s + 2 {2¢+1d, 2n — 2114} 0 < s = [¢/2] and

0= d <202y,
R () f(V) = 0 (mod 4),

ie,b=0o0rb=1
K §i4) F(V) # 0 (mod 4),

ie,b=1lordb =2
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Remark 6. Except for his §1.4, we have extended all the results of Y.-C.
Wong’s memoir to an arbitrary real division algebra. To extend his §1.4,
one need only view V as a real euclidean space and observe that F-isoclinic
subspaces are R-isoclinic. And as pointed out by Wong for the real case,
Theorem 7 gives the classification of maximal sets of Clifford-parallel linear
subspaces of dimension (over F) n — 1 in the projective space of dimension
2n — 1 over F. For the motions of that projective space Gy,2,(F) induced
by U(2n, F) are precisely its isometries.

Remark 7. The following shows how Theorem 7 gives the unitary classi-
fication of isoclinic spheres on 2n-dimensional subspaces of F*:

Let V be a 2n-dimensional subspace of F*. Then two isoclinic spheres on V
are unitarily equivalent in V if and only if they are unitarily equivalent in F*.
An tsoclinic sphere on a 2n-dimensional subspace of ¥ is unitarily equivalent
in F* (by an element of U(k, F)) to an isoclinic sphere on V'; thus the unitary
equivalence (in F*) classes of isoclinic spheres on 2n-dimensional subspaces of
F* are in one-to-one correspondence with the unitary equivalence (in V) classes
of wsoclinic spheres on V.

To see this, let B; be isoclinic spheres on V. If the B; are unitarily equiv-
alent in V, we choose a unitary transformation of V carrying B; to B,
and extend it to an element of U(k, F) by defining it to be the identity on
V*, thus proving the B; unitarily equivalent in F*. If the B, are unitarily
equivalent in F*, we choose T ¢ U(k, F) such that T(B,) = B,. T(V) =V
automatically if dim B; > 0, and can be arranged if dim B; = 0. Now the
restriction 7|y is a unitary transformation of V' carrying B; to B, , so the B,
are unitarily equivalent in V.

13. The classification of isoclinic spheres under rigid motions of the
Grassmann manifold

If M is a Riemannian manifold, then I(M) will denote the group of all
isometries (differentiable homeomorphisms which preserve the Riemannian
structure) of M. Recall that I(M) is a Lie group in the compact-open topol-
ogy; L (M) will denote the identity component of I(M).

U(k, F) acts by isometries on G, 1(F); let I'(G, :(F)) denote the group
of isometries of G, ;(F) induced by U(k, F). There is an isometry g8 of
G2 (F) given by B(P) = P*. Also, choice of an orthonormal basis of C*
allows us to extend the conjugation of C over R to a transformation of C",
and this transformation induces an isometry « of G,.(C). Finally, the
triality automorphism of @O(8) induces an isometry 7 of Ggs(R). It is
known [3] that I(G, ,(F)) is given as follows:

1. (G, (K)) = L(G,x(K)) if k= 2n,
I(Gn,Zn(K)) = {1; 6} 'IO(Gn,zn(K));
L(G.i(K)) = I'(Guu(K)),
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2. I(Gni(C)) = {1, 0} - Io(Gui(C)) if k = 2n,
I(Gu2u(C)) = {1, &, B8, aB} - To(Gn,2u(C)),
LI(Gai(C)) = I'(G.x(C)),

3. I(G,ix(R)) =I'(G,i(R)) if k3 2n,
I(Gpom(R)) = {1,8) - I'(Guam(R)) if n 4,
I(Gis(R)) = {1, 8, 7, 78, 7, 78} I (Gus(R)),
I,(G.(R)) hasindex 1 or 2 in I'(G,.(R)).

LemMa 6. Let Vi and Vi, be 2n-dimensional subspaces of F*, let B, be an
isoclinic sphere on V; , and view the B; as submanifolds of G, x(F). Then these
are equivalent:

(1) By is unitarily equivalent to By in F*.

(2)  An element of I (G, . (F)) maps By onto B, .

(8) An element of (G, 1(F)) maps B; onto B, .

Proof. (1) and (2) are equivalent by definition of I'(G, (F)), and it is
clear that (2) implies (3). Now assume (3). As 8(B;) = B; in case
k = 2n, we need only prove that o and 7 cannot change the unitary equivalence
class of B;, and (1) will follow.

TFirst consider the case of Gy4s(R). According to Theorem 7, any two
isoclinic r-spheres on R® are unitarily equivalent. Remark 7 now shows that
7 cannot change the unitary equivalence class of B, .

Now consider the case F = C, and let r = dim B;. If r is odd, then
Theorem 7 and Remark 7 show B, unitarily equivalent to «(B;). Now
assume r to be even. If r = 0 (mod 4), and if we alter V; and 7V, by an
element of U(k, F) such that they are equal and are invariant under «, then
Lemma 4 and Remark 7 show B; to be unitarily equivalent to «(B;). Finally,
if » =2 (mod 4), then Lemma 4, the discussion preceding Lemma 5, and
Remark 7 show that B; and «(B;) are unitarily equivalent, Q.E.D.

Combining Theorem 7, Remark 7, and Lemma 6, we have our final classi-
fication theorem:

TueoreM 8. Consider the Grassmann manifold G, x(F) where 2n = k and
F is a real division algebra. Express n = 2 "w = 2% with w odd and
0<0b =<3, and define f(n,K) tobe 8a + 2" ¢f F =R, 29+ 2 if F = C, and
8a+2"4+2(b4+2)(3—=0) if F=K. Then G,(F) contains an isoclinic
r-sphere on a 2n-dimensional subspace of F* if and only if r < f(n, K). Every
isoclinic sphere on a 2n-dimensional subspace of F* lies in a maximal such
isoclinic sphere, any two nonmazximal such isoclinic r-spheres are equivalent
under an isometry of G, x(F), and the I(G,, 1 (F))-equivalence classes of maximal
1soclinic r-spheres are given by Table IV in Theorem 7.
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Theorems 4 and 8 give a complete description of the totally geodesic
submanifolds of G, (F) in which any two distinct elements have zero inter-
section in F*, and every element is contained in some fixed 2n-dimensional
subspace of F*. This applies to the case 2n < k; Remark 2 gives the corre-
sponding result for the case 2n = k.
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