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1. Introduction

Let G,(F) denote the Grassmann manifold consisting of all n-dimensional
subspaces of a left /c-dimensional hermitian vectorspce F, where F is the
real number field, the complex number field, or the algebra of real quater-
nions. We view Cn, (1’) tS t Riemnnian symmetric space in the usual way,
and study the connected totally geodesic submanifolds B in which any two
distinct elements have zero intersection as subspaces of F*. Our main result
(Theorem 4 in 8) states that the submanifold B is a compact Riemannian
symmetric spce of rank one, and gives the conditions under which it is a
sphere. The rest of the paper is devoted to the classification (up to a global
isometry of G,(F)) of those submanifolds B which ure isometric to spheres
(Theorem 8 in 13). If B is not a sphere, then it is a real, complex, or quater-
nionic projective space, or the Cyley projective plane; these submanifolds
will be studied in a later paper [11].
The key to this study is the observation thut ny two elements of B, viewed

as subspaces of F, are at a constant angle (isoclinic in the sense of Y.-C.
Wong [12]). Chapter I is concerned with sets of pairwise isoclinic n-dimen-
sional subspces of F, and we are able to extend Wong’s structure theorem
for such sets [12, Theorem 3.2, p. 25] to the complex numbers nd the qua-
ternions, giving a unified and basis-free treatment (Theorem 1 in 4). Es-
sentially, we introduce a "closure" operation on the collection of all such
sets, and characterize the "closed" sets by means of linear transformations
which stisfy some equations studied by A. Hurwitz [6] in connection with
quadratic forms permitting composition. We give the closed sets the nme
isoclinic sphere; the first result of Chapter II is that an isoclinic sphere on
F is totally geodesic submanifold of G,(F) which is isometric to sphere
(Theorem 2 in 6). We then prove strong converse (Theorem 3 in 7)
which llows us to prove our min result (Theorem 4 in 8) by reducing it
to the cse where B is n isoclinic sphere on 2n-dimensional subspce of F.

Chapter III is devoted to the classification of isoclinic spheres on 2n-dimen.
sionl subspces of F, up to equivalence under the full group of isometries of
G,(F). We first consider the cse k 2n. Our structure theorem for
isoclinic spheres (Theorem 1) shows that isoclinic spheres cn 11 be obtained
from certain representations of Clifford lgebms. Sections 10 nd 11 re
devoted to the study of these representations, nd yield (Theorem 6 in 11)
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a complete description of the conditions for their existence and equivalence.
From this, we obtain (Theorem 7 in 12) the classification of isoclinic spheres
on F2 under the unitary group, which in turn gives us our final classification
theorem (Theorem 8 in 13).

Sections 10 and 11 are based on well-known techniques with semisimple
associative algebras. In the course of 10, we give a unified treatment over
the real numbers, the complex numbers, and the quaternions, of the Hurwitz-
Radon problem on quadratic forms permitting composition. The result
(Theorem 5) seems to be new for the quaternions.

I am deeply indebted to Y.-C. Wong’s memoir [12]. While our Sections
3, 4, 5, 10, 11, and 12 extend all the results of [12] and often use different
techniques, many of the ideas are due to Wong.

CHAPTER I. ISOCLNC SUBSPACES
2. Notation and terminology

F will denote one of the real division algebras R (real), C (complex), or
K (quaternion), with coniugation a -- a over R and norm
For every integer m > 0, F will denote a left vectorspace of dimension m
over F endowed with a positive-definite hermitian inner product u.v, and
U(m, F) will denote the group of linear transformations of F which preserve
the inner product (the unitary group). Scalar multiplication is an action on
the left, and linear transformations act on the right. With respect to any
given basis of Fm, every linear transformation is represented by a matrix.
If the basis is orthonormal, then it is well known in case F K, and easy to
verify in case F K, that a linear transformation with matrix A is unitary
(in U(m, F)) if and only if A- tfi_, where denotes transpose and the bar
clenotes coniugation of each matrix entry.

Fm FLet X and Y be subspaces of F and let x -- X and r --* Y
be the orthogonal projections. We will say that X and Y are isoclinic if
F has elements a and such that

rx(y)’rx(y2) ay.y_ and r,(x).’,(x) x.x.
for any x e X and y e Y. The possibilities x x and y y then show
that a and are real. It is easily verified that X and Y are isoclinic if and
only if either they are orthogonal (X _k Y), or dimensions satisfy dim X
dim Y and one of the v’s satisfies the condition above. As the word suggests,
this means that X and Y are at a constant angle.

3. Subspaces isoclinic to a given subspace
Let B be a collection of n-dimensional subspaces of V F whose every

element is isoclinic to some given element B e B, and let b {b, b.}
be an orthonormal basis of B. We will construct a certain real vectorspace
(R) of linear transformations of V such that B B. (R)(B).
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If B {B, B’}, then choose J e U(2n, F) with square -I (I identity)
and J(B) B’, and define (R) to be the R-vectorspace with basis I and J,
so B, (R)(B) {S(B)’S e }.

If B # {B, B’}, then we define (R)0 to be the R-vectorspace with basis I and
B0 {B}. Now suppose that (R)-1 and B_I are defined. If B c B_I,
then we define B, B_I and (R) (R)-1. If B has an element B Be_l,
B # B’, then the fact that B is isoclinic to B gives us an orthonormal basis
{u} of BI with u v + w, v e B, and w e B’, such that {,v} is an or-
thonormal basis of B for some real , > 1. It follows that B has an ortho-
normal basis {-u withu b-- a for some nonzero real and

h() B’. h() h (k)a, and some orthonormal basis {v of J(b) and J(v
--b defines a unitary automorphism of V with J -I, J(B) B", and
B ( I + a J) (B). Define B (R) (B) where (R) is the R-vectorspace
generated by J and (R)_1. By finite-dimensionality of V, this recursive
procedure will eventually give us a smallest Bq containing B; we then set
B, Bqand(R) (R).
In general B, has elements which are not isoclinic to B.

4. Mutually isoclinic subspaces
Now assume that the elements of B are mutually (pairwise) isoclinic.

We will look into the structure of (R) and see that the elements of B, are
mutually isoclinic.

Suppose that b’ {bn+l, b2, is an orthonormal basis of B’, and that

J has matrix (_0t/[ A0) in the basis {b, b’} of V (where denotes transpose

and the bar means that we conjugate every entry). We want to show that
each A tA. d- A is a real scalar matrix. Observing this to be invariant

 on, wo ,s io opon oo under choice of b’.
Thus we may assume A I and must prove that A JF tfi is a real scalar.
It suffices to prove A JF t scalar; it will clearly then be real.

Choose nonzero real z and r with B (I "iF o’J])B and B (I d- rJ)B.

In our basis, J has matrix ( 0
0
/

-I so B. has basis Ibq -- o-b,+q}q<= and

B. has basis I-abq -- b,+q}q<=,. If A (aq), then B has a basis lXq}q<=,
which has expressions

bq + r En_=l aqk b,+ Xq

+ +
for some matrices S (aq) and T (rq). S and T are proportional to
F-unitary matrices because B and B- are isoclinic. Equating coefficients
of the b, we see S T - I, whence S + and T -t- are scalar. Equat-
ing coefficients of the b+ we see that A is a linear combination of S and T;
thus A + tfi is scalar.
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Let 1I be the real-linear set of all matrices A for which, in the fixed ortho-

normal basis b, b’} of V, has an element with matrix (_0, A0). TheA,

above form a basis of 1I over R, and the preceding paragraphs show that
has a positive-definite inner product (U1, Us} given by

u 2 + v. 2 2 (u, u.)

in which A 1. The idea of finding such an inner product, due to
Wong [12], is crucial: Let {U1, Ur} be an orthonormal basis of 1I,

then the S satisfy the Hurwit equations, giving us a basis-free version of an
extension of Wong’s main result [12, Theorem .2]"

THEOREM 1. Let B be a collection of mutually isoclinic n-dimensional sub-
spaces of V F’ where F is a real division algebra. Given B e B, there is a
real vectorspace of F-linear transformations of V such that

(1) 1], r(B) i8 a collection of mutually isoclinic n-dimensional sub-
spaces of V which contains B.

(2) r has a basis I, S S over R such that each S e U 2n, F
each S(B) B, and the S satisfy the Hurwitz equations

(,) S S + S S 2 I.

Conversely, if B’ is an n-dimensional subspace of V and ,r is a real vectorspace
of F-linear transformations of V satisfying (2), then B’ ,r(B’) is a collec-
tion of mutually isoclinic n-dimensional subspaces of V.

Proof. We have found (R)r and proved (2), and B B, by construction.
We will prove that the elements of B, are mutually isoclinic as a consequence
of (2); this will complete the proof of (1) and demonstrate the last assertion
of the theorem.

Let P and Q be elements of B,,
P (poI + =pS)B and Q (qoI + =qS)B.

If p0 0 or if q0 0, then P B" or Q B" and we are done, for every
element of B, is easily seen to be isoclinic to B by (,) and is thus isoclinic
to B’. Again using (,), we write P (I S)B and Q (I q- T)B where
T q-i q S and S pl P S are proportional to unitary transfor-
mations. In an appropriate orthonormal basis b’ of B’, T has matrix

(O_ai I) and S has matrix (2’ )in the basis {b, b’} of V for some real

a > 0. Now U q- tO isareal scalar matrixflI, 2 (U, I). We have
matrices S’ () and T’ (r) such that the basis {xg} (I -t- S)b
of P has expressions, where U (g),

bq -3v Ekn=_l t.tqk bn-t-k Xq Ekn.=l O’qk bk "-t’- Obn+k "2V Ekn.=l Tqk bk "-t- bn-t-k
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Equating coefficients we have S’ I -t- aT’ and U aS’ -t- T’. Thus
U aI + T’ where , a -t- 1 > 0, and U -a-lI + 6S’ where
a -t- a

-1 > 0. From U + tO scalar, it follows that T’ -t-- t,, and S’ -t- t,
are scalar. Thus S’ ’t- t, I-k a(T’ -t- t,) -t-aT"tT shows that T’
is proportional to an F-unitary matrix. It follows that P is isoelinie to Q’,
and is thus isoelinie to Q, Q.E.D.
Remark 1. To view Theorem 1 from the viewpoint of Wong’s memoir,

one considers the space 1I rather than the space r. is a real veetorspaee
of F-unitary n X n matrices which depends on the choice of an orthonormal
basis b of B’. If b’ is chosen such that U I in an orthonormal basis
{U1, U of 1I, then i < r implies

(so U --I), whencej < r implies U U. -t- UiU -2.I. This is
equivalent to (2) of Theorem 1.

DrIWo. The sets B, and B’ of Theorem 1 will be called isoclinic r-
spheres on V.

Thus Theorem 1 can be rewritten as

TIOg 1’. Every collection of mutually isoclinic n-dimensional subspaces
of V F is contained in an isoclinic sphere on V, and every isoclinic sphere
on V is a collection of mutually isoclinic n-dimensional subspaces.

CHAPTER II. GRASSMANN MANIFOLDS

5. Definitions and preliminaries

Given integers 0 < n </c and a real division algebra F, G.k(F) will denote
the Grassmann manifold consisting of all n-dimensional subspaees of Fk. The
action of U(k, F) on Fk induces an action on G.k(F) U(/c, F) is transitive
on the elements of G,.(F). Given B e G.(F), this allows us to identify
G.(F) with the eoset space of U (/c, F) by its isotropy subgroup

K. {Te U(k, F) T(B) B}

at B, which gives G,(F) the structure of a real analytic manifold.
Gn,](1’) carries a unique (up to real scalar multiplication) U(n, F)-in-

variant Riemannian structure, described as follows: There is a vectorspace
direct-sum decomposition lI(n, F) . - . (German letters denote Lie
algebras) where . under the Killing form f on 1I (n, F), and a natural
identification of . with the tangentspace to G,(F) at B under the differ-
ential of the projection T - T(B) of U(n, F) onto G,(F) thus --f de-
termines an invariant Riemannian metric on G,(F). G,(F) will always
be understood to carry this structure, and is thus a, Riemannian symmetric
space.
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If V is a particular left hermitian vectorspace of dimension/c over F, then
Gn(V) will denote Gn.k(F) where the elements are viewed as subspaces of V.

If N is a submanifold of a Riemannian manifold M, then N inherits a
Riemannian structure from M. We say that N is totally geodesic if every
geodesic of N is also a geodesic of M. This implies that, for every 2-dimen-
sional subspace S of a tangentspace of N, the sectional curvature of N along
S is the same as that of M along S.

6. Isoclinic spheres as spheres
Let B be an isoclinic sphere on V .2. We will examine B as a submani-

fold of the Grassmann manifold
Choose B e B. Theorem i says that there is a real vectorspace r of linear

transformations of V with basis lI,
and S(B) B for each i; SiS. 4- S.S -2tii.I, and B ’(B).
S --I shows that each S is skew-hermitian, and may thus be viewed as an
element of 1I(2n, 1). It is easily checked that each Sie 3B where 1I(2n, F)
B 4- ,, as in 5. Let (R) be the subspace of 3, spanned by the S, and
let B’ B’e B. Then (a0 1 4- a S,) (B), and we may assume ai 1.
We define

a ( a)1/2 and S a-l a, S,,

observe that B’ (aoI "4- aS)(B) and exp(tS) cos(t)/ - sin(t)S, and
conclude that B’ exp() (B). Thus B exp ((R)) (B).

Let (R be the curvature tensor on G,2(’). If X, Y, and Z are tangent-
vectors to G.:(I) at B, then we view them as elements of 3 and have [8]

(R(X, Y).Z- --[[X, Y], Z].

In particular, (R(S, S.). S -4S if i j. A short calculation shows the
existence of a real number p > 0 such that f(Si, S.) -. p- where f is
the Killing form. As we have chosen -f for metric, the sectional curvature
of Gn.:(l) along a 2-dimensional subspace of the tangentspace at B with
(-f)-orthonormal basis IX, Y} is given by -f((R(X, Y). X, Y)}. It
follows that G,(I) has sectional curvature 4p along every 2-dimensional
subspace of (R). But [(R), [(R), (R)]] (R) (i.e., (R) is a Lie triple system), which
implies that exp ((R)) (B) is a totally geodesic submanifold of G,(’), and
the preceding paragraph showed that B exp((R))(B). We conclude that
B is a totally geodesic submanifold of constant positive curvature 4p in
Gn,n(’). The number p depends only on n and F.

If " R, then Y.-C. Wong has shown [12, p. 62] that a maximal isoclinic
sphere on t2, regarded as a submanifold of G,(’), is homeomorphic to a
sphere. More generally, we may see that B is homeomorphic to an r-sphere
as follows. Let G be the subgroup of U(n, ’) with Lie algebra @ 4- (R),

[(R), ]. is spanned by the S, and thus has dimension r. isspanned
by the S S. (i < j), and thus has dimension r(r 1)/2. As G acts tran-
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sitively nd almost-effectively by isometries oa B, and as B has constant posi-
tive curvature, it follows that G is locally isomorphic to the orthogon! group
O(r + 1) U(r - 1, R). Thus (see [10], for example) B isthe sphere or the
projective space. Every geodesic of B through B passes through B; this
shows that B is not the projective space.
We have now proved

TEOEM 2. Let B be an isoclinic r-sphere on V F2 for some real division
algebra F, and view B as a subset of the Grassmann manifold Gn.2(F). Then
B is a totally geodesic submanifold of Gn,2(F), and there is a real number
q > O, depending only on G,.2(F), such that B is isometric to the sphere of radius
q iT Rr+l.

7. A characterization of isoclinic spheres
Let V be a subspace of dimension 2n in F, and let B be an isoclinic sphere

on V. As G(V) is a totally geodesic submanifold of G.,(F), Theorem 2
shows that B is a totally geodesic submanifold of Gn,(F) which is isometric
to a sphere. B also has the property that any two distinct elements, viewed
as subspaces of F, have intersection 0. We will see that these properties
characterize isoclinic spheres on 2n-dimensional subspaces of .
THEOREM 3. Let. B be a submanifold of the Grassmann manifold

where 0 < 2n <- lc and F is a real division algebra. Then these are equivalent:
(1) B is an isoclinic sphere on a 2n-dimensional subspace of Fk.
(2) B c G,(V) for some 2n-dimensional subspace V of F, any two distinct

elements of B, viewed as subspaces of F, have intersection O, and B is a connected
totally geodesic submanifold of Gn,(F).

(3) Any two distinct elements of B have intersection O, the fundamental
group ’1(B has odd finite order, and B is a connected totally geodesic submanifold
of constant positive curvature in G,, F

(4) Any two distinct elements of B have intersection O, and B is a totally
geodesic submanifold of G,(F) which is isometric to an (ordinary) sphere.

Proof. We have just seen that (1) implies (4), and (4) clearly implies
(3). We must prove that (3) implies (2) and (2) implies (1).
Choose B e B, let ll(k, F) . + , be the decomposition of 5, and let
be the subspace of , which is the tangentspace to B at B. As B is a

connected totally geodesic submanifold of G.,(F), we have B exp() (B)
and [, [, ]] c (R). Let E. denote the lc X ]c matrix whose only nonzero
entry is a 1 in the (i, j)-place. From the fact that G,(F) is a Riemannian
symmetric space of rank n, it follows that, given X e ,, we have an ortho-
normal basis x of F such that (a) the first n elements of x span B and the
last/c n elements span B’, and (b) the matrix of X with respect to x is of
the form =a(E,+, E+,,) with a e R. Suppose further that X e (R).
As B exp() (B) cannot have two elements in a (2n 1)-dimensional
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subspace of Fk, the matrix of exp(tX) (t e R) relative to x cannot have
nonzero entry in the (i,j)-plaee with i =< n < j whenever some

exp(tcm(Em,m+ Em+,m)) 4- I.

Replacing x+ by -xi+ if necessary, we may now assume that each at > 0.
By normalizing X so that the largest ci is r, each at must be r because exp(X)
is diagonal in x. Thus we may assume that all the a are equal. In particu-
lar, every element of B exp((R))(B) is isoelinie to B. It follows from the
proof of the last part of Theorem 1 that (2) implies (1).

Let {X1, ..., Xr} be a basis of (R) which is orthonormal relative to the
negative of the Killing form of 1I (n, F). As above, we choose an orthonormal
basis x of Fk whose first n elements span B, whose last/ n elements span
B’, and with respect to which X1 has matrix ai=(E,+- E+,) for
some real a > 0. B is easily seen to consist of all linear transformations of

F withmatrixofthe form(0fi_ AO), for somenX (lc-n) matrixA

over F, with respect to x. Let [a0 1, a, ..., aq} be the usual basis of F
over R" ai --1, and distinct a antieommute for i > 0. Then , has
basis (over R) consisting of all linear transformations with matrix (relative
to x) E.v Ev, or ai(E, - E,) for 1 _-< u =< n < v _-< lc and 1 _-< i =< q.
Let be the subspaee of , spanned by those basis elements with v _-< 2n.
If every X e , then B will consist of subspaees of the span of {x, ..., x.}
because B exp ((R)) (B), and (2) will follow. Thus we need only prove that
each X e 3 provided that B has constant positive curvature and that its
(necessarily finite) fundamental group is of odd order, and we will have
proved that (3) implies (2).

Suppose that B is of constant positive curvature and with fundamental
group of odd order. Then let B’ denote the element of B such that, under
the universal Riemannian covering of B by a sphere, B’ is the image of the
point antipodal to some point in the inverse image of B. Let

X oz-lXl in=l(Ei,,+n Ei+.,);

then B’= exp(1/2rX)(B), has basis {Xn+, ’’’,X}, and is preserved by
[(R), (R)]. If u N n < v, then IX, E,n+, 4- E+,] --(E+,+v 4- E+,+);
thus [X ,Xd cannot preserve B’ if Xt 3, proving that (3) implies (2),
Q.E.D.

Remarlc 2. Given 0 < n </c, there is an isometry _1_" G,(I) -. Ge_,()
given by B--B’. Thus, if 2n>= lc (i.e., if 2(/c--n) <- lc), and ira is a
submanifold of G.(’), then Theorem 3 shows that these are equivalent"

1. A" is an isoelinie sphere on a 2n-dimensional subspaee of 1’.
2. Fk has a subspaee V" of dimension/c- 2n such that A1 n A V

for any two distinct A e A, and A is a connected totally geodesic submanifold
of G,(’).

3. F A -t- A: for any two distinct A A, and A is a connected totally
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geodesic submanifold of constant positive curvature and fundamental group
of odd order.

4. A is a totally geodesic submanifold of Gn,(F)which is isometric to a
sphere any two of whose elements span Fk.
Remark 3. If N is a connected totally geodesic submanifold of a

Riemannian (or even affine) symmetric space M, then N is preserved by
the symmetry of M at any point of N. If N is of constant positive curvature,
it follows that N is isometric either to a sphere or to a real proiective space.
Thus Theorem 3 tells us the following"

Let lg be a connected totally geodesic submanifold of conslant positive cw vature
in the Grassmann manifold Gn,k(F) where 0 < 2n <-_ lc and F is a real division
algebra, and suppose that any two distinct elements of N (viewed as subspaces of
F) have zero intersection. If N G(V) for some 2n-dimensional subspace
V of F, then N is isometric to a sphere (and is an isoclinic sphere on V). Other-
wise, is isometric to a real projective space.

This will also follow from Theorem 4.
We give an example to show that the latter case occurs. Suppose 3n,

define (relative to an orthonormal basis x of F)
X ,(E,+ E+,),

Y =( ,+. E+,)

Z ,(E+.,+. Z+.,+.),

and observe that IX, Y] Z,[Z,X] Y and [Z,Y] =-X. Thus the
subgroup G of U(, ), with Lie algebra N spanned by X, Y, and Z, is locally
isomorphic to SO(3). Let B be the subspace of F with basis {x, ...,
and define N G(B). N is of constant positive curvature because it
carries an SO(3)-invariant Riemnnian metric, and is a totally geodesic
submanifold. It follows that N is isometric to a real projective space Ga.(R)
of dimension 2.
Remar 4. Let B be a connected totally geodesic submanifold of

where 0 < 2n N . The proof that (2) implies (1) in Theorem 3 shows that
any two elements of B are isoclinic if and only if any two distinct elements of
B have zero intersection. If that is the ease, and if lc 2n, then B is isometric
to a sphere.

8. Symmetric spoces of rank one

Recall that the compact Riemannian symmetric spaces of rank one are the
spheres, the real projective spaces, the complex projective space, the quater-
nionie projective spaces, and the Cayley projective plane. They are char-
aeterized among Riemannian symmetric spaces by the fact hat they have
every sectional curvature positive. Theorem 3 shows that a toally geodesic
submanifold of G,.(F) (2n k), which has every two elements isoelinie
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and is contained in Gn(V) for some 2n-dimensional subspaee V of ’, is a
symmetric space of rank one.
We can now state and prove the basic result of this paper"

TIEOEM 4. Let B be a connected totally geodesic submanifold of the Grass-
mann manifold G,(t), where 0 < 2n <-_ ]c and F is a real division algebra, and
suppose that any two distinct elements of B have zero intersection as subspaces of. Then B is a compact Riemannian symmetric space of rank one, and these
are equivalent"

(1) B is isometric to a sphere.
(2) F has a 2n-dimensional subspace which contains every element of B.
(3) B is an isoclinic sphere on a 2n-dimensional subspace of Y.
Proof. The second assertion is contained in Theorem 3, and B is Rie-

mannian symmetric because it is totally geodesic in Gn.(F). It suffices to
prove that every sectional curvature of B is nonzero; such a curvature will
then be positive because it is a curvature of Gn.(F), and it will follow that B
is compact and of rank one.

Let B e B; we will prove that every sectional curvature of B at B is non-
zero. Let ll(/c, F) -t- ? be the decomposition mentioned in 5, let

? be the tangentspace to B at B, and let {X, Y} (R) be linearly
independent; it suffices to prove that [X, Y] 0. Let x {x, ..., x} be
an orthonormal basis of Fwhose first n elements span B, chosen such that
X is a real multiple of the linear transformation with matrix

relative to x. This was seen to be possible during the proof of Theorem 3.
We may replace X by that multiple. Retaining the notation of the proof of
Theorem 3, is spanned by the linear transformations with matrix

oi(Eu,v oEv,u)

relative to x, where 1 -< u =< n < v _-< k and {a} is our basis of F over R.
3 was the subspace for which v <= 2n; let 3 be the subspace for which
v > 2n. Finally, let T 3, - 3, be the transformation Z -o [X, [X, Z]].

Suppose that [X, Y] 0. In particular, T(Y) 0. Now Y Y’ -t- Y
with Y "e3, T(Z) -Z forZe.,and T(3) . It follows that
Y e. Let (R)’-- n3. [3,[3,3]] and [(R), [(R),]](R);
it follows that

[’, [’, ’1! C: n ; ’,
i.e., ’ is a Lie triple system. Thus B’ exp((R)’)(B) is a totally geodesic
submanifold of G.(F). Two distinct elements of B’ have zero intersection
in Y because they are elements of B. By construction of (R), every element
of B lies in the subspace of F with basis {x, ., x.} it follows from Theorem
3 that B is isometric to a sphere. In particular, two independent elements
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of ’ must have nonzero bracket. As X and Y lie in (R)’, this contradicts
IX, Y] 0, Q.E.D.

Remarlc 5. Suppose, in Theorem 4, that B is not a sphere. Then B is
real, complex, or quaternionic proiective spce, or the Cyley projective
plane. Each of its proiective lines is isometric to an s-sphere, where s 1,
2, 4, or 8, respectively. It can be proved that B has no totally geodesic
submanifold isometric to an (s - 1)-sphere, for two projective lines have
unique point of intersection. Thus we may choose x so that B is an s-sphere,
but we cannot choose x such that B’ is an (s + 1)-sphere. This will be the
basis for our classification when B is a proiective spce.

CHAPTER III. THE CLASSIFICATION OF ISOCLINIC SPHERES

9. The connection with Clifford algebras
Recall that the abstract Clifford algebra r is the real associative algebr with

identity 1, generators lel, ", er}, and relations ee-- e-e -2. where. is the Ironecker symbol. ’r denotes the real subspace of r with basis
l, el, ...,e}. A representation of on F is a homomorphism
: --(Fm)R of R-algebras where (1)= I; here (Fm) denotes the
F-algebra of all linear transformations of F, the subscript R means that we
view it as an algebra over I, and I denotes the identity transformation.

is equivalent (resp. unitarily equivalent) to another representation if
(F) has an invertible (resp. unitary) element T such that each
() T.(x). -.
We define to be unitary if each (e) e U(m, F), and to be translational

(with basepoint U) if U is a subspace of F such that each (e)(U) U.
If (, U) and (,P) are translational representations with basepoint of

on Fm, then we say that they are strictly equivalent if there exists
T e U(m, F) such that T(U) P and each (x) T.O(x). T-.

It is clear from Theorem 1 that translational representations with basepoint
correspond to isoclinic spheres under

(, u) -(’) (u)
and that strict equivalence of (, U) results in unitary equivalence of( )(U).
On the other hand, (, U’) is a translational representation with basepoint
not necessarily strictly equivalent to (, U), while (Pr) (U) (:)(U).
But we will see that the unitary equivalence class of() (U) determines the
pair consisting of the strict equivalence class of (, U) and that of (, U’).
This will allow us to classify the isoclinic spheres up to unitary equivalence.
We will then see that unitary equivalence of isoclinic spheres is the same as
equivalence under the full group of isometries of the Grassmann manifold.

10. Translational representations

We will collect some information on translational representations which
will be useful in 11. Let W denote a vectorspace Fm.
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LEMMA 1. Every representation of on W is equivalent to a unitary repre-
sentation. If r is even, then every representation of is faithful, and any two
unitary representations are unitarily equivalent.

Proof. {o,’", e} generates a finite multiplicative group G in , and
every F-representation of a finite group is equivalent to an F-unitary repre-
sentation; thus every representation of on W is equivalent to a unitary
representation. Now suppose that r is even, whence [4, 2.2] r is a central
simple (= normal simple) algebra over R. 1 -- I 0 shows every repre-
sentation nonzero, and thus faithful by simplicity of .

Let and be unitary representations of r (r even) on W. They are
faithful, so we have an isomorphism h :() (). If F C, then
(W), is central simple over R and [1, Theorem 4.14] h extends to an auto-

a hmorphism h’ of (W) is conjugation by some invertible element of
(W) because (W). is central simple. If F C, then h extends to an
isomorphism h between the complexifications of () and () because

is central simple over R, and (W) is central simple over C; thus [1,
Theorem 4.14] h extends to an automorphism h’ of (W), and h’ is conjuga-
tion by an invertible element.
We have just seen that and are equivalent. In particular, they induce

equivalent F-representations of G. Thus they induce F-unitarily equivalent
F-representations of G (the usual proof is valid over K). In conclusion,
and are unitarily equivalent, Q.E.D.

:LEMMA 2. r (r > O) has a translational representation on W if and only
if W has some even dimension 2n, and has an n-dimensional subspace U on
which there is a representalion of -1. Any two translational representations

of on W are unitarily equivalent.

Proof. The first statement is clear from 4, and the second statement
follows from Lemma 1 in case r is even. Now let and be translational
representations of (r odd) on W. Replacing p by a unitary equivalent,
we have a subspace B of W such that (ei)(B)= B’= 4(ei)(B) for
1 N i _-< r. Let b be an orthonormal basis of B, and let c be an orthonormal
basis of B. In the orthonormal basis {b, c} of W, (e) has some matrix

(2-- )and (e)has matrix (_ ), where X and Y are F-unitary

matrices. Let Z be the unitary automorphism of W whose matrix in {b, c} is

we may

assume (e) 4(e).
Now let b’ O(e)(b), orthonormal basis of B such that O(er) (e)

matrix ( 0 Io) in the orthonormal basis {b, b’} of W. In {b, b’} (e)has

hasmatrix( 0 ) ( 0
t and (e) has matrix t for i N i N r- 1,
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where U and V are F-unitary matrices. The relation e,i e + e. e -2
gives U U. + U U -2i..I Vi V. + V. V, whence we have unitary
representations of r-1 on B defined by" ’(e) has matrix U, and ’(e)
has matrix V in the basis b. By Lemma 1, we have an F-unitary matrix A
such that AUA-1= V, for r- 1 is even (because r was assumed odd).

Now let D be the unitary automorphism of W with matrix (0A 2) in the

basis {b, b’}, and we have D.(e).D- (e) for 1 _-< i _-< r, proving that
and are unitarily equivalent, Q.E.D.
The following result, stated as a theorem beeause of its historical interest,

solves a elassieal problem of quadratic forms permitting composition over a
real division algebra F. For F C, the problem was formulated and solved
by A. Hurwitz [6]; later, J. Radon solved it for F R [9]. The problem
was solved for composition of a form with itself over an arbitrary commutative
field by A. A. Albert [2], and representation-theoretic proofs for the ease
F R have been given by B. Eekmann [5] and H. C. Lee [7]. Our proof,
based on a close look at subalgebras of a total matrix algebra, gives a brief
and unified treatment of the three possibilities for F. We believe the result
to be new for F K.

THEOREM 5. Let U be a left vectorspace of dimension n over a real division
algebra F, n 2a+bu 2U where u is odd and 0 <- b <= 3. Then r-1 has a
representation on U if and only if

(1) F= R" r =<8a+2b.
(2) F= C" r =<8a+2b+2= 2q+2.
(3) F K" r <_- Sa+2-t-1/2(b+2)(3- b).

Proof. If g2 is an algebra with identity element 1, then I g2 will
mean that N is a subalgebra of and 1 is the identity element of ?I. If
I is central simple, then [1, Theorem 4.6] g2 has a subalgebra 1’ such that

is the Kronecker product tensor product) ?I (R) 1’ this result will be
used without reference, g2k(F) will denote the algebra of / X/c matrices
over F as an algebra over F; Jk(F). denotes g)(F) viewed as an algebra
over R.
The Clifford algebras have the following structure (see [4, Chapter II])"

,+ ,/(K),

s,+ ,+(R),

s+, 8+. (9 st+,

8,+ 4,+.(C),,

s+ ,+ (R) st+.
In the eases where m is not simple, none of the e lie in a simple summand.
Thus m has a representation on U if and only if

m 8t and g22t(R) c (U) J(F),
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or

or

or

or

or

or

or

If we

m 8t + 1 and

m 8t + 2 and

m 8t + 3 and

m 8t + 4 and

m 8t + 5 and

m 8t + 6 and

m 8t + 7 and

use the fact that
c c c

Jt(R) C 8(K)R, and (C)R c 8(K) are each equivalent to s being
divisible by p, it follows that r-1 has a representation on U if and only if
Table I holds.

TABLE I

r--l=8t
r--l=8t+l
r--l=8t+2
r--l=8t+3
r--l=8t+4
r--l=8t+5
r--1=8t+6
r--1=St+7

r_-<2q+l
r<=2q
r<=2q--1
r<=2q
r<=2q--1
r<=2q
r__<2q+l
r__<2q+2

r=<2q+l
r_-<2q+2
r<__2q+l
r=<2q+2
r__<2q+l
r-_<2q+2
r_-<2q+l
r__<2q+2

F= K

r-<: 2q+ 1
r__<2q+2
r=<2q+3
r=<2q+4
r=<2q+3
r_-<2q+2
r=<2q+l
r2q+2

Let s be the largest integer such that ,-1 has a representation on U. Then
r-1 has a representation on U if and only if r _-< s, and our considerations
show that s is given by Table II.

TABLE II

q= 4a
q=4a+l
q=4a+2
q=4a+3

I=R

s=2q+l
s 2q
s 2q
s=2q+2

s=2q+2
s=2q+2
s-2q+2
s=2q+2

:F= K

s=2q+4
s=2q+3
s=2q+2
s=2q+2

Thus
s= 8a+2 if

s= 8a+2b+2= 2q+2 if

s=8a+2s+1/2(b+2)(3-b) if

which proves the theorem, Q.E.D.
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11. Translational representations with basepoint
The study of translational representations with bsepoint is fcilitted by

the algebra
r-rs.r" ses-l=-e, s=l

and the behavior of its elements

z- sele....e, al= (1 +z), a= (1-z).

For if (4, U) is a translational representation with basepoint (see 9 for
definitions) of on W, then we have an induced representation of on
Wby

’ x + sy (x) + Sv.(y) (x, y e )

where Sv is the unitary transformation of W which is I on U and is -I on
U. On the other hand, if " is a representation of on W (r > 0), then
its restriction to is a representation of , on W; ff is unitary, then
W P P where ’(s) is I on P and -I on P and where each
interchanges P and P, because each (e) anticoutes with ’(s) and

" (s)= I, whence (, P) is a translational representation with basepoint
and ’ ".
We will oy use r when r is even. In that case, the center of is

spanned by 1 and z, and , @. .
z (-1).s.(e e,)= (-1).(--1) (r+)/,

whence Cifr 2(mod4) andRRr0 (mod4). Thus, (r even) is given by

Finally, it is easy to verify that two translational representations with base-
point of , are strictly equivalent the associated representations of , are
equivalent.

LEM 3. If r is odd, or if r 2 (mod 4) and F C, then any two trans-
latial representations with basepoint of , on W are strictly equivalent.

Proof. If r is odd, this was seen during the proof of Lemma 2.
Now let r 2 (mod 4) and F C. By the preceding discussion, we need

only take a complex matrix algebra (C) and prove that two R-algebra
representations and of it on W are equivalent. Let J -1 I e (C).
As F C, (J) is conjugate to (J) because they both have square

I e (W) thus we may assume (J) J’ (J). Let be the cen-
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tralizer of J’ in (W); N carries the structure of a complex matrix algebra
in which jt %/_ 1 I, and and are C-algebra homomorphisms of q(C)
into 9.I. It follows [1, Theorems 4.5 and 4.14] that and are equivalent
by an element of , Q.E.D.
The obstacles to extending Lemma 3 are made explicit in the following

definition.

DEFINITION. Let (, U) be a translational representation with basepoinl
of r on W, and let 4)’ be the associated representation of on W. If F C
and r - 2 (rood 4), then W W1 @ W where b’(z) is scalar multiplication
by %/--1 on W1 and by --%/--1 on W we define the index (, U) to be the
ordered pair {dim W1, dim W2}. If r=-O (rood 4), then W= W@ W
where ’ (z) is scalar multiplication by 1 on W1 and by --1 on W. we define
the index ,(, U) to be the ordered pair {dim W1, dim W}.

LEMA 4. If r=----O (rood 4), or if F= C and r----- 2 (rood 4), then two
translational representations with basepoint of on W are strictly equivalent if
and only if their indices are equal; a translational representation with basepoint
(, U) of on W extends to a translalional representation with basepoint
(r, U) of r+l on W if and only if u v where (, U) {u, v}.

Proof. Let (, U) and (h, P) be translational representations of r on
W. If they are strictly equivalent, then ’ and b’ are equivalent repre-
sentations of on W, whence ’(z) is conjugate to ’(z), proving that
(, U)--(,P). Now suppose ,(, U)--(,P); we will prove that
(, U) is strictly equivalent to (, P). Submitting (b, P) to a strict equiv-
alence, we may assume that ’ (z) ’ (z). Now let W W @ W. be the
(necessarily orthogonal) direct-sum decomposition of W described in the
definition of (, U), let w be an orthonormal basis of W, and let be the
centralizer of ’ (z) b’(z) in (W). It is clear that ?I (W) (R) (W).
Suppose first that r----2 (rood 4), r 2r’, and ’= C. Then
r J’ (C), and ’ and ’ each defines C-algebra homomorphisms of r
into (W) and into (W) which carry i to I and z to +/-/- 1 I. It follows
that

’ @2 and ’ =@where and 1 are C-representations of 2’ (C) on W with z viewed as
//-- 1 I e 2r, (C), and 2 and 2 are C-representations of 2’ (C) on W2
with z viewed as -/1 I e 2,(C). As is equivalent to [1, Theorems
4.5 and 4.14], ’ is equivalent to P’, whence (, U) and (, P) are strictly
equivalent.
Now let r 0 (mod 4), so ,. a.. @ a2"r where a is the identity

element of a.r, and ai’. is isomorphic to ,(R) (if r----0 (mod 8)),
or to ), (K). (if r - 4 (mod 8) ). As above, ’ @ 2 and
where and h are R-representations of a. on W which send a to I.
If " C, then [1, Theorems 4.5 and 4.14] is equivalent to , and it follows



GEODESIC SPHERES IN GRASSMANN MANIFOLDS 44]

that ($, U) is strictly equivalent to (,P). Now assume F C. Then
i and i extend to C-representations of a.r (R) C a. (r (R) C) on
W, and the same argument shows that ($, U) is strictly equivalent to
(, P).

If (, U) extends to translational representation with bsepoint (r, U)
of + on W, then- e,+(e e)se+s --e+ and (e e)e+x

show that r’(z) anticommutes with r(er+l); it follows that r(e+) inter-
changes W and W, and thus that dim W1 dim W:, proving that u v
where (, U) u, v}.
Now let (, U) {u, u}. The representations and : of on W and

W2 are equivalent under some unitary transformation of W onto W. Thus
we may assume the orthonormal basis w of W chosen such that (e) has

matrix (A 0
in the basis {w w:} of W. We define T(i) (ei)o

for 1 i r and define r(e+) to be the unitary transformation with

each of he ogher r(e), so r defines a represengaion of + on W which
exgends 4. r(e+) eommuges wigh (e e) because r is even, and

anieommues wih 4’ (z) because i has matrix ( i) in he basis w w}

hus r(e+) anieommues wih ’(). I follows ha r(e+) interchanges
U and U, so (r, U) is a ranslaional representation wih baseoin of +
on W which exgends (4, U), .N.D.
We now summarize he las wo seegions in

To 6. Le be a poiive-d@ie hermiia vecorpace of dimeio
2 over a real diviio algebra , ezpre 2+ 2w ih odd and
0 <-_ b <= 3, and define

f(V) Sa + 2 if
f( V) 8a + 2b - 2 2q + 2 if

f(V) 8a nt- 2 + 1/2(b + 2)(3 b) if

F C,

F=K.

Then has a translational representation on V if and only if r <= f( V), and
any two translational representations of on V are unitarily equivalent. Let
(, U) and (, P) be translational representations with basepoint of r On V.
Then (, U) is strictly equivalent to (, P) if r is odd or if both r 2 (rood 4)
and C; if r =--- 0 (rood 4), or if r 2 (rood 4) and F C, then (, U) is
strictly equivalent to (b, P) if and only if the index ,(, U) (, P). If r
is odd, or if r ------ 2 (rood 4) and F C, or if ,(, U) In, n}, then (, U)
extends to a translational representation with basepoint (% U) of (v) on V;
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TABLE III

l, C,K

1, C,K
dimR F 2

R

K

r

8t4

4s+2

f(v)

f(v)

index

{24tc, 2n 24tc}

24t/a-x, 2n 24t+a-xc}

{2’+1d, 2n 28+1d}

conditions

1 _-< =< [(q + 1)/4] and
0 -- C 2q--4t+lw

where c 2q-4w.

0 =< [(q 2 -- x)/4] and
0 C 2q-4t-’+xW

where c 2q-4t-a+xw.

0 _-< s =< [q/2] and
0 d 2q-2sw

where d 2q-2s-lw.

f(V) 0 (mod 4),
i.e.,b Oorb 1

f(V) 0 (mod 4),
i.e.,b- 1orb- 2

otherwise, (, U) does not extend to a translational representation with basepoint
(, U) of + on V, i.e., (, U) is maximal. In particular, the strict equiv-
alence classes of maximal translational representations with basepoint of on
V are enumerated in Table III.
Theorem 6 extends the results of Part II of Y.-C. Wong’s memoir [12].

12. Unitary classification of isoclinic spheres
According to Theorem 1, every set of pirwise isoclinic n-dimensional

subspaces of V (dim V 2n) lies in an isoclinic sphere B () (U)
where (, U) is a translational representation with basepoint of , on V.
We will say that B and (, U) are associated. As remarked earlier, (, U)
determines B but B does not determine (6, U); in fact, B is associated with
(, U’), which need not be strictly equivalent to (, U) (in which case
(, U) {u, v} and (6, U) {v, u} ). This lack of uniqueness is clari-
fied by

LEMMA 5. Let B be an isoclinic r-sphere on V, and let (, U) and (b, P)
be translational representations with basepoint associated with Br. If these
representations are not strictly equivalent, and if (, U)= {u,v}, then
(, P) {v, u}.

Proof. Given B e B, the constructions of 3 and 4 show that the set
of Theorem 1 is uniquely determined. As the inner product on is

Here, of course, [y] denotes the integral part of y R.
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canonical, the orthonormal basis [I, $1, ..., St} of (R)r is determined by B up
to an orthogonal transformation of the S it follows that B determines the
product S $1 $2 Sr up to sign, and thus determines Z S $1 Sr
up to sign, where S is the unitary transformation of V which is 1 on B
and is --1 on B’. If we move B in Br, then ZB moves continuously. The
lemma now follows from Lemma 3 and the definition of the indices (, U)
and (, P), Q.E.D.

In view ofLemma5, ifr----0 (rood4), or if r---2 (mod4) and F= C,
we define the index (Sr) Of an isoclinic r-sphere B on V to be the unordered
pair {u, v} where B is associated with some (, U) of index/u, v}.
Combining Theorem 1, Theorem 6, and Lemma 5, we have the unitary

classification of isoclinic spheres"

THEOREM 7. Let V be a positive-definite hermitian vectorspace of dimension
2n over a real division algebra F. Express n 24a+bw- 2qw with w odd
and 0-<- b <= 3, definer(V) to be 8a 2 if F- R, 2q- 2 if F-- C, and
8a- 2 - 1/2(b- 2) (3 b) if F K. Then every family of pairwise
isoclinic n-dimensional subspaces of V is a subset of an isoclinic sphere on V,
and every isoclinic sphere on V is a family of pairwise isoclinic n-dimensional
subspaces of V. There is an isoclinic r-sphere on V if and only if r <= f( V)
if r is odd, or if r 2 (rood 4) and F C, then any two isoclinic r-spheres on
V are unitarily equivalent (under the unitary group of V); if r 0 (rood 4),
or if r 2 (rood 4) and F C, then two isoclinic r-spheres on V are unitarily
equivalent if and only if they have the same index. Every isoclinic sphere lies
in a maximal isoclinic sphere, any two nonmaximal isoclinic r-spheres on V
are unitarily equivalent, and the unitary equivalence classes of maximal isoclinic
r-spheres on V are enumerated in Table IV.

TABLE IV

R, C,K

K

r

8t+4

4s -t- 2

f(v)

f(v)

index

{24tc, 2n 2tc}

{24t+a-xc, 2n 2t+a-c}

{2+1d, 2n 2*+d}

conditions

1 -< [(q -t- 1)/4] and
0 C < 2q-4tW.

0 _-__ [(q-- 2-{- x)/4]
and 0 =< c < 2q-4t--+xw.

0 _-< s [q/2] and
0 <= d 2q-2-lw.

f(V) 0 (mod 4),
i.e.,b 0orb 1

f(V) 0 (mod 4),
i.e.,b 1orb 2
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Remark 6. Except for his IA, we have extended all the results of Y.-C.
Wong’s memoir to an arbitrary real division algebra. To extend his I.4,
one need only view V as a real euclidean space and observe that F-isoclinic
subspaces are R-isoclinic. And as pointed out by Wong for the real case,
Theorem 7 gives the classification of maximal sets of Clifford-parallel linear
subspaces of dimension (over F) n 1 in the proiective space of dimension
2n- 1 over F. For the motions of that projective space G1,2n(F) induced
by U(2n, F) are precisely its isometrics.
Remark 7. The following shows how Theorem 7 gives the unitary classi-

fication of isoclinic spheres on 2n-dimensional subspaces of F"
Let V be a 2n-dimensional subspace of F. Then two isoclinic spheres on V

are unitarily equivalent in V if and only if they are unitarily equivalent in F.
An isoclinic sphere on a 2n-dimensional subspace of is unitarily equivalent
in F (by an element of U(/c, F)) to an isoclinic sphere on V; thus the unitary
equivalence (in F) classes of isoclinic spheres on 2n-dimensional subspaces of

are in one-to-one correspondence with the unitary equivalence (in V) classes
of isoclinic spheres on V.

To see this, let Bi be isoclinic spheres on V. If the Bi are unitrily equiv-
alent in V, we choose unitary transformation of V carrying B1 to B2,
and extend it to an element of U(/c, F) by defining it to be the identity on
V’, thus proving the B unitarily equivalent in F. If the B re unitrily
equivalent in F, we choose T e U (/c, F) such that T(B1) B.. T(V) V
automatically if dim B > 0, and can be arranged if dim B 0. Now the
restriction TIv is a unitary transformation of V carrying B to B., so the B
are unitarily equivalent in V.

13. The classification of isoclinic spheres under rigid motions of the
Grassmann manifold

If M is a Riemannian manifold, then I(M) will denote the group of all
isometrics (differentiable homeomorphisms which preserve the Riemannian
structure) of M. Recall that I(M) is a Lie group in the compact-open topol-
ogy; I0(M) will denote the identity component of I(M).

U(/c, F) acts by isometries on Gn,(F); let I’(G,(F)) denote the group
of isometrics of G,(F) induced by U(k, F). There is n isometry of
Gn,2n(’) given by 3(P) P. Also, choice of n orthonormal bsis of C
allows us to extend the conjugation of C over R to a transformation of C,
and this transformation induces an isometry a of G,(C). Finally, the
triality automorphism of (R)(8) induces an isometry of G,s(R). It is
known [3] that I(G,(F)) is given s follows:

1. I(G,(K)) I0(Gn,k(K)) if k 2n,

I(Gn,n(K)) l, } .I0(G,(K)),
I0(G,(K)) I’(G,(K)),
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isoclinic sphere on Vi and view the Bi as submanifolds of
are equivalent"

(1) B1 is unitarily equivalent to B2 in F.
(2) An element of I’ (Gn,(F) maps B1 onto B2
(3) An element of I (Gn,k (F) maps BI onto

I(Gn,k(C)) =/1, a} .Io(Gn,(C)) if /c 2n,

I(Cn,2n(C)) 11, c,/, c} .Io(n,2n(C)),

IO(Gn,k(C) It’(n,k(c) ),

I((n,(t()) I’(Gn,(l)) if ]c z 2n,

I(Gn,2n(I) {1, } .I (n,2n(I)) if. n 4,

I(G4,8(R) {1, f, r, r, r, r2/} .I’(G4,8(R) ),

Io(Gn,(R)) has index 1 or 2 in I’(G,(R)).

LEMMA 6. Let V1 and V: be 2n-dimensional subspaces of F, let B be an
Then these

Proof. (1) and (2) are equivalent by definition of I’ (6,k(F)), and it is
clear that (2) implies (3). Now assume (3). As (B)= B in case
/c 2n, we need only prove that a and r cannot change the unitary equivalence
class of B, and (1) will follow.

First consider the case of G4,s(R). According to Theorem 7, any two
isoclinic r-spheres on R are unitarily equivalent. Remark 7 now shows that
r cannot change the unitary equivalence class of B.
Now consider the ease F= C, and let r dim B. If r is odd, then

Theorem 7 and Remark 7 show B unitarily equivalent to a(Bi). Now
assumer to be even. If r----0 (mod4), and if we alter V and V.byan
element of U(k, F) such that they are equal and are invariant under a, then
Lemma 4 and Remark 7 show B to be unitarily equivalent to a(B). Finally,
if r ----- 2 (mod 4), then Lemma 4, the discussion preceding Lemma 5, and
Remark 7 show that B and a(B) are unitarily equivalent, Q.E.D.
Combining Theorem 7, Remark 7, and Lemma 6, we have our final classi-

ficatio theorem:

THEOREM 8. Consider the Grassmann manifold Gn,k(F) where 2n <= ]c and
F is a real division algebra. Express n 24a+w 2qw with w odd and
0 <= b <= 3, and definef(n,K) to beSa+2ifF R, 2q-52ifF C, and
8a + 2 + 1/2 (b + 2) (3 b) if F K. Then G,(F) contains an isoclinic
r-sphere on a 2n-dimensional subspace of F if and only if r <= f(n, K). Every
isoclinic sphere on a 2n-dimensional subspace of F lies in a maximal such
isoclinic sphere, any two nonmaximal such isoclinic r-spheres are equivalent
under an isometry of G,(F), and the I G,(F) -equivalence classes of maximal
isoclinic r-spheres are given by Table IV in Theorem 7.
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Theorems 4 and 8 give a complete description of the totally geodesic
submanifolds of G,(F) in which any two distinct elements have zero inter-
section in F, and every element is contained in some fixed 2n-dimensional
subspace of F. This applies to the case 2n =</; Remark 2 gives the corre-
sponding result for the case 2n >= k.

I:EFERENCES

1. A. A. ALBERT, rucure of algebras, Amer. Math. Soc. Colloquium Publications, vol.
24, 1939.

2. --, Quadratic forms permitting composition, Ann. of Math. (2), vol. 4 (1942), pp.
161-177.

3. E. CARTAN, Sur certaines formes riemanniennes remarquables des gomtries ( groupe
fondamental simple, Ann. Sci. cole Norm. Sup., vol. 44 (1927), pp. 345-467.

4. C. CHEVALLEY, The algebraic theory of spinors, New York, Columbia University
Press, 1954.

5. B. ECKMANN, Gruppentheoretischer Beweis des Satzes yon Hurwitz-Radon iiber die
Komposition quadratischer Formen, Comment. Math. Helv., vol. 15 (1943),
pp. 358-366.

6. A. HvaWTZ, /ber die Komposition der quadratischen Formen, Math. Ann., vol. 88
(1923), pp. 1-25.

7. I-t. C. LEE, Sur le thorme de Hurwitz-Radon pour la composition des formes quadrati-
ques, Comment. Mth. Helv., vol. 21 (1948), pp. 261-269.

8. K. Nozc, Invariant ane connections on homogeneous spaces, Amer. J. Math., vol.
76 (1954), pp. 33-65.

9. J. RADON, Lineare Scharen orthogonaler Matrizen, Abh. Math. Sem. Univ. Hamburg,
vol. 1 (1922), pp. 1-14.

10. J. A. WOL, Sur la classification des varits riemanniennes homognes courbure
constante, C. R. Acad. Sci. Paris, vol. 250 (1960), pp. 3443-3445.

11. ------, Elliptic spaces in Grassmann manifolds, Illinois J. Math., vol. 7 (1963), pp.
447-462.

12. Y.-C. Wo, Isoclinic n-planes in Euclideann 2-space, Clifford parallels in elliptic
(2n 1)-space, and the Hurwitz matrix equations, Mem. Amer. Math. Sot.,
vol. 41, 1961.

THe. INSTITUTE FOR JkDVNCED STUDY
PRINCETON, NEW JERSEY


