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1. Introduction

Let G,(F) denote the Grassmann manifold of n-dimensional subspaces
of F, with its usual structure as a Riemannian symmetric space, where F
denotes the real numbers, the complex numbers, or the quaternions. In an
earlier paper [5] we studied the connected totally geodesic submunifolds B
of G.(F) with the property that any two distinct elements of B have zero
intersection as subspaces of F. We proved [5, Theorem 4] that B is iso-
metric to a sphere, to a real, complex, or quaternionic projective space, or to
the Cayley projective plane; we then [5, Theorem 8] classified (up to an isom-
etry of Gn,(’)) the manifolds B which are isometric to spheres. In
Chapter I of this paper we show that B cannot be the Cayley projective plane
(Theorem 2), and we classify the manifolds B which are not isometric to
spheres (Theorem 3). The main technique is the application of the results of
the preceding paper [5] to the projective lines of B, which are totally geodesic
spheres in G,(F), resulting in a structure theorem (Proposition 1) for B.
The key to the study of the manifolds B is the observation [5, Remark 4]

that any two elements of B are isoclinic (constant angle) in the sense of
Y.-C. Wong [6]. Chapter II is devoted to the converse problem. We define
a closure operation on sets of pirwise isoclinic n-dimensionul subspces of
F, and prove (Lemma 10 and Theorem 4) that the closed sets are finite
disjoint unions Bu u B of manifolds B where every element of B is
orthogonal to every element of B (as subspaces of F) whenever i j.
Thus the notion "set of mutually isoclinic n-dimensional subspaces of F’’
coincides with the notion "subset of a finite union of mutually orthogonal
submanifolds B of G.,(F)". As our structure and classification theorems
completely describe the manifolds B, this gives thorough analysis of the
sets of pairwise isoclinic subspaces of any given dimension in F; a similar
analysis results for sets of pairwise Clifford-parallel linear subspaces of any
given dimension in the projective space P-(F).

CHAPTER I. THE ELLIPTIC SPACES
2. Definitions and notation

F will always denote one of the real division algebras I (real numbers),
C (complex numbers), or K (real quaternions) with conjugation a -- over
I. Given an integer / > 0, denotes u hermitiun positive-definite left
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veetorspaee of dimension/c over F, and U(/, F) denotes the unitary group
(all linear transformations which preserve the hermitian structure) of F
U(/, R) is the orthogonal group O(/c) U(k, C) is the unitary group U(/)
U(/c, K) is the symplectic group (= unitary symplectic group) Sp(k).
The Grassmann manifold -n,k(), defined whenever 0 < n < /c, is the set

of all n-dimensional subspaces of F with a structure as Riemannian symmet-
ric space. This structure is defined us follows. U(/c, F) acts transitively
on the elements of Gn,(F) given B G,,,k(F), K will denote the isotropy
subgroup {T e U(/c, F) T(B) B} of U(k, F) at B. This allows us to
identify G,(F) with the coset space U(lc, F)/Kz under T -+ T(B); as
U(k, F) is compact Lie group and K is a closed subgroup, this identifica-
tion gives G,(F) the structure of a compact analytic munifold.
German letters denote Lie algebras, nnd f is the Killing form on lI(lc, F).

Define 3 (relative to f); then there is a vectorspce direct-sum de-
composition Lt(/c, F) , + ,. This is a Cartan decomposition; we will
call it the decomposition of Lt(k, F) at B. The restriction of --f to , is
positive-definite and K-invariant. There is a K -equivariant identification
of 3 with the tangentspace to G,(F) at B, under the differential of the
projection T -- T(B); thus --f induces a U(/c, F)-invariant Riemannian
metric on G,(F). We will always view G,k(F) with this Riemannian
structure. It is Riemannian symmetric, the symmetry at B being induced
by the element of U(/c, F) which is I (= identity) on B and is -i on B
(= orthogonal complement of B in F).

If n 1, then Cn,(F) is jUSt a projective space:
where lt(1’) carries its usual elliptic metric. The Cayley projective plane
l(Cay) cannot be realized this way.

:Recall that a submanifold of a Riemannian manifold is totally geodesic
if every geodesic of the submanifold is a geodesic of the ambient manifold,
or, equivalently, if the submanifold contains every geodesic of the ambient
manifold which is tangent to the submanifold at some point. Let

exp lI(/c, F) -- U(/c, F)

denote the exponential map. If (R) is a subspace of z, B . Gn,k(:F), then
exp()(B) is a totally geodesic submanifold of G.,(F) if and only if (R)
is a Lie triple system, i.e., if and only if the Lie product [(R), [(R), (R)]] c (R).
For example, it follows that the elements of Gn,(F) lying in a fixed subspace
of Yk form a connected totally geodesic submanifold. In particular, the pro-
jective lines of Pt(F) are totally geodesic submanifo]ds which are isometric
to spheres; the same is true for 1)2(Cay).

If M is a Riemannian manifold, then I(M) denotes the full group of isom-
etries (self-diffeomorphisms which preserve the Riemannian structure)
of M. For example, I(P2(Cay)) is the compact exceptional group F4.
I0(M) denotes the identity component of I(M).
We will assume familiarity with the first two chapters of the preceding
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paper [5], and with the geometry of the projective spaces Pt(F) and I)2(Cay).
A short but sufficient exposition of p2(Cay) can be found in [2].

3. Geodesic submanifolds of projective spaces

We need to know the dimensions for which there exist totally geodesic
spheres in projective spaces (Lemma 2). As it involves little extra effort,
we will also derive the classification of totally geodesic submanifolds in a
Riemannian symmetric space of rank one (Theorem 1). M will denote a
projective space Pt(l) or P2(Cay).

IEMMA 1. Let N be a connected submanifold of M. Then N is a totally
geodesic submanifold of M which is isometric to a sphere if and only if N is a
totally geodesic submanifold of a projective line of M.

Proof. Sufficiency is clear because the projective lines of M are totally
geodesic submanifolds which are isometric to spheres. Now suppose that
N is totally geodesic in M and is isometric to a sphere. Choose x e N, and
let x be the antipodal point of x on N. Given y e N {x, x’}, there is a
unique geodesic ,y on N which contains x and y. Observe that x e ,y and
that , is contained in the projective line Ls of M determined by x and y.
Let L be the projective line of M determined by x and x; it follows that
Ls L. ThusN c L. Now a geodesic of N is a geodesic of M which is
contained in L, and which is thus a geodesic of L. This shows that N is
totally geodesic in L, Q.E.D.

LEMMA 2. IV has a totally geodesic submanifold isometric to an r-sphere if
and only if

(1) M Pt(R) and r <= 1,
(2) M P(C) and r <= 2,
(3) M P(K) and r <= 4, or

(4) M P(Cay) and r <= 8.

If N1 and N. are totally geodesic submanifolds of M which are isometric to
r-spheres, then I0(M) has an element which maps NI onto N

Proof. The first statement follows from Lemma 1 because a projective
line of M is a sphere of dimension 1, 2, 4, or 8, respectively. The second
statement follows in the first three cases from transitivity of SO(t -4- 1),
SU(t -4- 1) or Sp(t -4- 1) on 2-dimensional subspaces of R+1, Ct+l or K+1,
respectively.
Now let M P(Cay). Applying an element ef Ic.(M) to N, we may

assume both N and N: to lie in the same projective line L of M, for I0(M)
acts transitively on the projective lines of lYl. Let x be the pole of L, i.e.,
the (unique) focal point of the submanifold L. The isotropy subgroup of

’ I0(M) at x is isomorphic to Spin(9), the universal covering group of
the identity component SO(9) of 0(9) U(9, R); it preserves L, and its
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action on L is that of the usual (linear) action of SO(9) on Ss, so one of its
elements carries N1 onto N2, Q.E.D.

LEMMA 3. Let N be a connected totally geodesic submanifold of M which is
not isometric to a sphere. Then

(1) M pt(R) and N P(R) (2 <= r <-_ t), or

(2) M Pt(C) and N Pr(R or C) (2 <= r <- t), or
(3) M pt(K) and N pt(R, C or K) (2 <-_ r <= t), or
(4) M P:(Cay) and N P2(R, C, K or Cay).

Proof. We first observe that pt+l(,) cannot be a totally geodesic sub-
pt+ L’manifold of pt(l") For suppose it is. Choose x e (F), let L and

be the respective polars (focal sets) of x in pt+(,) and pt(,,), and observe
that L c L’ because Pt+(l’) is totally geodesic in pt(l"). L is totally geo-
desic in pt+(F), thus also in pt(F,), thus also in L’. Now L pt (F) and
L’ pt-(,,), so we have reduced t. Iterating this procedure, we obtain
P(F) as u totally geodesic submanifold of u sphere P(F’), which is impossi-
ble because P(F) is not isometric to a sphere. This proves r =< in (1),
(2), and (3) the same argument proves (4) if N is a projective space.
N is a projective space because it is a Riemannian symmetric space of rank

one which is not isometric to a sphere; thus Lemma 2 gives the dimensions of
the totally geodesic spheres in N. Such a sphere is a totally geodesic sphere
in M. Our lemma now follows from Lemm 2, Q.E.D.

:LEMMA 4. The inclusions of Lemma 3 all exist.

Proof. The inclusions of (1), (2), and (3) obviously exist; thus we need
only find a totally geodesic submanifold of P(Cay) which is isometric to
P2(K).
We choose [3, p. 219] a maximal subgroup G of F4 I(P2(Cay)) which is

locally isomorphic to Sp(3) X Sp(1), and let H be the subgroup of G for
the local factor Sp(3). G is normalized by a symmetry of P(Cay), and this
symmetry normalizes H; this gives x e P(Cay) such that G(x) and H(x)
are totally geodesic submanifolds.

G(x) is not a sphere. For if it were a sphere of dimension > 0, it would
be contained in a proiective line L by Lemma 1, and G would preserve L.
Then G would leave fixed the pole of L, and would be contained in an iso-
tropy subgroup Spin(9) of F4, contradicting maximality of G in F.
H(x) is not a sphere. For H(x) x implies that H preserves every

element of G(x), and thus preserves every projective line with two points in
G(x). As G(x) is not a sphere, H would preserve many proiective lines, and
would thus act trivially on P(Cay); this is impossible. If H(x) is a sphere
of positive dimension, then H preserves the projective line L containing H(x),
whence H preserves the pole y of L. G(y) is totally geodesic, so the preced-
ing argument shows H(y) y.
H(x) P2(R, C, or Cay). For equality would give P(R, C, or Cay)
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as a coset space H/K of H. Nonvanishing of the Euler characteristic

x(P2(R, C, or Cay)

implies [4, p. 15] that rank K rank H 3. The homotopy sequence

{1} 2(H) -+ .(P(--)) -- rl(g) -+ I(H) {1}

shows (see [2] for l(Cay)) that K has center of dimension 1 for R or C,
and K is semisimple for Cay. Now dim H 21, whence dim K is 19 for
R, 17 for C, and 5 for Cay. But there is no semisimple Lie group of rank 3
and dimension 5, nor of rank 2 and dimension 16, nor of rank 2 and dimen-
sion 18.
As H(x) is not isometric to a sphere, Lemma 2 shows that it is isometric

to 1(R, C, K, or Cay). We have just eliminated all except P(K), Q.E.D.
Let S denote the m-sphere in a Riemannian metric of constant positive

curvature.
We have arrived at the goal of 3"
THEOREM 1. Let M be a connected compact Riemannian symmetric space of

ranlc one, and let N be a connected totally geodesic submanifold of M. Then
(1) M S and N S (1 <= r <-_ t); or
(2) M I)(R), and either N S pI(R), or N Ir(R)

(2__< r_< t); or

(3) M P(C), and either N S (1 -_< r -< 2), or N
P(I or C) (2 =< r_-< t); or

(4) M P(K), and either N S (1 -< r =< 4), or N
P(R, C, or K) (2 _-< r =< t); or

(5) M P2(Cay), and either N S (1 <= r <= 8), or
N P(R, C, K, or Cay).

These inclusions all exist; they are unique in the sense that, if two connected
totally geodesic submanifolds of M are homeomorphic, then they are equivalent
under an element of I0(M).

Proof. By Lemmas 2, 3, and 4, we need only prove the uniqueness when
N is not a sphere. Now let N and N be connected totally geodesic sub-
manifolds of M Pt(R, C, K, or Cay), Ni P(F). We may apply an
element of I0(M) to N1, and assume that we have an element x e N n N.
Let L, L1, and L. be the respective polars (= focal sets) of x in M,
and N. Li is totally geodesic in Ni, thus in M, and thus in L, and
1)-I(F) or the Li are spheres of the same dimension. By Lemma 2 or in-
duction on t, an element of I0(L) maps L onto L.. This element extends to
an element of I0(M) which maps N onto N2, Q.E.D.

4. Decomposition by projective lines

Let B be a connected totally geodesic submanifold of the Grassmann
manifold Gn,k(’) of n-dimensional subspaces of 1k, and assume that any
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two distinct elements of B have zero intersection as subspaces of Fk In
the earlier paper [5] we saw that B is compact Riemannian symmetric
space of rank one, nd we classified the possibilities where B is a sphere. :Now
suppose that B is not a sphere; thus B is proiective space Pt(R, {2, or K)
or P2(Cay).

:LEMMA 5. Choose B e B, and let (R) be the tangentspace to B at B. Then
there is an orthogonal direct-sum decomposition

where is the tangentspace at B to a projective line L of B through B.

Remark. Counting dimensions, it is clear that 2 if B P2(Cay),
andt= rifB lr(R,C, orK).

Proof. If B Pr(F), view it as the set of one-dimensional subspaces
of F+I; we choose an orthonormal basis {x0, x of F+1 such that
x0 spans B over F, nd we define Li to be the set of F-lines in F+ which
lie in the space with F-bsis {x0, x }. If B P(Cay), we choose pro-
iective line L1 through B, we define B’ to be the ntipodal of B on the 8-sphere
L1, nd we define L. to be the polar of B’ in B; B L1 n L. because B is
focal to B’ and L L2. In either case, the decomposition of is easily
seen to be orthogonal, Q.E.D.
We will now see the relation between the trnsvections of Gn,(F) and the

decomposition of Lemma 5.
We have the orthogonal direct-sum decomposition lI(/c, F) z of

lI(k, F) at B, under the Killing form of lI(lc, F), where K is the isotropy
subgroup of U(k, F) at B. The tangentspace (R) to B at B is identified as
subspace of . Let {a} be a standard basis of F over R:

a 1 --a nd a- -a.ai e {a} for 1 < i < j.

If x {x, ..., xk} is an orthonormal basis of F whose first n elements
span, B, then recall [5, Chapter II] that 3z has basis consisting of the linear

:E.,) (1 < i < n <j < k)transformations of F with matrix O/q (Ei,. q
relative to x; given X e (R), x can be chosen such that the matrix of X is a
real multiple of n_--I (E,+n E+n,).
L of Lemma 5 is an isoclinic sphere on a 2n-dimensional subspace V of
F [5, Theorem 3], and it is clear that V B @ B is an orthogonal direct-
sum decomposition where B is the antipodal of B on Li. Let V be the sub-
space A of F. Then we have

LEMM 6. V B @ B @ @ B is an orthogonal direct-sum decom-
position.

Proof. Let x be an orthonormal basis of F whose first n elements span
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B, whose next n elements span B1, and in which an element X e 1 has
matrix 1 (Ei,i+ Ei+,i). Let be the subspace of z spanned by
the transformations of matrix cq(Ei,n+j- OqEn+j,i) (j n) relative to x
(so (R)1 c ), let B be the subspace for j > n, and let T" z - z be
the transformation Y -- [X, [X, Y]]. Then T is symmetric because X is
skew, T preserves (R), (R)1, and because they are Lie triple systems, and
a short calculation shows that T induces multiplication by -1 on An
application of [5, Theorem 1] to L1 shows (by the argument [5, 6] that an
isoclinic sphere is totally geodesic) that (R)1 is an orthogonal direct sum
IX} -t- (R)’1 and T induces multiplication by -4 on (R)’1. As T is symmetric,
there is an orthogonal direct-sum decomposition

where is the eigenspace of some real for T. As T preserves (R) and
it preserves (R)’ (R).@ @ t. Thus(R)’ (R)’1@ (R) :where
n. LetY,soT(Y) iY. Y= YI+ Y.withYB

and Y T(Y.) --Y, and T(Y1) -4Y1 by [5, Theorem 1 and
6] because it is readily verified that every exp(aY1)(B) is isoclinic to every
element of L1. Thus Y e or Y e . It follows from Lemma 1 and. c In other words,[5, Theorem 3] that Y e This proves that (R)’ .
we have proved that B1 _1_ Bi for i > 1. Now observe that the elements of
1 are zero on Vi Similarly, B _1_ B for i j, and the elements of (R)i are
zero on V. The lemma follows, Q.E.D.
Lemma 6 results in a good description of B:

PROPOSITION 1. Let s be the real dimension of the projective lines of B.
Then there is an orthonormal basis x {x, ..., x} of F such that
{xl, "", x,} is an orthonormal basis of B and {x+l, ..., x+ is an
orthonormal basis of B (1 <= i -< t), there is a basis {X,I, ..., X,}
of (1 <= i <= t), and there are n X n F-unitary matrices A (1 <= j < s)
with AA + AA -2 I, such that X. (j < s) has matrix

0 0 A 0 0

0 0
A 0 0 0
0

0 0 0

n(i -- 1)

n(i -- 1)

k-- n(i-- 1)

l n(i - 1)

and X, has matrix
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relative to x.

n(i+ 1)

k-n(i+ 1

5. Elimination of the Cayley plane and the structure theorem for
projective spaces

Retain the notation of Proposition 1, and suppose s >_- 4. Let
Yi" (1 _-< i _-< 2, 1 -<_ j =<_ s) be the restriction of X, to W B @ B1 @ B2,
and let w /wl, w3 be the part of x which spans W. A short calcu-
lation shows that Z [[Y1,1, Y2, ], Y2,3 has matrix

A A A3 0
0 0

in ghe basis w of If. On ghe other hand, Z is a real) -linear combination of
the YI, A glance at Proposition 1 shows that A A A3 4- I. If s > 4,

Proof. Let x0 be an orthonormal basis of B. We choose X,, e (R)i and an

orthonormalbasisxiofBisuchthattherestrictionX,lvhasmatrix(_O_i I0)
relative to the orthonormM basis {x0, x} of V. By [5, Theorems 1 and 3
and Remark 1], there are F-unitary n X n matrices A. (1 =< j < t) such
that AAi + AAi -2’I, and there is a basis {X1,1, "", X,} of

(0 A0.)in the basis {x0, x} of V1 Letsuch that X,.lv has matrix A
Y IX1,,, X,,] (1 < i =< t); the restriction of Yi to V + V
B @ B @ B has mtrix

0 Ii-;
with respect to the orthonormal basis {xo, xl, x} of B (9 B1 @ B. The
ransformation Z [Y, Z] preserves (R), for (R) is a Lie triple sysgem be-
cause B is otally geodesic; i sends onto , onto (R)1, and annihilates
he other summands of (R). It sends XI,, onto Xi.,, and thus sends
{XI.1, XI, onto a basis {X,I X.,} of (R) X,iI has matrix

(. A0)inthebasis{x0,x}ofl/’i. Weeompletethebasis{x0,x,.-.,x}

of B (9 B (9 (R) B to an orthonormal basis x of F, and the proposition
follows, Q.E.D.
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then the same argument shows that A1 A2 A =t=I, whence A3 +/-A;
this is impossible because A3 and A anticommute. We have proved

LEMMA 7. [ Proposition 1, either s 1, s 2, or s 4; if s 4, then
A1A2 A I.
As an immediate consequence, B cannot be the Cayley proiective plane,

for s 8. But the other possibilities for B exist, subiect to Proposition 1
and Lemma 7"

THEOREM 2. Let F be a real division algebra, and let s, t, n, and t be positive
integers such that >= 2, t >__ n(t 1),ands 1, 2, or 4. Let A A8_1
be n X n F-unitary matrices such that A A A A -2 I, and suppose
that A AA I in case s 4. Let x be an orthonormal basis of F, let X.
(1 <- i <- t, 1 <= j <= s) be the linear transformation of F with matrix relative
to x as given in Proposition 1, let (R) be the real subspace of lI(]c, F) spanned by
the X, and define [, ]. Then is a Lie triple system, so @
is a subalgebra of ll(]c, F). Let G be the analytic subgroup of U(]c, F) with Lie
algebra @, and let B be the subspace of F spanned by the first n elements of x.
Then G(B) is a connected totally geodesic submanifold of the Grassmann mani-

fold G.(F), and any two distinct elements of G(B) have zero intersection as
subspaces of F; G(B) is isometric to a real (if s 1), complex (if s 2)
or quaternionic (if s 4) projective space of dimension (topological dimension
st). Conversely, if B is a connected totally geodesic submanifold of a Grassmann
manifold G,(F), if any two distinct elements of B have zero intersection as
subspaces of F, and if B is not isometric to a sphere, then ]c 3n, and B is
one of the manifolds G(B) described above.

Proof. Let be the subspace of with basis {X., ..., X.8 }; (R). [, [(R)i, ]] was observed in the proof of [5, Theorem 2],
and it is obvious that [(R), [(R), (R) ]] 0 if i, p, and q are all different. A
straightforward calculation shows [(R), [(R)i, (R) ]] (R). By the Jacobi
identity, it follows that [(R), [(R), (R)]] (R), i.e., (R) is a Lie triple system.
Looking at matrices, we see that (R) z where 1I(/, F) - is

the decomposition at B; it follows that G(B) is totally geodesic in
Let B’ B Be G(B) # B; we must show that B n 0 as subspaces of F.
G(B) exp((R))(B); thus B’ exp(X)(B) for some X .

X X + + Xt, Xi . ,
and we can conjugate by an element of K., changing basis separately in each
(B), and assume X a X., for real numbers a. Thus we may assume
that X has mtrix

0 I a,I 0
-a I 0 0 0

--at I 0 0

0 0 0
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in the basis x. Now it is clear, given b e B, that exp(X)(b) e B if and only
if exp(X)(b) 4-b, and in that case exp(X)(bl) =t=bl for every b e B,
because we can change the basis of B without changing the matrix of X. Thus
either B B’ or, B n B’ 0. It follows [5, Theorem 4] that G(B) is a real,
complex, or quaternionic proiective space, or the Cayley projective plane.
The remainder of the theorem follows from Lemma 7 and Proposition 1,

Q.E.D.
As any two distinct elements of the totally geodesic submanifold G(B)

have zero intersection as subspaces of F, it follows [5, Remark 4] that any
two elements of G(B) are isoclinic subspaces of F. This leads us to

DEFINiTiOn. A submanifold of the form G(B) in Theorem 2 will be called
an isoclinic projective space on the subspace of F with basis {xl X(t+l)n}.

The main results of the earlier paper
with Theorem 2 yield

[5, Theorems 2 and 4] combined

THEOREM 2t. Let B be a subset of Gn,(F). Then these are equivalent:
1. B is a connected totally geodesic subrnanifold of Gn,(F), and any two

distinct elements of B have zero intersection as subspaces of F.
2. B is an isoclinic sphere on a 2n-dimensional subspace of F; or B is a

t-dimensional (t >= 2) real, complex, or quaternionic, isoclinic projective space
on a - 1) n-dimensional subspace of F.

6. The classification of isoclinic projective spaces

Consider the problem of existence and equivalence of the sets
9.1’ {A1, A8_1 of Theorem 2. .I’ isa subset of the F-algebra n(F)
of all n X n matrices over F; let n(F)R denote 9(F) viewed as an algebra
over R, and let denote the subalgebra of gJn(F)R generated by I and 9A’.
It is clear that I is isomorphic to R (if s 1), to C (if s 2), or to K (if
s 4; this depends on the fact that A1 A2 A3 I).
Now let .I1 and I. be two such algebras, for the same F, n, and s. Except

for the case s 2 and F C, it is well known [1, Theorems 4.5 and 4.14]
that )(F) has a nonsingular element T such that TI. T- 9Xl. By using
the fact that ’ and ’ generate isomorphic finite subgroups of U(n, F), it
is not difficult to see that T may be chosen in U(n, F) and with the property
that T92’ T- .1’. If we view T as a change of orthonormal basis in the
span of each {x+, x+.}, 0 =< i =< t, then we have proved

LEMMA 8. Except for the case s 2 and F C, the manifold G(B) of
Theorem 2 is determined, up to a transformation of U(lc, F), by s, t, n, to, and
F. In any case, G(B) exists (i.e., the A can be constructed) if and only if n
satisfies the condition"
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F=I
F=C
F--K

s=l s=2

no condition n 0 (mod 2)
no condition no condition
no condition no condition

s- 4:

n 0 (mod 4)
n 0 (mod 2)
no condition

Remar]c. The condition can be expressed" dimR F" 0 (mod s).
Now let s 2 and F C. 92 c ),(C) is completely determined by

A1. As A1 is unitary with square -I, it is unitarily equivalent to a matrix

0 --I u+v=n.

The nonordered pir {u, v} is n inwrint of the unitary equivalence class of, nd completely determines that class. Together with nd t, {u, v}
determines G(B) up to transformation of U(k, C). On the other hnd, in
the terminology of [5, 12], it is esily seen that ech projective line of G(B)
is n isoclinic 2-sphere of index {2u, 2v} on 2n-dimensional subspce of
C. This index is invrint under every isometry of Gn,(C) [5, Lemm 6],
nd is thus n invrint of G(B) in G,(C).
DFNO. The index ,(G(B)) is the nonordered pair {u, v} in the dis-

cussion aboe.

With Lemm 8, the bove discussion yields

TnonE 3. Consider the Grassmann manifold Gn,(F) where F is a real
division algebra, and let F denote R if s 1, C if s 2, or K if s 4. Then
G.(F) contains an isoclinic projectie space Pt(F) (t 2) if and only if
both (t + 1)n k and dim F 0 (rood s). Exceptfor thecase F C F,
any two isoclinic projective spaces t(Fs) in Gn,(F) are equivalent under an
isometry of G,(F). Two isoclinic projective spaces Pt(C) in G,(C) are
equivalent under an isometry of G,(C) if and only if they have the same index;
in this case there are [n/2] + 1 equivalence classes, the indices being {0, n},
{1, n 1}, {In/2], n [n/2]}, where denotes integral part.

Theorem 3 classifies the isoclinic projective spces. Together with Theorem
2 nd [5, Theorems 4 nd 8], it gives complete description of the connected
totally geodesic submnifolds of Grssmnn mnifolds G,(F), for which
ny two distinct elements of the submnifold hve zero intersection s sub-
spces of F.
CHwn II. IsocNC ScsPcs o AnBWnnv FXED DMENSON

We will see that every set of pirwise isoclinic n-dimensional subspces of
F cn be enlarged to totally geodesic submnifold of G,(F) in which
ny two distinct elements hve zero intersection s subspces of F.
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7. The closure operation for isoclinic sets

If U is a subspace of Fk, then vv Fk --, U will denote the orthogonal pro-
iection. Recall that subspaces U and W of k are called isoclinic if the
restrictions lw: W -- U and wl U -- W are proportional to unitary
transformations. We will consider only the case dim U dim W, where
the assumption that one of the restrictions be proportional to a unitary
transformation automatically forces the same condition on the other restric-
tion.

Let B be a set of pairwise isoclinic n-dimensional subspaces of k. Define
B(0) B, and suppose that we have constructed the sequence

of sets of pairwise isoclinic n-dimensionM subspaces of . Given distinct
nonorthogonM elements B and B’ of B(, let Si,z.z, be the isoclinic sphere on
B @ B’ constructed as in [5, Chapter I] from the set of M1 elements of B
which lie in B B’. The elements, of B re pirwise isoclinic, s re the
elements of S,,,. Now let X e B() and Y S,,z,. z[x and z,[x
are proportional to unitary maps; it follows that either Z ze.,(X) 0,
or that dim Z n and X is isoclinic to a subspace of B @ B’ if and only if
Z is isoclinic to that subspuce. Suppose dim Z n. Now Z is isoclinic to
every element of B() lying in B @ B’; it follows from [5, Theorem 1] that Z
is isoclinic to every element of S,.,z,. Thus X and Y are isoclinic. We
have just proved that the elements of B() u S,.,, are pairwise isoclinic.
Define

B(+) B() u {,,} Si,,,

where {B, B} runs over M1 pirs of distinct nonorthogonl elements of B).
If {B, B’} nd {A, A’} are two such pirs, then substitution of B) u S..,
for B() in the bove argument shows that the elements of B(+) re pirwise
isoclinic. Thus we hve constructed sequence

of sets of pairwise isoclinic n-dimensional subspaces of F.
DEFINITION. The isoclinic closure B, of B is defined by B, U0

B is said to be isoclinically closed if B B,.

This definition is iustified by

LEMMA 9. Let B be a set of pairwise isoclinic n-dimensional subspaces of
and let B, be its isoclinic closure. Then B, is an isoclinically closed set of

pairwise isoclinic n-dimensional subspaces of .
Proof. Choose B and B’ in B,. They lie in some B(), and are thus

isoclinic. This proves that the elements of B, are pairwise isoclinic.
Let B, (B,)(0). We must prove that (B,)() (B,)(0). It will

follow that B, (B,),, proving B, to be isoclinically closed. Let B and
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B’ be distinct nonorthogonal elements of B,, let A be the collection of all
elements of B, which lie in B @ B’, and let S be the isoclinic sphere on B (R) B’
constructed from A as in [5, Theorem 1]. We must prove that S c B,;
it will follow that (B,) (0) (B,) (1) As A c B,, it sufSces to prove S A.
For this, we need only prove that A is an isoclinic sphere on B (R) B’.

Let A, A’ e A. For some integer m, B(m) contains B, A, and A’. Thus
B(m+l) contains an isoclinic sphere on B @ B’ which contains A and A’.
It follows that A is an isoclinic sphere on B @ B’, Q.E.D.

8. The notion of reducibility for isoclinic sets

Let B be a set of pairwise isoclinic n-dimensional subspaces of Fk. Given
B, B’ B’e B, we say B if there is a sequence {B B,, B, Bm B’}
in B such that B+ is not orthogonal to B. This is easily seen to be an equiv-
alence relation on B.

DEFINITION. The equivalence classes in B will be called the irreducible
components of B. B will be called irreducible if it has just one equivalence class.
Given B e B, the equivalence class of B will be called the irreducible component
of B in B.

DEFINITION. The support supp B of B is the subspace of F spanned by
the union of the elements of B.

Suppose B e B B’, where B’ is a set of pairwise isoclinic subspaces of
F. If A and A’ are the respective irreducible components of B in B and
B’, then it is clear that A c A’ and thus supp A suppA’.
Our definitions are justified by

].EMMA 10. Let B be a set of pairwise isoclinic n-dimensional subspaces of, and let B, be its isoclinic closure. Then B and B, have finite and consistent
decompositions

B,=BuB,u-..uB
U U U U

B Bu Bu u B

into irreducible components, and B, is the isoclinic closure of Bi. If i j,
then supp B supp B, I_ supp B, supp B. If we topologize B, as a
subset of the Grassmann manifold G,(F), then its connected components are
precisely its irreducible components.

Proof. If two elements of B are not orthogonal, then they lie in the same
irreducible component of B; it follows that distinct irreducible components
of B have supports orthogonal to each other. By finite-dimensionality of
F, B has only a finite number of irreducible components. Let

B BuB2u uB

be the decomposition of B into its irreducible components.
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It is clear from 7 that B, (B1), u (B2), u u (Bin),, that each
supp B supp (B),, and that each (B), is irreducible. Setting B
(B),, the consistent decomposition follows easily, as does orthogonality
of supports. The orthogonality of supports shows that, in the topology on
B, induced by Gn.k(’), each B is a closed subset of B,. Thus we need
only prove that each B is a connected subset of Gn.k(l).

Let B, B’ e B,. As B, is irreducible, we have a sequence

{B B1, B2, ..., B B’} B,
such that B+I is not orthogonal to B (1 -< u < t). Let

Su {B" e ], B* C Bu @ Bu+l },

S is an isoclinic sphere, thus homeomorphic to a sphere [5, Theorem 2];
it follows that S contains an arc from B to B+I. Joining these arcs, we
have proved that B is arcwise connected. Thus B2 is connected, Q.E.D.

9. Isoclinic sets as submanifolds of Grassmcnn manifolds

The main result of Chapter II, sort of converse to Theorem 2’, is

THEOREM 4. Let B be an irreducible isoclinically closed set of pairwise
isoclinic n-dimensional subspaces of F, where F is a real division algebra, and
view B as a subset of the Grassmann manifold Gn,(F). Then B is a connected
totally geodesic submanifold of Gn.(F) in which any two distinct elements have
zero intersection as subspaces of F.

In view of Lemma 10, it suffices to prove that B is a totally geodesic sub-
manifold of G.(F).

Proof. Choose B e B, let lI(k, ’) & + z be the decomposition of
ll(k, ’) at B, and define open neighborhoods

v B’ B’},
V--{B’ eB" B’ CB’} VnS

of B in G.(I) gnd in B. We define

(R) {Xez’exp(tX)(B) eC for -1 =< t-< 1}

nd observe that U exp ((R)) (B). Let be the real subspace of z spanned
by (R). If we can prove that (R) contains a neighborhood of ero in , then it
will follow that B is a regularly imbedded submanifold of G.k(’) and that

is the tangentspace to B gt B. When this is done, suppose B B’ e B,
B’ lying in a normal coordinate neighborhood of B in V. B’ exp (X)(B)
for some X e (R), nd {exp (tX)(B) "t e R} is the minimizing geodesic in
Gn.(’) between B and B’. On the other hnd, it is an isoclinic 1-sphere
on B @ B’, nd is thus contained in B because B is isoclinically closed. It
follows that the submanifold B is totally geodesic.
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Let X and Y be elements of (R). Given small e R, we will prove that
exp (t(X -+- Y))(B) e B. This suffices to show that (R) contains a neighbor-
hood of zero in , proving the theorem. Define B1 exp (X)(B) and
B2 exp (Y)(B). If dim (B -t- B1 -t- B2) -< 2n, then F has a 2n-dimen-
sional subspace V which contains every exp (tX) (B) and every exp (tY) (B).
The elements of B which lie in V form an isoclinic sphere A, for B was as-
sumed isoclinically closed. As X and Y are tangent to A at B, and as A
is a totally geodesic submanifold of Gn.(F) [5, Theorem 2], it follows that
exp (t(X + Y))(B) e A c B for every real t. Thus we may assume that
dim (B + B + B) > 2n.

Let W B - B + B. B has no nonzero element in common with any
exp (tX) (B) it follows that dim W 3n. We may choose an orthonormal
basis w {w, Wn Of W, whose first n elements span B, such that the
restriction X] has matrix a_,= (E,+ E+n. where 0 < a < 1.
Let B’ exp (a-X)(B); define B" exp (fl-Y)(B) similarly.

If B’ +/- B’, then we may assume that w was chosen such that YI has
matrix

15E=l (Ei,i+2n Ei+2n,i ).

A short calculation shows that exp (t(X + Y))(B) lies in the isoelinie 1-
sphere determined by exp (X/ tX) (B) and exp (%/ Y) (B), for small t,
and is thus contained in B. If B is not orthogonal to B’, we examine the
isoclinic l-sphere determined by exp (X)(B) and exp (Y)(B) ( small).
It has an element B3 such that W B + B + B3 and B3 exp (Z)(B)
where Z e (R) and the B’" exp (,-1Z)(B) (defined in the same way as B’)
is orthogonal to B’. X + Y rX + rZ for some real numbers and r;
from the case B’ +/- B", it follows that exp (t(X + Y))(B) e B for small t,
Q.E.D.

10. Summary
We summarize the results of this paper and the earlier one [5].
If B is a connected totally geodesic submanifold of the Grassmann mani-

fold Gn.(’), and if any two distinct elements of B have zero intersection as
subspaces of F, then

1. B is isometric to a sphere (these manifolds are described in [5, Theorem
1] and classified in [5, Theorem 8]) or to a real, complex, or quaternionic
projective space (these manifolds are described in Theorem 2 and classified
in Theorem 3).

2. B is an irreducible isoelinically closed set of pairwise isoclinie n-dimen-
sional subspaces of F.

If A is a set of pairwise isoelinic n-dimensional subspaces of F, then there
is an orthogonal direct-sum decomposition F V1 (R) @ Vm, and there
are connected totally geodesic submanifolds B of Gn.(’), such that every
element of B lies in Vi, any two distinct elements of B have zero intersec-
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tion as subspaces of Fk, and A c [3 B B=1 Here [3__1 is the isoclinic
closure of A.

This gives a complete analysis of the sets of pairwise isoclinic subspaces of
any given dimension in Fk, which, in turn, gives a complete analysis of the
sets of Clifford-parallel linear subspaces of any given dimension in P-I(F).
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