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1. Introduction

Let G, (F) denote the Grassmann manifold of n-dimensional subspaces
of F*, with its usual structure as a Riemannian symmetric space, where F
denotes the real numbers, the complex numbers, or the quaternions. In an
earlier paper [5] we studied the connected totally geodesic submanifolds B
of G, »(F) with the property that any two distinet elements of B have zero
intersection as subspaces of F*. We proved [5, Theorem 4] that B is iso-
metric to a sphere, to a real, complex, or quaternionic projective space, or to
the Cayley projective plane; we then [5, Theorem 8] classified (up to an isom-
etry of G,x(F)) the manifolds B which are isometric to spheres. In
Chapter I of this paper we show that B cannot be the Cayley projective plane
(Theorem 2), and we classify the manifolds B which are not isometric to
spheres (Theorem 3). The main technique is the application of the results of
the preceding paper [5] to the projective lines of B, which are totally geodesic
spheres in G, »(F), resulting in a structure theorem (Proposition 1) for B.

The key to the study of the manifolds B is the observation [5, Remark 4]
that any two elements of B are isoclinic (constant angle) in the sense of
Y.-C. Wong [6]. Chapter II is devoted to the converse problem. We define
a closure operation on sets of pairwise isoclinic n-dimensional subspaces of
F*, and prove (Lemma 10 and Theorem 4) that the closed sets are finite
disjoint unions B'u --- u B™ of manifolds B where every element of B’ is
orthogonal to every element of B’ (as subspaces of F*) whenever 7 # j.
Thus the notion “set of mutually isoclinic n-dimensional subspaces of F*”’
coincides with the notion “subset of a finite union of mutually orthogonal
submanifolds B of G, x(F)”. As our structure and classification theorems
completely describe the manifolds B, this gives a thorough analysis of the
sets of pairwise isoclinic subspaces of any given dimension in F*; a similar
analysis results for sets of pairwise Clifford-parallel linear subspaces of any
given dimension in the projective space P*(F).

CuaprTER I. TaE ErLvipric SPACES
2. Definitions and notation

F will always denote one of the real division algebras R (real numbers),
C (complex numbers), or K (real quaternions) with conjugation e — & over
R. Given an integer & > 0, F* denotes a hermitian positive-definite left
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vectorspace of dimension k& over F, and U(k, F) denotes the unitary group
(all linear transformations which preserve the hermitian structure) of F*.
U(k, R) is the orthogonal group O(k); U(k, C) is the unitary group U(k);
U(k, K) is the symplectic group (= unitary symplectic group) Sp(k).

The Grassmann manifold G, (F), defined whenever 0 < n < k, is the set
of all n-dimensional subspaces of F* with a structure as Riemannian symmet-
ric space. This structure is defined as follows. U(k, F) acts transitively
on the elements of G, (F); given B ¢ G, 1(F), Kz will denote the isotropy
subgroup {T ¢ U(k, F) : T(B) = B} of U(k, F) at B. This allows us to
identify G, :(F) with the coset space U(k, F)/Kz under T — T(B); as
U(k, F) is a compact Lie group and Kj is a closed subgroup, this identifica-
tion gives G, (F) the structure of a compact analytic manifold.

German letters denote Lie algebras, and f is the Killing form on W(k, F).
Define Pz = &% (relative to f); then there is a vectorspace direct-sum de-
composition N(k, F) = Kz + P . This is a Cartan decomposition; we will
call it the decomposition of U(k, F) at B. The restriction of —f to PBs is
positive-definite and Kp-invariant. There is a K -equivariant identification
of P, with the tangentspace to G, .(F) at B, under the differential of the
projection T — T'(B); thus —f induces a U(k, F)-invariant Riemannian
metric on G, (F). We will always view G, ;(F) with this Riemannian
structure. It is Riemannian symmetric, the symmetry at B being induced
by the element of U(k, F) which is I (= identity) on B and is —I on B*
(= orthogonal complement of B in F*).

If n = 1, then G,(F) is just a projective space: Gy, .41 (F) = P'(F),
where P'(F) carries its usual elliptic metric. The Cayley projective plane
P?(Cay) cannot be realized this way.

Recall that a submanifold of a Riemannian manifold is totally geodesic
if every geodesic of the submanifold is a geodesic of the ambient manifold,
or, equivalently, if the submanifold contains every geodesic of the ambient
manifold which is tangent to the submanifold at some point. Let

exp : Uk, F) - Uk, F)

denote the exponential map. If & is a subspace of Pz, B € G, ,.(F), then
exp(S) (B) is a totally geodesic submanifold of G, (F) if and only if &
is a Lie triple system, i.e., if and only if the Lie product [S, [&, &]] C &.
For example, it follows that the elements of G, :(F) lying in a fixed subspace
of F* form a connected totally geodesic submanifold. In particular, the pro-
jective lines of P*(F) are totally geodesic submanifolds which are isometric
to spheres; the same is true for P*(Cay).

If M is a Riemannian manifold, then I(M) denotes the full group of isom-
etries (self-diffeomorphisms which preserve the Riemannian structure)
of M. For example, I(P*(Cay)) is the compact exceptional group F;.
I,(M) denotes the identity component of I(M).

We will assume familiarity with the first two chapters of the preceding
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paper [5], and with the geometry of the projective spaces P'(F) and P’(Cay).
A short but sufficient exposition of P?(Cay) can be found in [2].

3. Geodesic submanifolds of projective spaces

We need to know the dimensions for which there exist totally geodesic
spheres in projective spaces (Lemma 2). As it involves little extra effort,
we will also derive the classification of totally geodesic submanifolds in a
Riemannian symmetric space of rank one (Theorem 1). M will denote a
projective space P'(F) or P’(Cay).

LEmma 1. Let N be a connected submanifold of M. Then N s a tolally
geodesic submanifold of M which is tsometric to a sphere if and only of N is a
totally geodesic submanifold of a projective line of M.

Progf. Sufficiency is clear because the projective lines of M are totally
geodesic submanifolds which are isometric to spheres. Now suppose that
N is totally geodesic in M and is isometric to a sphere. Choose z ¢ N, and
let 2’ be the antipodal point of z on N. Given y ¢ N — {x, 2}, there is a
unique geodesic v, on N which contains « and y. Observe that &' €7, and
that v, is contained in the projective line L, of M determined by « and y.
Let L be the projective line of M determined by x and z'; it follows that
L, = L. Thus N € L. Now a geodesic of N is a geodesic of M which is
contained in L, and which is thus a geodesic of L. This shows that N is
totally geodesic in L, Q.E.D.

Lemma 2. M has a totally geodesic submanifold isometric to an r-sphere if
and only if

(1) M= P(R) and r =1,
(2) M= P{(C) and r =<2,
(3) M=P(K) and r =4, or

(4) M = P*(Cay) and r = 8.
If Ny and N are tolally geodesic submanifolds of M which are isometric to
r-spheres, then L,(M) has an element which maps Ny onto N .

Proof. The first statement follows from Lemma 1 because a projective
line of M is a sphere of dimension 1, 2, 4, or 8, respectively. The second
statement follows in the first three cases from transitivity of SO(t 4 1),
SU(¢t + 1) or Sp(¢t + 1) on 2-dimensional subspaces of R**', C'** or K'*,
respectively.

Now let M = P?(Cay). Applying an element of I.(M) to N;, we may
assume both N; and N to lie in the same projective line L of M, for Io,(M)
acts transitively on the projective lines of M. Let x be the pole of L, i.e.,
the (unique) focal point of the submanifold L. The isotropy subgroup of
F, = I,(M) at z is isomorphic to Spin(9), the universal covering group of
the identity component SO(9) of O(9) = U(9, R); it preserves L, and its
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action on L is that of the usual (linear) action of SO(9) on S2 so one of its
elements carries Ny onto N, Q.E.D.

LemMA 3. Let N be a connected totally geodesic submanifold of M which is
not isometric to a sphere. Then
(1) M= P(R) and N =P'(R) (2=

r=t), or
(2) M=P(C) and N=P(R or C)(2=r=t), or
(3) M=P(K) and N=P(R,C or K) (2=Z7r=1t), or
(4) M = P*(Cay) and N = PR, C, K or Cay).

Proof. We first observe that P'*'(F) cannot be a totally geodesic sub-
manifold of P*(F’). For suppose it is. Choose z ¢ P (F), let L and L’
be the respective polars (focal sets) of z in P*™(F) and P'(F’), and observe
that L © L because P (F) is totally geodesic in P*(F'). L is totally geo-
desic in P*™(F), thus also in P*(F’), thus also in L'. Now L = P‘(F) and
L' = P"(F'), so we have reduced ¢. Iterating this procedure, we obtain
P*(F) as a totally geodesic submanifold of a sphere P'(F’), which is impossi-
ble because P*(F) is not isometric to a sphere. This proves r < tin (1),
(2), and (3) ; the same argument proves (4) if N is a projective space.

N is a projective space because it is a Riemannian symmetric space of rank
one which is not isometrie to a sphere; thus Lemma 2 gives the dimensions of
the totally geodesic spheres in N. Such a sphere is a totally geodesic sphere
in M. Our lemma now follows from Lemma 2, Q.E.D.

LevMa 4. The inclusions of Lemma 3 all exist.

Progf. The inclusions of (1), (2), and (3) obviously exist; thus we need
ogly find a totally geodesic submanifold of P?(Cay) which is isometric to
P*(K).

We choose [3, p. 219] a maximal subgroup @ of F, = I(P*(Cay)) which is
locally isomorphic to Sp(3) X Sp(1), and let H be the subgroup of G for
the local factor Sp(3). G is normalized by a symmetry of P?(Cay), and this
symmetry normalizes H; this gives 2 ¢ P*(Cay) such that G(z) and H(x)
are totally geodesic submanifolds.

G(x) is not a sphere. For if it were a sphere of dimension > 0, it would
be contained in a projective line L by Lemma 1, and G would preserve L.
Then G would leave fixed the pole of L, and would be contained in an iso-
tropy subgroup Spin(9) of Fy, contradicting maximality of G in Fy .

H(z) is not a sphere. For H(x) = x implies that H preserves every
element of G(z), and thus preserves every projective line with two points in
G(z). AsG(x) is not a sphere, H would preserve many projective lines, and
would thus act trivially on P?(Cay); this is impossible. If H(x) is a sphere
of positive dimension, then H preserves the projective line L containing H(x),
whence H preserves the pole y of L. G(y) is totally geodesic, so the preced-
ing argument shows H(y) # y.

H(z) # PR, C, or Cay). For equality would give P*(R, C, or Cay)
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as a coset space H/K of H. Nonvanishing of the Euler characteristic
x(P’(R, C, or Cay)
implies [4, p. 15] that rank K = rank H = 3. The homotopy sequence
{1} = m(H) = m(P(—)) - m(K) - m(H) = {1}

shows (see [2] for P?(Cay)) that K has center of dimension 1 for R or C,
and K is semisimple for Cay. Now dim H = 21, whence dim K is 19 for
R, 17 for C, and 5 for Cay. But there is no semisimple Lie group of rank 3
and dimension 5, nor of rank 2 and dimension 16, nor of rank 2 and dimen-
sion 18.

As H(z) is not isometric to a sphere, Lemma 2 shows that it is isometric
to P*(R, C, K, or Cay). We have just eliminated all except P*(K), Q.E.D.

Let S™ denote the m-sphere in a Riemannian metric of constant positive
curvature.

We have arrived at the goal of §3:

TuroreEM 1. Let M be a connected compact Riemannian symmetric space of
rank one, and let N be a connected totally geodesic submanifold of M. Then
(1) M=8" and N=S"(1=r=1t); or
(2) M = PYR), andeither N = S' = P (R), or N = P"(R)
2=r=1t); or
(3) M = PYC), and either N = S (1 = r £ 2), or N =
P(R or C)(2=r=1t); or
(4) M = PYK), and either N = S (1 =
P(R,C, or K) (2=r=t); or
(5) M = P’(Cay), andeither N =8 (1 =r=<8), or
N = P*(R,C, K, or Cay).
These inclusions all exist; they are unique in the sense that, if two connected
totally geodesic submanifolds of M are homeomorphic, then they are equivalent
under an element of Lo(M).

=

=4, or N =

Proof. By Lemmas 2, 3, and 4, we need only prove the uniqueness when
N is not a sphere. Now let N; and N be connected totally geodesic sub-
manifolds of M = PR, C, K, or Cay), N; = P"(F). We may apply an
element of I,(M) to N, and assume that we have an element z ¢ Ny n N, .
Let L, Ly, and L, be the respective polars (= focal sets) of z in M, N,,
and No. L, is totally geodesic in N, thus in M, and thus in L, and L; =
P™(F) or the L; are spheres of the same dimension. By Lemma 2 or in-
duction on ¢, an element of Io(L) maps L; onto Ly . This element extends to
an element of I,(M) which maps N; onto N, Q.E.D.

4, Decomposition by projective lines

Let B be a connected totally geodesic submanifold of the Grassmann
manifold G, .(F) of n-dimensional subspaces of F®, and assume that any
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two distinct elements of B have zero intersection as subspaces of F*. In
the earlier paper [5] we saw that B is a compact Riemannian symmetric
space of rank one, and we classified the possibilities where B is a sphere. Now
suppose that B is not a sphere; thus B is a projective space P'(R, C, or K)
or P’(Cay).

Lemma 5. Choose B ¢ B, and let © be the tangentspace to B at B. Then
there is an orthogonal direct-sum decomposition

©=60 - 06
where &; is the tangentspace at B to a projective line L; of B through B.

Remark. Counting dimensions, it is clear that ¢ = 2 if B = P*(Cay),
andt = rif B = P'(R, C, or K).

Proof. If B = P'(F), view it as the set of one-dimensional subspaces
of F'™; we choose an orthonormal basis {xo, -+ , ,} of F'*" such that
zo spans B over F, and we define L; to be the set of F-lines in "™ which
lie in the space with F-basis {0, 2:}. If B = P?(Cay), we choose a pro-
jective line L, through B, we define B’ to be the antipodal of B on the 8-sphere
L., and we define L, to be the polar of B’ in B; B = L; n L; because B is
focal to B’ and L, # L. In either case, the decomposition of & is easily
seen to be orthogonal, Q.E.D.

We will now see the relation between the transvections of G, (F) and the
decomposition of Lemma 5.

We have the orthogonal direct-sum decomposition U(k, F) = & + B of
U(k, F) at B, under the Killing form of U(k, F), where Kz is the isotropy
subgroup of U(k, F) at B. The tangentspace © to B at B is identified as a
subspace of P . Let {a,} be a standard basis of F over R:

o =1= —ao and wa; = —ajaiela,} for 1 <i<j.

If x = {1, --+, 2} is an orthonormal basis of F* whose first n elements
span B, then recall [5, Chapter II] that Pz has basis consisting of the linear
transformations of F* with matrix og(Ei; — et E;:) (1 £ i =<n <j = k)
relative to x; given X e &, x can be chosen such that the matrix of X is a
real multiple of D iy (Ei ivn — Bitn,)-

L; of Lemma 5 is an isoclinic sphere on a 2n-dimensional subspace V; of
F* [5, Theorem 3], and it is clear that V; = B @ B; is an orthogonal direct-
sum decomposition where B; is the antipodal of B on L;. Let V be the sub-
space 2 4 A of F*. Then we have

Lemma 6. V = B @ B, @ -+ @ By 1s an orthogonal direct-sum decom-
posttion.

Proof. Let x be an orthonormal basis of F* whose first # elements span
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B, whose next n elements span B;, and in which an element X ¢ &; has
matrix D iy (Biion — Bigni). Let Ps be the subspace of B spanned by
the transformations of matrix ay(Biny; — abBnyj) (7 < n) relative to x
(so &, C PBx), let B be the subspace for j > n, and let T : B — P be
the transformation ¥ — [X, [X, Y]]. Then T is symmetric because X is
skew, T preserves &, &, and P5 because they are Lie triple systems, and
a short calculation shows that 7' induces multiplication by —1 on B3 . An
application of [5, Theorem 1] to L; shows (by the argument [5, §6] that an
isoclinic sphere is totally geodesic) that ©&; is an orthogonal direct sum
{X} + &1 and T induces multiplication by —4 on &;. As T is symmetric,
there is an orthogonal direct-sum decomposition

Pz = Ps, @ --- ® P,

where P, is the eigenspace of some real 8; for T. As T preserves S and
S, it preserves & =S, @ --- @ S,. ThusS = S @ --- @ S, where
S =& nPs. LetYeS,s0T(Y) =8Y. Y=Y +Y,with ¥;e P
and Yy e Pp. T(Yy) = —Y,, and T(Y;) = —4Y; by [5, Theorem 1 and
§6] because it is readily verified that every exp(aY7) (B) is isoclinic to every
element of L;. Thus ¥ ¢ B3 or ¥ ¢ B3 . It follows from Lemma 1 and
[5, Theorem 3] that ¥ e P5 . This proves that @ < B5. In other words,
we have proved that By L B; for ¢ > 1. Now observe that the elements of
©, are zero on Vi . Similarly, B; L B;for i # j, and the elements of &; are
zero on Vi . The lemma follows, Q.E.D.
Lemma 6 results in a good description of B:

ProrostTioN 1. Let s be the real dimension of the projective lines of B.
Then there is an orthonormal basis x = {x1, -+, ax} of F*° such that
{21, -+, Tu} 1 an orthonormal basis of B and {Tniy1, *** 5 Tnitn} 18 an
orthonormal basis of B; (1 = ¢ = t), there is a basis {X;1, -+, X4}
of ©; (1 =1 = t), and there are n X n F-unitary matrices A; (1 < j < s)
with A; A; + A; A; = —268;; 1, such that X;,; (7 < s) has matriz

0 cee 0 4; 0 -+ 0
T | pati + 1)
A4; 0 --- 0 0
0 . .
: : Hek—n(+1)
0 0 0

n(i 4 1) b — n(i + 1

and X, has matrix
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O .-+ 0 I 0 --- 0

o oo {IRICESS
-1 0 0 0

0

: : k—n(i+1)
L0 O -.-- 0

S R —

e —
n(i+1) k—nG+1)
relative to Xx.

Proof. Let x, be an orthonormal basis of B. We choose X, ¢ ©; and an

-I 0
relative to the orthonormal basis {X¢, x;} of V;. By [5, Theorems 1 and 3
and Remark 1], there are F-unitary n X n matrices 4; (1 £ j < ) such
that 4; 4; + 4, 4; = —2§;;1, and there is a basis {Xi,:, ---, X1,s} of
& such that X, |y, has matrix (;1) %’) in the basis {X;, xi} of V;. Let
i
Y, = [Xis, Xis] (1 < ¢ = t); the restriction of Y; to Vi + V; =

B @ B; @ B; has matrix
0 0 0
0 0 -—I
0 I 0

with respect to the orthonormal basis {Xo, x;, Xx;} of B @ B, ® B;. The
transformation Z — [Y,, Z] preserves &, for & is a Lie triple system be-
cause B is totally geodesic; it sends &; onto &, , &; onto &; , and annihilates
the other summands of &. It sends X, onto X;,, and thus sends
{X11, -+, X1} onto a basis {X;1, ---, X;,} of &;; X, |y, has matrix
(j? %’) inthe basis{x,, x;} of V;. Wecomplete the basis{xo, x;, : -+, X4
7

of B® B, ® --- @ B, to an orthonormal basis x of F*, and the proposition
follows, Q.E.D.

orthonormal basis x; of B; such that the restriction X ,|v, has matrix ( 0 I>

5. Elimination of the Cayley plane and the structure theorem for
projective spaces

Retain the notation of Proposition 1, and suppose s = 4. Let
Yi;j(1=27=521=j= s) betherestriction of X;;to W = B ® B, ® B;,
and let w = {w;, -+, ws, } bethe part of x which spans W. A short calcu-

lation shows that Z = [[Yi,1, Y22 ], Y23 ] has matrix
0 —A1 A, 4; O

Ay As 45 0 0

0 0 0

in the basis w of W. On the other hand, Z is a (real)-linear combination of
the Y3,;. A glance at Proposition 1 shows that 4; 42 4; = £ 1. If s > 4,
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then the same argument shows that A; As Ay = I, whence 4; = £A4,;
this is impossible because 4; and 44 anticommute. We have proved

LemMma 7. In Proposition 1, either s = 1,8 = 2, or s = 4;4f s = 4, then
Al Az As = :‘I:I .

As an immediate consequence, B cannot be the Cayley projective plane,
for s ¢ 8. But the other possibilities for B exist, subject to Proposition 1
and Lemma 7:

TuroreM 2. Let F be a real division algebra, and let s, t, n, and k be positive
integers such thatt = 2,k =2 n(t + 1),ands = 1,2,0r4. Let Ay, -+, Ac
be n X n F-unitary matrices such that A; A; + A; A; = —26;; 1, and suppose
that Ay Ay As = I in case s = 4. Let x be an orthonormal basis of F*, let X, ;
(1721, 1=7j= s) be the linear transformation of F* with matrix relative
to x as giwen in Proposition 1, let S be the real subspace of U(k, F) spanned by
the X;,; , and define T = [S,S]. Then S is a Lie triple system, s0® =T + &
is a subalgebra of W(k, F). Let G be the analytic subgroup of U(k, F) with Lie
algebra ®, and let B be the subspace of F* spanned by the first n elements of x.
Then G(B) s a connected totally geodesic submanifold of the Grassmann mani-
fold G, 1 (F), and any two distinct elements of G(B) have zero intersection as
subspaces of F*; G(B) s isometric to a real (if s = 1), complex (if s = 2)
or quaternionic (if s = 4) projective space of dimension t (topological dimension
st). Conwversely, if B is a connecled lotally geodesic submanifold of a Grassmann
manifold G, (F), if any two distinct elements of B have zero intersection as
subspaces of F*, and if B is not isomelric to a sphere, then k = 3n, and B is
one of the manifolds G(B) described above.

Proof. Let &, be the subspace of & with basis {Xii, -+, Xis}; & =
> ;. [&:, [, ©:]] € &, was observed in the proof of [5, Theorem 2],
and it is obvious that [S;, [&,, &,]] = 0if ¢, p, and ¢ are all different. A
straightforward calculation shows [&;, [&;, &;]] € &;. By the Jacobi
identity, it follows that [&, [&, &]] C &, i.e., & is a Lie triple system.

Looking at matrices, we see that & < P where U(k, F) = R5 + P» is
the decomposition at B; it follows that G(B) is totally geodesic in G, »(F).
Let B’ ¢« G(B), B’ % B; we must show that B n B" = 0 as subspaces of F".
G(B) = exp(®)(B); thus B' = exp(X)(B) for some X ¢ &.

X=X+ -+ X, X eS;,

and we can conjugate by an element of K5 , changing basis separately in each
&:(B), and assume X; = a; X, for real numbers ;. Thus we may assume
that X has matrix

0 al -+ al 0
—a I 0 0 0
—awI 0 - 0 0

0 0 .- 0 0
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in the basis x. Now it is clear, given b ¢ B, that exp(X) (b) ¢ B if and only
if exp(X)(b) = =b, and in that case exp(X) (b)) = =b; for every b; € B,
because we can change the basis of B without changing the matrix of X. Thus
either B = B or Bn B’ = 0. It follows [5, Theorem 4] that G(B) is a real,
complex, or quaternionic projective space, or the Cayley projective plane.

The remainder of the theorem follows from Lemma 7 and Proposition 1,
Q.E.D.

As any two distinct elements of the totally geodesic submanifold G(B)
have zero intersection as subspaces of F*, it follows [5, Remark 4] that any
two elements of G(B) are isoclinic subspaces of F*. This leads us to

DerintrioN. A submanifold of the form G(B) in Theorem 2 will be called
an isoclinic projective space on the subspace of F* with basis {1, -+ , T4nna}-

The main results of the earlier paper [5, Theorems 2 and 4] combined
with Theorem 2 yield

TuroreM 2'. Let B be a subset of G, x(F). Then these are equivalent:

1. B s a connected totally geodesic submanifold of G, r(F), and any two
distinct elements of B have zero intersection as subspaces of F*.

2. B is an isoclinic sphere on a 2n-dimensional subspace of F*; or B is a
t-dimensional (t = 2) real, complex, or quaternionic, isoclinic projective space
on a (¢ + 1)n-dimensional subspace of F".

6. The classification of isoclinic projective spaces

Consider the problem of existence and equivalence of the sets
A = {A;, -+, Aeq} of Theorem 2. %’ isa subset of the F-algebra I, (F)
of all n X n matrices over F; let M, (F)  denote M, (F) viewed as an algebra
over R, and let % denote the subalgebra of M, (F)» generated by I and 9.
It is clear that ¥ is isomorphic to R (if s = 1), to C (if s = 2), or to K (if
s = 4; this depends on the fact that 4; 4, 43 = I).

Now let 9; and s be two such algebras, for the same F, n, and s. Except
for the case s = 2 and F = C, it is well known [1, Theorems 4.5 and 4.14]
that M, (F) has a nonsingular element 7' such that 7% 7" = ;. By using
the fact that 91 and s generate isomorphic finite subgroups of U(n, F), it
is not difficult to see that 7" may be chosen in U(n, F) and with the property
that T% 77" = ;. If we view T as a change of orthonormal basis in the
span of each {Zinya, - , Tintn}, 0 = ¢ = ¢, then we have proved

Lemuva 8. Except for the case s = 2 and F = C, the manifold G(B) of
Theorem 2 is determined, up to a transformation of U(k, F), by s, t, n, k, and
F. In any case, G(B) exisis (i.e., the A; can be constructed) if and only if n
satisfies the condition:
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s =1 s = 2 s = 4
F =R no condition n =0 (mod 2) n =0 (mod 4)
F=C no condition no condition n =0 (mod 2)
F =K no condition no condition no condition

Remark. The condition can be expressed: dimgz F” = 0 (mod s).
Now let s = 2and F = C. 9% < M,(C)x is completely determined by
A;. As A, is unitary with square —1I, it is unitarily equivalent to a matrix

(V'Bllu _\/-0__111’>, u—l—v:’n,

The nonordered pair {u, v} is an invariant of the unitary equivalence class of
A, and completely determines that class. Together with & and ¢, {u, v}
determines G(B) up to a transformation of U(k, C). On the other hand, in
the terminology of [5, §12], it is easily seen that each projective line of G(B)
is an isoclinic 2-sphere of index {2u, 20} on a 2n-dimensional subspace of
C*. This index is invariant under every isometry of G, ;(C) [5, Lemma 6],
and is thus an invariant of G(B) in G, :(C).

DerintrioN.  The index v(G(B)) s the nonordered pair {u, v} in the dis-
cusston above.

With Lemma 8, the above discussion yields

TaroreM 3. Consider the Grassmann manifold G, ,(F) where F is a real
division algebra, and let F; denote Rif s = 1,Cif s = 2, or Kif s = 4. Then
G...(F) contains an isoclinic projective space P'(F,) (t = 2) if and only if
both (t + 1)n = k and dimz F" = 0 (mod s). Except for thecaseF; = C = F,
any two isoclinic projective spaces P'(F,) in G, (F) are equivalent under an
isometry of Gnx(F). Two isoclinic projective spaces P'(C) in G, .(C) are
equivalent under an isometry of G, (C) if and only if they have the same index;
in this case there are [n/2] + 1 equivalence classes, the indices being {0, n},
{1, n — 1}, -+, {[n/2], n — [n/2]}, where [ ] denotes integral part.

Theorem 3 classifies the isoclinic projective spaces. Together with Theorem
2 and [5, Theorems 4 and 8], it gives a complete description of the connected
totally geodesic submanifolds of Grassmann manifolds G, x(F), for which
any two distinct elements of the submanifold have zero intersection as sub-
spaces of F.

CuHAPTER II. ISOCLINIC SUBSPACES OF ARBITRARY FIXED DIMENSION

We will see that every set of pairwise isoclinic n-dimensional subspaces of
F* can be enlarged to a totally geodesic submanifold of G, :(F) in which
any two distinet elements have zero intersection as subspaces of F*.
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7. The closure operation for isoclinic sets

If U is a subspace of F*, then =y : F* — U will denote the orthogonal pro-
jection. Recall that subspaces U and W of F* are called isoclinic if the
restrictions 7y|w : W — U and ww|y : U — W are proportional to unitary
transformations. We will consider only the case dim U = dim W, where
the assumption that one of the restrictions be proportional to a unitary
transformation automatically forces the same condition on the other restric-
tion.

Let B be a set of pairwise isoclinic n-dimensional subspaces of F*. Define
B« = B, and suppose that we have constructed the sequence

B(o) C B(l) cC .- C B(i)

of sets of pairwise isoclinic n-dimensional subspaces of F*. Given distinct
nonorthogonal elements B and B’ of By, , let S 5,5 be the isoclinic sphere on
B @ B’ constructed as in [5, Chapter I] from the set of all elements of By,
which lie in B @ B’. The elements of B, are pairwise isoclinic, as are the
elements of S;p5 . Now let X ¢ By and YV € Sipp . melx and mp|x
are proportional to unitary maps; it follows that either Z = msgs (X) = 0,
or that dim Z = n and X is isoclinic to a subspace of B @ B’ if and only if
Z is isoclinic to that subspace. Suppose dim Z = n. Now Z is isoclinie to
every element of By, lying in B @ B’; it follows from [5, Theorem 1] that Z
is isoclinic to every element of S;zs . Thus X and Y are isoclinic. We
have just proved that the elements of B¢y U S, s are pairwise isoclinic.
Define

Bty = B u Uiy Siz,e
where {B, B’} runs over all pairs of distinct nonorthogonal elements of B, .
If {B, B’} and {4, A} are two such pairs, then substitution of By U S, 4,4
for By; in the above argument shows that the elements of B4y are pairwise
isoclinic. Thus we have constructed a sequence

By € By C -+ C By C Buw
of sets of pairwise isoclinic n-dimensional subspaces of F".

DerinttioN.  The isoclinic closure By of B is defined by By = Ui, By, .
B s said to be isoclinically closed if B = By .

This definition is justified by

Lemma 9. Let B be a set of pairwise isoclinic n-dimensional subspaces of
F*, and let By be its isoclinic closure. Then By is an isoclinically closed set of
pairwise 1soclinic n-dimensional subspaces of F*.

Proof. Choose B and B’ in Byx. They lie in some B(;, and are thus
isoclinic. 'This proves that the elements of By are pairwise isoclinic.

Let By = (Bi)@y. We must prove that (Bix)ay = (Bsx)@ . It will
follow that Bx = (Bx)x, proving By to be isoclinically closed. Let B and
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B’ be distinet nonorthogonal elements of By, let A be the collection of all
elements of By which lie in B @ B’, and let S be the isoclinic sphere on B @ B’
constructed from A as in [5, Theorem 1]. We must prove that S < By ;
it will follow that (Bx) @ = (Bs«)@ . As A C By, it suffices to prove S = A.
For this, we need only prove that A is an isoclinic sphere on B @ B'.

Let A, A" ¢ A. For some integer m, B,y contains B, A, and A’. Thus
B(mt1y contains an isoclinic sphere on B & B’ which contains A and A’.
It follows that A is an isoclinic sphere on B @ B', Q.E.D.

8. The notion of reducibility for isoclinic sets

Let B be a set of pairwise isoclinic n-dimensional subspaces of F*. Given
B, B' ¢ B, we say B ~ B'if there is a sequence {B = By, By, --+ , B,, = B}
in B such that B, is not orthogonal to B; . This iseasily seen to be an equiv-
alence relation on B.

Derinttion.  The equivalence classes in B will be called the irreducible
components of B. B will be called irreducible if it has just one equivalence class.
Given B e B, the equivalence class of B will be called the trreducible component
of B in B.

DeriNiTioN. The support supp B of B is the subspace of F* spanned by
the union of the elements of B.

Suppose B ¢« B < B’, where B’ is a set of pairwise isoclinic subspaces of
F*. If A and A’ are the respective irreducible components of B in B and
B’, then it is clear that A C A’ and thus supp A C suppA’.

Our definitions are justified by

Levma 10. Let B be a set of pairwise isoclinic n-dimensional subspaces of
F”, and let By be its isoclinic closure. Then B and By have finite and consistent
decompositions

By = BLuBiu.--uBj}

U u U U]
B =B'uB'u---uB"

into srreductble components, and B is the isockinic closure of B'. If ¢ # j,
then supp B° = supp Bk L supp B% = supp B’. If we topologize By as a
subset of the Grassmann manifold G, (F), then ils connected components are
precisely its irreducible components.

Proof. If two elements of B are not orthogonal, then they lie in the same
irreducible component of B; it follows that distinet irreducible components
of B have supports orthogonal to each other. By finite-dimensionality of
F*, B has only a finite number of irreducible components. Let

B=BuBuU---uB”

be the decomposition of B into its irreducible components.
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It is clear from §7 that Bx = (B)s u (B)x U --- u (B™)4, that each
supp B* = supp (B%)«, and that each (B%)4 is irreducible. Setting Bi =
(B4, the consistent decomposition follows easily, as does orthogonality
of supports. The orthogonality of supports shows that, in the topology on
B. induced by G, :(F), each Bj is a closed subset of Bsx. Thus we need
only prove that each By is a connected subset of G, +(F).

Let B, B ¢ By, . As B is irreducible, we have a sequence

{B=B,,B,,--,B, =B} C B
such that B, is not orthogonal to B, (1 = u < t). Let

S, = {B” ¢B\: B” C B, ® Bun ).

S, is an isoclinic sphere, thus homeomorphic to a sphere [5, Theorem 2};
it follows that S, contains an arc from By, to B4 . Joining these arcs, we
have proved that By is arewise connected. Thus By is connected, Q.E.D.

9. lIsoclinic sets as submanifolds of Grassmann manifolds

The main result of Chapter II, a sort of converse to Theorem 2’ is

TuroreEM 4. Let B be an drreducible isoclinically closed set of pairwise
isoclinic n-dimensional subspaces of F*, where F is a real division algebra, and
view B as a subset of the Grassmann manifold G, ,(F). Then B is a connected
totally geodesic submanifold of G, x(F) in which any two distinct elements have
zero intersection as subspaces of F.

In view of Lemma 10, it suffices to prove that B is a totally geodesic sub-
manifold of G, . (F).

Proof. Choose B € B, let U(k, F) = &3 + Pz be the decomposition of
U(k, F) at B, and define open neighborhoods

V = {B' ¢G,.(F) : B ¢ BY,
U={B eB:B ¢€B}=VnB
of Bin G, ;(F) and in B. We define
©={XePp:exp(tX)(B) eU for —1 =t =1}

and observe that U = exp (&) (B). LetT be the real subspace of P spanned
by &. If we can prove that & contains a neighborhood of zero in &, then it
will follow that B is a regularly imbedded submanifold of G, (F) and that
T is the tangentspace to B at B. When this is done, suppose B % B’ ¢ B,
B’ lying in a normal coordinate neighborhood of B in V. B’ = exp (X) (B)
for some X e &, and {exp (¢X)(B) : ¢ ¢ R} is the minimizing geodesic in
G,..(F) between B and B'. On the other hand, it is an isoclinic 1-sphere
on B ® B, and is thus contained in B because B is isoclinically closed. It
follows that the submanifold B is totally geodesie.
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Let X and Y be elements of &. Given small ¢t ¢ R, we will prove that
exp (I(X + Y))(B) € B. This suffices to show that & contains a neighbor-
hood of zero in T, proving the theorem. Define B; = exp (X)(B) and
By = exp (Y)(B). If dim (B + By + B:) < 2n, then F* has a 2n-dimen-
sional subspace V which contains every exp (tX) (B) and every exp (¢Y) (B).
The elements of B which lie in V form an isoclinic sphere A, for B was as-
sumed isoclinically closed. As X and Y are tangent to A at B, and as A
is a totally geodesic submanifold of G, (F) [5, Theorem 2], it follows that
exp (1{(X 4+ Y))(B) ¢ A C B for every real {. Thus we may assume that
dim (B 4 B; + B:) > 2n.

Let W = B + By + Bs. Bs has no nonzero element in common with any
exp (1X) (B); it follows that dim W = 3n. We may choose an orthonormal
basisw = {w;, ---,ws, } of W, whose first n elements span B, such that the
restriction X|y has matrix o) iei (Biin — Bign,:) where 0 < a < 1.
Let B" = exp (¢ 'X)(B); define B” = exp (87'Y)(B) similarly.

If B' L B”, then we may assume that w was chosen such that Y|y has
matrix

ﬁZLl (Eiizon — Eigon,i ).

A short calculation shows that exp ({(X + Y))(B) lies in the isoclinic 1-
sphere determined by exp (4/2¢X)(B) and exp (4/2tY)(B), for small ¢,
and is thus contained in B. If B’ is not orthogonal to B”, we examine the
isoclinic 1-sphere determined by exp (6X)(B) and exp (8Y)(B) (& small).
It has an element B; such that W = B + B; + B; and B; = exp (Z) (B)
where Z ¢ & and the B = exp (v 'Z) (B) (defined in the same way as B')
is orthogonal to B’. X + Y = ¢X + 7Z for some real numbers ¢ and 7;
from the case B’ L B”, it follows that exp (£(X + Y))(B) e B for small ¢,
Q.E.D.

10. Summary

We summarize the results of this paper and the earlier one [5].

If B is a connected totally geodesic submanifold of the Grassmann mani-
fold G, (F), and if any two distinct elements of B have zero intersection as
subspaces of F*, then

1. Bisisometric to a sphere (these manifolds are described in [5, Theorem
1] and classified in [5, Theorem 8]) or to a real, complex, or quaternionic
projective space (these manifolds are described in Theorem 2 and classified
in Theorem 3).

2. B s an irreducible isoclinically closed set of pairwise isoclinic n-dimen-
sional subspaces of F*.

If A is a set of pairwise isoclinic n-dimensional subspaces of F*, then there
is an orthogonal direct-sum decomposition F* = V; @ --- @ V,,, and there
are connected totally geodesic submanifolds B’ of G, .(F), such that every
element of B’ lies in V;, any two distinct elements of B® have zero intersec-
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tion as subspaces of F*, and A < U7, B’. Here U, B is the isoclinic
closure of A.

This gives a complete analysis of the sets of pairwise isoclinic subspaces of
any given dimension in F*, which, in turn, gives a complete analysis of the
sets of Clifford-parallel linear subspaces of any given dimension in P*7(F).
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