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ABSTRACT KEY POLYNOMIALS AND COMPARISON
THEOREMS WITH THE KEY POLYNOMIALS OF

MAC LANE–VAQUIÉ

J. DECAUP, W. MAHBOUB AND M. SPIVAKOVSKY

Abstract. Let (K,ν) be a valued field and K(x) a simple purely
transcendental extension of K. In the nineteen thirties, in order

to study the possible extensions of ν toK(x), S. Mac Lane consid-
ered the special case when ν is discrete of rank 1, and introduced

the notion of key polynomials. M. Vaquié extended this definition
to the case of arbitrary valuations.

In this paper we give a new definition of key polynomials
(which we call abstract key polynomials) and study the relation-
ship between them and key polynomials of Mac Lane–Vaquié.

Introduction

Let K be a valued field and K ↪→ K(x) a simple purely transcendental
extension of K. In the 1930s, S. Mac Lane considered the special case when
the valuation ν of K is discrete of rank one and defined the notion of key
polynomials, associated to various extensions of ν to K(x) ([2] and [3]). Key
polynomials are elements of K[x] which describe the structure of various ex-
tensions of μ to K(x) and the relationship between them. Roughly speaking,
they measure how far a given extension of μ to K(x) is from the monomial
valuation (the one that assigns to each polynomial f ∈K[x] the minimal value
of the monomials appearing in f ). Mac Lane’s definition of key polynomials
was axiomatic: an element f ∈K[x] is a key polynomial for an extension μ
of ν to K if it is monic, μ-minimal and μ-irreducible (see Section 2 below for
precise definitions).

Michel Vaquié ([7], [8], [9] and [10]) extended this definition to the case of
arbitrary valued fields K (that is, without the assumption that ν is discrete).
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One important difference with the case of discrete valuations treated by Mac
Lane is the presence of limit key polynomials (which will not be discussed in
the present paper).

F. H. Herrera, M. A. Olalla, W. Mahboub and M. Spivakovsky defined
a different, though closely related notion of key polynomials (See [1], and
Herrera Govantes, F. J., Mahboub, W., Olalla Acosta, M. A., Spivakovsky, M.,
Key polynomials for simple extensions of valued fields, arXiv:1406.0657v3).
In their approach, the emphasis was on describing key polynomials by explicit
formulae and on constructing the successive key polynomials recursively in
terms of the preceding ones.

In his Ph.D. thesis (Thèse doctorale, Toulouse 2013), W. Mahboub proved
comparison theorems between Mac Lane–Vaquié and HMOS key polynomials.
For other related results on key polynomials, see [4].

Apart from a better understanding of the structure of simple extensions of
valued fields in its own right, one of the intended applications of the theory
of key polynomials is the work towards the proof of the Local Uniformization
Theorem over fields of arbitrary characteristic. Jean-Christophe San Saturnino
(see Theorem 6.5 of [6]) proved that in order to achieve Local Uniformiza-
tion of a variety embedded in Speck[u1, . . . , un] along a given valuation μ
of k(u1, . . . , un) it is sufficient to monomialize the first limit key polynomial
of the simple extension k(u1, . . . , un−1) ↪→ k(u1, . . . , un) (assuming local uni-
formization is already known in ambient dimension at most n− 1). Although
limit key polynomials are beyond the scope of this paper, we hope that the
comparison theorems proved here will clarify the relationship between differ-
ent definitions of key polynomials and therefore be useful for applications. For
the relation between key polynomials and pseudo-convergent sequences, see
[5].

Let μ be an extension of ν to K. In this paper we give a new defini-
tion of key polynomials (which we call abstract key polynomials) associated
to μ and study the relationship between them and key polynomials of Mac
Lane–Vaquié. Associated to each abstract key polynomial Q, we define the
truncation μQ of μ with respect to Q. Roughly speaking, μQ is an approxi-
mation to μ defined by Q. This approximation gets better as degxQ and μ(Q)
increase. We also define the notion of an abstract key polynomial Q′ being an
immediate successor of another abstract key polynomial Q (in this situation
we write Q < Q′). The main comparison results proved in this paper are as
follows:

Theorem 28: An abstract key polynomial for μ is a Mac Lane–Vaquié key
polynomial for the truncated valuation μQ.

Theorem 31: If Q<Q′ are two abstract key polynomials for μ then Q′ is a
Mac Lane–Vaquié key polynomial for μQ.

Theorem 32 which, for a monic polynomial Q ∈K[x] and a valuation μ′

of K(x), gives a sufficient condition for Q to be an abstract key polynomial

http://arxiv.org/abs/arXiv:1406.0657v3
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for μ′. Combined with Proposition 1.3 of [8], this describes a class of pairs of
valuations (μ,μ′) such that Q is a Mac Lane–Vaquié key polynomial for μ and
an abstract key polynomial for μ′. This can be regarded as a partial converse
to Theorem 31.

This paper is structured as follows. In Section 2, we define the Mac Lane–
Vaquié and the abstract key polynomials and study their properties. In Sec-
tion 3, we prove our main comparison results stated above.

1. Preliminaries and notation

Throughout this paper, N will denote the non-negative integers, N∗ the
strictly positive integers. For a field L, the notation L∗ will stand for the
multiplicative group L \ {0}.
• Let R be a domain, K the field of fractions of R, μ a valuation of K with
value group Γ and α ∈ Γ. We define:

(1) Pα(R) := {x ∈R such that μ(x)≥ α} ,
(2) Pα+(R) := {x ∈R such that μ(x)>α} ,

(3) grμ(R) :=
⊕

α∈Γ
Pα(R)
Pα+ (R) ,

(4) Gμ := grμ(K) ,
(5) For each f ∈ R such that μ(f) = α, we denote by inμ(f) the image of

f in Pα(R)
Pα+ (R) ; we call this image the initial form of f with respect to R

and μ.

• Let K ↪→K(x) be a purely transcendental extension of K. Let Q be a monic
polynomial in K[x]. Every polynomial g ∈K[x] can be written in a unique
way as

(1.1) g =
s∑

j=0

gjQ
j ,

with all the gj ∈K[x] of degree strictly less than deg(Q). We call (1.1) the
Q-expansion of g.

Definition 1. Let g =
∑s

j=0 gjQ
j be the Q-expansion of an element g ∈

K[x]. We put μQ(g) := min0≤j≤s
gj �=0

μ(gjQ
j) and we call μQ the truncation of μ

with respect to Q.

• Let μ be a valuation of the field K(x), where x is an algebraically in-
dependent element over a field K. Consider the restriction of μ to K[x].
Consider a monic polynomial Q ∈K[x]. Assume that μQ is a valuation (be-
low we will define the notion of abstract key polynomial and will show that
μQ is always a valuation in that case). Fix another polynomial f and let
f =

∑s
j=0 fjQ

j ∈K[x] be the Q-expansion of f . Let α= μQ(f). We denote
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by InQf the element
∑

μ(fjQj)=α fjQ
j ∈K[x]. Note that, by definition,

InQf ∈K[x],

while inμQ
f ∈ grμQ

K[x]. We have inμQ
(InQf) = inμQ

f .

2. Key polynomials

2.1. Key polynomials of Mac Lane–Vaquié. We first recall the notion
of key polynomial, introduced by Vaquié in [8], generalizing an earlier con-
struction of Mac Lane [3].

Definition 2. Let (f, g) ∈K[x]2. We say that f and g are μ-equivalent
and we write f ∼μ g if f and g have the same initial form with respect to K
and μ.

Remark 3. The polynomials f and g are μ-equivalent if and only if

μ(f − g)> μ(f) = μ(g).

Indeed, if

(2.1) inμ f = inμ g

then, in particular, μ(f) = μ(g). Furthermore, (2.1) says that f and g agree
modulo Pμ(f)+ . Thus

μ(f − g)> μ(f) = μ(g).

Conversely, if μ(f − g)> μ(g), then inμ(f − g+ g) = inμ(g).

Definition 4. Let (f, g) ∈K[x]2. We say that g is μ-divisible by f or that
f μ-divides g (denoted by f |μ g) if the initial form of g with respect to μ is
divisible by the initial form of f with respect to μ in grμK[x].

Remark 5. We have f |μ g if and only if there exists c ∈K[x] such that
g ∼μ fc.

Definition 6. Let Q ∈K[x] be a monic polynomial. We say that Q is a
Mac Lane–Vaquié key polynomial for the valuation μ if the following condi-
tions hold:

(1) Q is μ-irreducible, that is, for any g,h ∈K[x], if Q |μ gh, then Q |μ g or
Q |μ h.

(2) Q is μ-minimal, that is, for every f ∈K[x], if Q |μ f then deg(f)≥ deg(Q).

Proposition 7. Let P be an element of K[x]. Assume that P is μ-
irreducible. Then inμP is irreducible in grμK[x].

Proof. Assume that inμP is reducible in grμK[x], aiming for contradiction.
Write

inμP = inμ g inμ h

with μ(g), μ(h)> 0.
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We have P |μ gh, but P �μ g and P �μ h. This contradicts the μ-irreducibility
of P . The Proposition is proved. �

Remark 8. Assume that every homogeneous element of grμK[x] admits a
unique decomposition into irreducible factors. Then Q is μ-irreducible if and
only if its initial form with respect to μ is irreducible.

We now introduce an alternative, though closely related notion of key poly-
nomials. Many of the results given in the next section, such as the crucial
Proposition 13, have their analogues in terms of MacLane–Vaquié key poly-
nomials and appear in the works of both MacLane and Vaquié. For more
details, we refer the reader to [2], [3] and [7], [8], [9], [10].

2.2. Abstract key polynomials. We keep the same notation as in Sec-
tion 2.1, and we add the following:

(1) For each strictly positive integer b, we write ∂b :=
∂b

b!∂xb , the so-called
bth formal derivative with respect to x (see Remark 9 right below for a
detailed definition).

(2) For each polynomial P ∈K[x], let εμ(P ) := maxb∈N∗{μ(P )−μ(∂bP )
b }.

(3) For each polynomial P ∈K[x], let b(P ) := min I(P ) where

I(P ) :=

{
b ∈N∗ such that

μ(P )− μ(∂bP )

b
= εμ(P )

}
.

Remark 9. Let Δx be an independent variable. For f ∈K[x] and j ∈N, let
∂jf denote the jth formal derivative of f with respect to x. The polynomials
∂jf are, by definition, the coefficients appearing in the Taylor expansion of f :
f(x+Δx) =

∑
j ∂jfΔxj . In papers on the local uniformization problem, the

formal derivatives ∂j are often denoted by 1
j!

∂j

∂xj ; this notation is regarded as

one indivisible symbol; its parts such as 1
j! do not make sense on their own.

Remark 10. Let P ∈K[x] be a polynomial. The definition of εμ(P ) may
seem a little mysterious to the reader. In a recent preprint (Novacoski, J., Key
polynomials and minimal pairs, arXiv:1711.04296) Josnei Novacoski gave a
much more natural and intuitive characterization of this quantity. Namely,
let R(P ) denote the set of the roots of P in the algebraic closure K̄ of K. J.
Novacoski shows that εμ(P ) equals

δμ(P ) := max
a∈R(P )

μ̄(x− a),

where μ̄ is an arbitrary extension of μ to K̄[x].

Definition 11. Let Q be a monic polynomial in K[x]. We say that Q is
an abstract key polynomial for μ if for each polynomial f satisfying

εμ(f)≥ εμ(Q),

we have deg(f)≥ deg(Q).

http://arxiv.org/abs/arXiv:1711.04296
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Remark 12. A useful way of thinking of εμ(P ) is the following: it is a
quantity that measures by how much the value μ(P ) can be decreased by
differential operators. Precisely, we have

(2.2) μ(∂bP )≥ μ(P )− bεμ(P )

for all b ∈N and equality holds in (2.2) if and only if b ∈ I(P ).
By definition, a polynomial Q is an abstract key polynomials if it has the

smallest degree among all the polynomials having εμ at least as great as εμ(Q).
In the original approach of [1] and (Herrera Govantes, F. J., Mahboub,

W., Olalla Acosta, M. A., Spivakovsky, M., Key polynomials for simple ex-
tensions of valued fields, arXiv:1406.0657v3), key polynomials were defined
as certain key elements of K[x] that systematically witness all the instances
of the fact that a sum of terms can have strictly greater value than the com-
mon value of the summands. Their initial forms inμQ provide a natural sys-
tem of generators of the graded algebra grμK[x], defined in the beginning
of Section 1. Similarly, the graded algebra

⊕
α∈ΓPα(K[x]) is generated by

the natural images of the key polynomials. A detailed development of any
of these three statements is beyond the scope of this paper; for this we re-
fer the reader to (Herrera Govantes, F. J., Mahboub, W., Olalla Acosta, M.
A., Spivakovsky, M., Key polynomials for simple extensions of valued fields,
arXiv:1406.0657v3), Definition 3.1 and the comments following it, Proposi-
tions 3.4 and 3.6 and Definition 3.7 (pp. 10–12).

Proposition 13. Let t≥ 2 be an integer, Q an abstract key polynomial and
P1, . . . , Pt ∈K[x] of degrees strictly less than deg(Q). Let

∏t
i=1Pi = qQ+ r be

the Euclidean division of
∏t

i=1Pi by Q. Then

μ(r) = μ

(
t∏

i=1

Pi

)
< μ(qQ).

Proof. We proceed by induction on t.
First, consider the case t= 2. We want to show that

μ(P1P2) = μ(r)< μ(qQ).

Assume the contrary, that is, μ(P1P2) ≥ μ(qQ) and μ(r) ≥ μ(qQ). For each
j ∈N∗, we have μ(∂jP1)> μ(P1)− jεμ(Q), and similarly for P2, q, r, because
all these polynomials have degree strictly less than deg(Q) andQ is an abstract
key polynomial. Since μ(∂jq)> μ(q)− jεμ(Q) for all strictly positive integers
j, we deduce that

μ(q∂b(Q)Q) = μ(q) + μ(Q)− b(Q)εμ(Q)< μ(∂b(Q)−jQ) + μ(∂jq)

for all j ∈ {1, . . . , b(Q)}.
Hence, μ(∂b(Q)(qQ)) = μ(

∑b(Q)
j=0 (∂b(Q)−jq∂jQ)) = μ(q∂b(Q)Q) = μ(qQ) −

b(Q)εμ(Q).

http://arxiv.org/abs/arXiv:1406.0657v3
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On the other hand,

μ
(
∂b(Q)(qQ)

)
= μ

(
∂b(Q)(P1P2)− ∂b(Q)(r)

)
≥min

{
μ
(
∂b(Q)(P1P2)

)
, μ

(
∂b(Q)(r)

)}
≥min

{
μ

(
b(Q)∑
j=0

∂jP1∂b(Q)−jP2

)
, μ(∂b(Q)r)

}

> min
0≤j≤b(Q)

{
μ(P1)− jεμ(Q) + μ(P2)−

(
b(Q)− j

)
εμ(Q),

μ(r)− b(Q)εμ(Q)
}

≥ μ(qQ)− b(Q)εμ(Q),

which gives the desired contradiction. We have proved that μ(P1P2) = μ(r)<
μ(qQ), so the proposition holds in the case t= 2.

Assume, inductively, that t > 2 and that the proposition is true for t−1. Let
P :=

∏t−1
i=1 Pi. Let P = q1Q+r1 and r1Pt = q2Q+r be the Euclidean divisions

by Q of P and r1Pt, respectively. Note that q = q1Pt + q2. By the induction
assumption, we have μ(r1) = μ(P ) < μ(q1Q), hence μ(r1Pt) = μ(

∏t
i=1Pi) <

μ(q1PtQ). By the case t= 2, we have μ(r1Pt) = μ(r)< μ(q2Q).

Hence,μ(r) = μ(r1Pt) = μ(
∏t

i=1Pi)<min{μ(q1PtQ), μ(q2Q)} ≤ μ(q1PtQ+
q2Q) = μ(qQ). �

Definition 14. Let Q be an abstract key polynomial for μ, g an ele-
ment of K[x] and g =

∑s
j=0 gjQ

j the Q-expansion of g. Put SQ(g) = {j ∈
{0, . . . , s} such that μ(gjQ

j) = μQ(g)} and δQ(g) := maxSQ(g).

Proposition 15. If Q is an abstract key polynomial, then μQ is a valua-
tion.

Proof. First, for any polynomials f and g, we have

(2.3) μQ(f + g)≥min
{
μQ(f), μQ(g)

}
.

We want to show that

(2.4) μQ(fg) = μQ(f) + μQ(g).

If both f and g have degree strictly less than deg(Q), we have μQ(f) = μ(f)
and μQ(g) = μ(g). Furthermore, by Proposition 13, μQ(fg) = μ(fg). Since μ
is a valuation, (2.4) holds.

Next, let i, and j be two non-negative integers. Let fi and gj be two
polynomials of degree strictly less than deg(Q) and let figj = aQ+ b be the
Euclidean division of figj be Q. We have dega,deg b < degQ and

(2.5) μ(figj) = μ(b)< μ(aQ)
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(by Proposition 13). Then (fiQ
i)(gjQ

j) = aQi+j+1 + bQi+j is a Q-expansion
of (fiQ

i)(gjQ
j). By definition of μQ and (2.5) we have

μQ

(
figjQ

i+j
)
= μ

(
bQi+j

)
(2.6)

= μ
(
fiQ

i
)
+ μ

(
gjQ

j
)

= μQ

(
fiQ

i
)
+ μQ

(
gjQ

j
)
,

which proves the equality (2.4) for f = fiQ
i and g = gjQ

j with deg fi,deg gj <
degQ.

It remains to show the equality (2.4) for arbitrary polynomials

f =

n∑
j=0

fjQ
j

and

g =
m∑
j=0

gjQ
j .

It is sufficient to consider the case when all the terms in the Q-expansion of
f have the same value and similarly for g. In other words, we may replace
f and g by InQf and InQg, respectively. By (2.3), (2.6) and the distributive
law, we have

(2.7) μQ(fg)≥ μQ(f) + μQ(g).

It remains to show that (2.7) is, in fact, an equality. Let

n0 := minSQ(f)

and
m0 := minSQ(g).

We denote by
fn0gm0 = qQ+ r

the Q-expansion of fn0gm0 . Hence the Q-expansion of InQ(f)InQ(g) contains
the term rQn0+m0 , which, by Proposition 13, is of value

μQ

(
rQn0+m0

)
= μ

(
rQn0+m0

)
= μ

(
fn0Q

n0gm0Q
m0

)
= μQ(f) + μQ(g).

This completes the proof. �
Remark 16. Letα := degxQ.Wedefine G<α :=

∑
degx P<α(inμQ

P )grμK ⊂
grμQ

K[x]. It follows from the t= 2 case of Proposition 13 that G<α is closed

under multiplication, so it is, in fact, a ring. The ringG<α embeds into grμK[x]
by the natural map which sends inμQ

f to inμ f for each polynomial f of degree
strictly less than α. We have

grμQ
K[x] =G<α[inμQ

Q],

where inμQ
Q is transcendental over G<α. In particular, inμQ

Q is irreducible
in grμQ

K[x].
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Lemma 17. For every polynomial f ∈K[x] and every b ∈N∗ we have

μQ(∂bf)≥ μQ(f)− bεμ(Q).

Proof. Let f =
∑s

j=0 fjQ
j be the Q-expansion of f .

It is enough to show the result for f = fjQ
j . Indeed, if we have the result

in this case, then

μQ(∂bf) = μQ

(
s∑

j=0

∂b
(
fjQ

j
))

≥ min
0≤j≤s

{
μQ

(
∂b
(
fjQ

j
))}

≥ min
0≤j≤s

{
μQ

(
fjQ

j
)
− bεμ(Q)

}
≥ min

0≤j≤s

{
μQ

(
fjQ

j
)}

− bε(Q)

≥ μ(f)− bεμ(Q).

Now, let us show the result for f = fjQ
j . First, we show it for f = fj .

Indeed, εμQ
(fj) = εμ(fj)< εμ(Q) since Q is an abstract key polynomial of

degree strictly superior than deg(fj). Hence,

μQ(∂bfj) = μ(∂bfj)> μQ(fj)− bεμ(Q).

This proves the lemma with f replaced by fj .
We have μQ(∂bQ)≥ μQ(Q)− bεμ(Q).
To finish the proof of the lemma, it remains to show that if we have the

result for two polynomials f and g, we have the result for the product fg. Let
us suppose that we have the result for two polynomials f and g.

Then,

μQ

(
∂b(fg)

)
= μQ

(
b∑

s=0

∂sf∂b−sg

)

≥ min
0≤s≤b

{
μQ(∂sf) + μQ

(
∂b−s(g)

)}
≥ min

0≤s≤b

{
μQ(∂sf)

}
+ min

0≤s≤b

{
μQ

(
∂b−s(g)

)}
≥ μQ(f)− sεμ(Q) + μQ(g)− (b− s)εμ(Q)

≥ μQ(fg)− bεμ(Q).

This completes the proof. �
Proposition 18. Let the notation be as in Definition 14. If SQ(g) �= {0}

then there exists b ∈N∗ such that
μQ(g)−μQ(∂bg)

b = εμ(Q).

Proof. First, replacing g by InQ(g) =
∑

j∈SQ(g) gjQ
j does not change the

problem. We want to show the existence of a strictly positive integer b such
that μQ(∂bg) = μQ(g)− bεμ(Q).
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Let l be the minimum of SQ(g) \ {0}. Write l = peu, with p � u. Let b :=
peb(Q) ∈N∗. We calculate ∂bg.

Lemma 19. We have ∂bg = urQl−pe

+Ql−pe+1R+ S, where:

(1) r is the remainder of the Euclidean division of gl(∂b(Q)Q)p
e

by Q.
(2) R ∈K[x].
(3) S ∈K[x] and μQ(S)> μQ(g)− bεμ(Q).

Proof. First, let us show that the Lemma holds for g = glQ
l and that

for every integer j ∈ SQ(g) \ {l}, we have ∂b(gjQ
j) =Ql−pe+1Rj + Sj , where

(Rj , Sj) ∈K[x]2 such that μQ(Sj)> μQ(g)− bεμ(Q).
Let us prove these two statements together.
First, put Mj := {(b0, . . . , bs) ∈Ns+1, b0 + · · ·+ bs = b, s≤ j}.
By the Leibnitz rule,

∂b
(
gjQ

j
)
=

∑
(b0,...,bs)∈Mj

(
C(b0, . . . , bs)∂b0gj

(
s∏

i=1

∂biQ

)
Qj−s

︸ ︷︷ ︸
)

:=T (b0,...,bs)

,

where C(b0, . . . , bs) are certain integers whose exact values can be found
in (Herrera Govantes, F. J., Mahboub, W., Olalla Acosta, M. A., Spi-
vakovsky, M., Key polynomials for simple extensions of valued fields,
arXiv:1406.0657v3). Here by “integer” we mean an element of the image of
the natural map N→K, that is, an element of N or Fp depending on whether
the characteristic of K is 0 or p > 0.

Put Nj := {(b0, . . . , bs) ∈Mj such that b0 > 0 or {b1, . . . , bs}� I(Q)},

Sj :=
∑

(b0,...,bs)∈Nj

T (b0, . . . , bs), α :=
(
0, b(Q), . . . , b(Q)︸ ︷︷ ︸

pe

)
and

Ql−pe+1Rj :=

⎧⎨
⎩
∑

(b0,...,bs)∈Mj\Nj
T (b0, . . . , bs) if j �= l,∑

(b0,...,bs)∈Mj\Nj

(b0,...,bs) �=α

T (b0, . . . , bs) if j = l.

If j = l, the number of times the term T (0, b(Q), . . . , b(Q)︸ ︷︷ ︸
pe

) appears in

∂b(glQ
l) is

(
l
pe

)
= u. Performing the Euclidean division of T (0, b(Q), . . . , b(Q)︸ ︷︷ ︸

pe

)

by Q, we obtain

T
(
0, b(Q), . . . , b(Q)︸ ︷︷ ︸

pe

)
=R0Q

l−pe+1 + urQl−pe

.

http://arxiv.org/abs/arXiv:1406.0657v3
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We are now in the position to calculate ∂bg:

∂bg = ∂b

( ∑
j∈SQ(g)

gjQ
j

)

= ∂b
(
glQ

l
)
+

∑
j∈SQ(g)\{l}

∂b
(
gjQ

j
)

= urQl−pe

+Ql−pe+1Rl + Sl +
∑

j∈SQ(g)\{l}

(
Ql−pe+1Rj + Sj

)

= urQl−pe

+Ql−pe+1

(
Rl +

∑
j∈SQ(g)\{l}

Rj

︸ ︷︷ ︸
:=R

)
+ Sl +

∑
j∈SQ(g)\{l}

Sj

︸ ︷︷ ︸
:=S

with

μQ(S) ≥min

{
μQ(Sl), μQ

( ∑
j∈SQ(g)\{l}

Sj

)}

≥ min
j∈SQ(g)

{
μQ(Sj)

}
> μQ(g)− bεμ(Q).

This completes the proof of the lemma. �
Next, in view of Lemma 17, we have μQ(∂bg)≥ μQ(g)− bεμ(Q).

Hence, the Q-expansion of ∂bg contains the term urQl−pe

and terms which
either are divisible by Ql−pe+1 or have value greater than μQ(g) − bεμ(Q).
To complete the proof of the proposition, it is sufficient to show that
μQ(urQ

l−pe

) = μQ(rQ
l−pe

) = μQ(g)− bεμ(Q).

By Proposition 13, we have μ(r) = μQ(r) = μ(gl(∂b(Q)Q)p
e

), hence

μQ

(
rQl−pe)

= μ
(
rQl−pe)

= μ
(
gl(∂b(Q)Q)p

e

Ql−pe)
= μ

(
glQ

l
)
+ peμ(∂b(Q)Q)− peμ(Q)

= μ
(
glQ

l
)
− peb(Q)εμ(Q)

= μQ(g)− bεμ(Q).

This completes the proof. �
Remark 20. It can be shown that the implication of Proposition 18 is, in

fact, an equivalence. This will be accomplished in a forthcoming paper.

Corollary 21. Let Q be an abstract key polynomial and f ∈K[x]. Sup-

pose that there exists an integer b ∈ N∗ such that
μQ(f)−μQ(∂bf)

b = εμ(Q) and
μQ(∂bf) = μ(∂bf). Then εμ(f)≥ εμ(Q).

If moreover we have μ(f)> μQ(f), then εμ(f)> εμ(Q).
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Proof. We have εμ(f) ≥ μ(f)−μ(∂bf)
b =

μ(f)−μQ(∂bf)
b =

μ(f)+bεμ(Q)−μQ(f)
b .

This means that εμ(f) = εμ(Q) +
μ(f)−μQ(f)

b ≥ εμ(Q). And if μ(f) > μQ(f),
then εμ(f)> εμ(Q). �

Proposition 22. The polynomial Q is μQ-irreducible.

Proof. Put L := Frac(G<α) where α= deg(Q). Assume that

(inμQ
Q)(inμQ

c) = (inμQ
g)(inμQ

h) ∈ L[inμQ
Q].

Then there exists λ ∈ L∗, such that inμQ
Q= λinμQ

g or inμQ
Q= λinμQ

h. Since
all of inμQ

Q, inμQ
c, inμQ

g, inμQ
h are homogeneous elements of G<α[inμQ

Q],
so is λ. This proves that Q is μQ-irreducible. �

Proposition 23. Let Q and Q′ be abstract key polynomials such that
εμ(Q)≤ εμ(Q

′) and let f ∈K[x].
Then μQ(f)≤ μQ′(f). If μQ(f) = μ(f), then μQ′(f) = μ(f).

Proof. First, we show that μQ′(Q) = μ(Q). If degx(Q)< degx(Q
′), this is

clear. Otherwise, we have degx(Q) = degx(Q
′), since Q is an abstract key

polynomial and εμ(Q) ≤ εμ(Q
′). Let us suppose that μQ′(Q) < μ(Q). Then

SQ′(Q) �= {0}. In view of Proposition 18 and Corollary 21, we have εμ(Q)>
εμ(Q

′), which is a contradiction.
Now let f =

∑s
j=0 fjQ

j be the Q-expansion of f . For each integer j ∈
{0, . . . , s}, we have

μQ′
(
fjQ

j
)
= μQ′(fj) + jμQ′(Q) = μQ′(fj) + jμ(Q).

Then, since degx(fj) < degx(Q) ≤ degx(Q
′), we have μQ′(fjQ

j) =
μ(fj) + jμ(Q) = μ(fjQ

j). Hence μQ′(f) ≥ min0≤j≤s{μQ′(fjQ
j)} =

min0≤j≤s{μ(fjQj)}= μQ(f).
Let us now suppose that μQ(f) = μ(f)≤ μQ′(f). As we know that μQ′(f)≤

μ(f), we obtain

μQ(f) = μQ′(f),

as desired. �

Proposition 24. Let f1, . . . , fr ∈ K[x] be polynomials and let n :=
max1≤i≤r{degx(fi)}.

Then there exists an abstract key polynomial Q of degree less than or equal
to n such that for each integer i ∈ {1, . . . , r}, we have μQ(fi) = μ(fi).

Proof. First, we show that it is sufficient to prove the proposition for r = 1.
Indeed, suppose the proposition proved when there is just one polynomial

and suppose r > 1. Hence, we can find Q1, . . . ,Qr abstract key polynomials of
degrees less or equal than n such that for each integer i ∈ {1, . . . , r}, we have
μQi(fi) = μ(fi).
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Renumbering the Qi, if necessary, we may assume that εμ(Qr)≥ εμ(Qi) for
every integer i ∈ {1, . . . , r}. By Proposition 23, we have, for each i ∈ {1, . . . , r},
μQr(fi) = μ(fi).

Let us show the case r = 1. We argue by contradiction. Suppose that there
exists a polynomial f such that for every abstract key polynomial Q of degree
less than or equal to degx(f), we have μQ(f) < μ(f). Choose f of minimal
degree among the polynomials having this property.

Claim. There exists an abstract key polynomial Q of degree less than or
equal to degx f such that

μQ(∂bf) = μ(∂bf)

for every b ∈N∗.
Indeed, let s= degx f , so that for each integer j strictly greater than s, we

have ∂jf = 0. By the minimality assumption on degx f , for each i ∈ {1, . . . , s}
there exists an abstract key polynomial Qi such that μQi(∂jf) = μ(∂jf).

Take an i ∈ {1, . . . , s} such that εμ(Qi) =max1≤j≤s{εμ(Qj)}. Then, in view
of Proposition 23, for each integer 1≤ j ≤ s, we have μQi(∂jf) = μ(∂jf), and
the claim follows.

Now, we have μQ(f) < μ(f), so in particular SQ(f) �= {0}, and for each
b ∈N∗,

μQ(∂bf) = μ(∂bf).

In view of Proposition 18 and Corollary 21, we have

(2.8) εμ(f)> εμ(Q).

We claim that the last inequality is true for every abstract key polynomial of
degree less than or equal to degx f .

Indeed, let us take Q′ an abstract key polynomial of degree less than or
equal to degx f . We have two cases.

First case: εμ(Q
′) ≤ εμ(Q). In view of (2.8), we have εμ(Q

′) ≤ εμ(Q) <
εμ(f).

Second case: εμ(Q)< εμ(Q
′). In view of Proposition 23, we have

μ(∂bf) = μQ(∂bf) = μQ′(∂bf)

for each strictly positive integer b. Since μQ′(f)< μ(f), arguing as before, we
have

εμ
(
Q′)< εμ(f).

By definition of the abstract key polynomials, there exists an abstract key
polynomial Q′ of degree less than or equal to degx f such that εμ(f)≤ εμ(Q

′).
This is a contradiction. �
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3. The relationship between the abstract and the Mac
Lane–Vaquié key polynomials

The aim of this section is to study the relationship between the abstract
and the Mac Lane–Vaquié key polynomials.

Definition 25. Let Q and Q′ be two abstract key polynomials such that
εμ(Q)< εμ(Q

′). We say that Q′ is an immediate successor of Q and we write
Q<Q′ if degx(Q

′) is minimal among all the Q′ which satisfy εμ(Q)< εμ(Q
′).

Definition 26. Suppose there exists a set M of key polynomials for ν
with the same degree, that does not admit a maximal element for the order
relation defined above. Then a key polynomial Q′ of minimal degree, satisfying
εμ(Q

′)> εμ(Q) for all Q ∈M is called a limit key polynomial for ν.

Remark 27. Limit key polynomials are very closely related to the notion
of defect extension in positive residual characteristic. Every simple defect ex-
tension can be understood in terms of the existence of a certain limit key
polynomial (details on this will appear in a forthcoming paper). Limit key
polynomials also seem to be important objects in the study of the Local
Uniformization Problem as witnessed by the work of J.-C. San Saturnino,
mentioned in the Introduction.

Theorem 28. Let Q be an abstract key polynomial for μ. Then Q is a Mac
Lane–Vaquié key polynomial for μQ.

Proof. We have to prove two things:

1. Q is μQ-irreducible.
2. Q is μQ-minimal.

Statement 1 is nothing but Proposition 22.
Now we are going to show the statement 2. We assume that Q|μQ

r. We
want to show that degx r ≥ degxQ.

By assumption, there exists c such that

(inμQ
Q)(inμQ

c) = inμQ
r ∈ grμQ

K[x]⊂G<α[inμQ
Q]⊂ L[inμQ

Q].

Since inμQ
Q is transcendental over L, we have

(3.1) deginμQ
Q (inμQ

r)≥ 1.

Let r =
∑n

j=0 rjQ
j be the Q-expansion of r. By the algebraic indepen-

dence of inμQ
Q over L (and hence, a fortiori , over G<α), we have inμQ

r =∑n
j=0 inμQ

rj inμQ
Qj . Combined with (3.1), this shows that n≥ 1. We obtain

degx r = ndegxQ+degx rn ≥ degxQ+degx rn ≥ degxQ.

This completes the proof. �
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Lemma 29. Let Q and Q′ be two abstract key polynomials for μ such that
εμ(Q)< εμ(Q

′). Then

μQ

(
Q′)< μ

(
Q′).

Proof. In view of Lemma 17, we have
μQ(Q′)−μQ(∂bQ

′)
b ≤ εμ(Q) for each

strictly positive integer b. Assume that μQ(Q
′) = μ(Q′), aiming for contradic-

tion. Then
μ(Q′)− μQ(∂bQ

′)

b
≤ εμ(Q),

hence μ(Q′)−μ(∂bQ
′)

b ≤ εμ(Q). In other words, εμ(Q
′)≤ εμ(Q), which gives the

desired contradiction. �

Proposition 30. Let Q and Q′ be two abstract key polynomials for μ. The
following conditions are equivalent:

(1) Q<Q′.
(2) μQ(Q

′)< μ(Q′) and Q′ is of minimal degree with respect to this property.

Proof. (2)=⇒(1). Let us assume that μQ(Q
′)< μ(Q′) and that Q′ is of min-

imal degree minimal for this property. Then SQ(Q
′) �= {0} and for each strictly

positive integer b, we have μQ(∂bQ
′) = μ(∂bQ

′). By Proposition 18, there ex-

ists b ∈ N∗ such that
μQ(Q′)−μQ(∂bg)

b = εμ(Q). Hence
μQ(Q′)−μ(∂bQ

′)
b = εμ(Q),

and εμ(Q)< μ(Q′)−μ(∂bQ
′)

b ≤ εμ(Q
′). If there exists a key polynomial Q′′ sat-

isfying εμ(Q)< εμ(Q
′′) of degree strictly smaller than degxQ

′, by Lemma 29
we would have μQ(Q

′′)< μ(Q′′), which would contradict the minimality as-
sumption on the degree of Q′. This proves (1).

(1)=⇒(2). Let us assume that Q < Q′. By Lemma 29, this implies that
μQ(Q

′) < μ(Q′). Moreover, if there existed an abstract key polynomial Q′′

satisfying μQ(Q
′′)< μ(Q′′) of degree strictly smaller than degxQ

′, take such
a Q′′ of minimal degree. By the implication (2)=⇒(1) of the Proposition we
would have εμ(Q)< εμ(Q

′′), which would contradict the minimality assump-
tion on the degree of Q′. This proves (2). �

Theorem 31. Let Q and Q′ be two abstract key polynomials for μ such
that Q<Q′. Then Q′ is a Mac Lane–Vaquié key polynomial for μQ.

Proof. We have to prove two things:
1. Q′ is μQ-irreducible.
2. Q′ is μQ-minimal.
First we show 1. Let α= degxQ. By Remarks 8 and 16, it is sufficient to

show that inμQ
(Q′) is irreducible in

G<α

[
inμQ

(Q)
]
= grμQ

K[x].

Let ϕ : grμQ
K[x]→ grμK[x] be the natural map which sends inμQ

(f) to inμ(f)
for every polynomial f . The map ϕ maps G<α isomorphically onto its image
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in grμK[x]. The map ϕ is not injective if and only if there exists a polynomial
f such that μQ(f)< μ(f). In view of Proposition 30, we have this property for
f =Q′; in particular, inμQ

(Q′) ∈Ker(ϕ). We claim that Ker(ϕ) is a principal
prime ideal, generated by inμQ

(Q′). Indeed, take any polynomial f such that
inμQ

f ∈Ker(ϕ) and let inμQ
f = inμQ

(a)inμQ
(Q′) + inμQ

(r) be the Euclidean
division of inμQ

f by inμQ
(Q′). Then, if inμQ

(r) �= 0 we have inμQ
(r) ∈Ker(ϕ)

and so μQ(r) < μ(r), which contradicts the minimality of the degree of Q′.
Thus Ker(ϕ) = (inμQ

(Q′))grμQ
K[x]. Since grμK[x] has no zero divisors, we

know that inμQ
(Q′) is a prime ideal. Thus inμQ

(Q′) is irreducible in grμQ
K[x].

This completes the proof of 1.
Now we show 2. Assume that Q′|μQ

r. We want to show that degx(r) ≥
degx(Q

′). First, we know that inμQ
(Q′) divides inμQ

(r) in the unique fac-
torisation domain L[inμQ

Q]⊃G<α[inμQ
Q] = grμQ

K[x]. Hence r ∈Ker(ϕ). In

other words, μQ(r)< μ(r). On the other hand, we know that μQ(Q
′)< μ(Q′)

and that Q′ is of minimal degree for this property in view of Proposition 30.
By the minimality of degx(Q

′), we get the result. �
Theorem 32. Fix a monic polynomial Q ∈K[x]. Let μ′ be a valuation of

K(x) such that:

1. For each f of degree strictly less than deg(Q), we have μ′(f) = μ(f);
2. μ′(Q)> μ(Q).

Then Q is an abstract key polynomial for μ′.

Proof. Assume that Q is not an abstract key polynomial for μ′. Then there
exists a monic polynomial g such that

(3.2) εμ′(g)≥ εμ′(Q)

and

(3.3) deg(g)< deg(Q).

We can choose g of minimal degree for this property, and hence g is an abstract
key polynomial.

Thus there exists an abstract key polynomial g such that εμ′(g)≥ εμ′(Q)
and deg(g)< deg(Q).

Since every derivative of Q has degree strictly smaller than deg(Q), we
have

degx g ≤ degx(∂1Q) =max
b∈N∗

{
degx(∂bQ)

}
.

By Proposition 24, replacing g by another abstract key polynomial with larger
εμ, if necessary, we may assume, in addition, that

(3.4) μ′(∂bQ) = μ′
g(∂bQ)

for all strictly positive integers b (at this point, the abstract key polynomial
g still satisfies (3.2) and (3.3) but we may no longer have the condition that
g is of minimal degree for this property).
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We claim that for each polynomial h, we have

(3.5) μ(h)≥ μ′
g(h).

Indeed, let h=
∑l

j=0 hjg
j be the g-expansion of h. We have

μ′
g(h) = μ′

g

(
l∑

j=0

hjg
j

)
= min

0≤j≤l

{
μ′(hj) + jμ′(g)

}
= min

0≤j≤l

{
μ(hj) + jμ(g)

}
by hypothesis 1.

Hence, μ′
g(h) = min0≤j≤l μ(hjg

j) ≤ μ(h). In particular, μ′(Q) > μ(Q) ≥
μ′
g(Q).

Recall that if Q=
∑s

j=0Qjg
j is the g-expansion of Q, we denote

Sg(Q) =
{
j ∈ {0, . . . , s}|μ′(Qjg

j
)
= μ′

g(Q)
}
.

Suppose Sg(Q) = {0}, then μ′(Q)> μ′
g(Q) = μ′(Q0). Hence,

μ′(Q0) = μ′
(∑

j≥1

Qjg
j

)
≥min

j≥1
μ′(Qjg

j
)
> μ′(Q0),

which is a contradiction. We have proved that Sg(Q) �= {0}.
By Proposition 18, there exists a strictly positive integer b such that

μ′
g(Q)−μ′

g(∂bQ)

b = εμ′(g). By virtue of (3.4) we obtain εμ′(g) =
μ′
g(Q)−μ′

g(∂bQ)

b =
μ′
g(Q)−μ′(∂bQ)

b . Since μ′(Q)> μ′
g(Q), we have

εμ′(g)<
μ′(Q)− μ′(∂bQ)

b
= εμ′(Q),

which is a contradiction.
Hence, Q is an abstract key polynomial for μ′. �

Proposition 33 ([8], Proposition 1.3). Let Q be a Mac Lane–Vaquié key
polynomial for the valuation μ. Then there exists a valuation μ′ such that:

1. For each f of degree strictly less than deg(Q), we have μ′(f) = μ(f)
2. μ′(Q)> μ(Q).

Corollary 34. Let Q be a Mac Lane–Vaquié key polynomial for the valu-
ation μ. Then it is an abstract key polynomial for any valuation μ′ satisfying
the conclusion of Proposition 33.
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[9] M. Vaquié, Famille admissible de valuations et défaut d’une extension. [Admissible
family of valuations and defect of an extension], J. Algebra 311 (2007), no. 2, 859–

876. MR 2314739
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