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TENSOR PRODUCTS OF MEASURABLE OPERATORS

M. ANOUSSIS, V. FELOUZIS AND I. G. TODOROV

Abstract. We introduce and study a stability property for sub-
modules of measurable operators and Calkin spaces and char-
acterize the tensor stable singly generated Calkin spaces. Given

semifinite von Neumann algebras (M, τ), (N , σ) and correspond-
ing measurable operators S, T , we provide a necessary and suf-
ficient condition for the operator S ⊗ T to be measurable with
respect to (M⊗N , τ ⊗ σ).

1. Introduction

Weiss considered in [14] a property for ideals of B(H), called “tensor prod-
uct closure property”, or “tensor stability”. In a previous paper [1], we studied
the analogous property for Calkin sequence spaces. In particular, we estab-
lished a necessary and sufficient condition for the tensor stability of a singly
generated Calkin sequence space.

In this paper, we study the analogous stability property for submodules
of measurable operators and Calkin function spaces. Using results of O’Neil,
we describe a large class of stable submodules of measurable operators. We
then focus on singly generated Calkin function spaces. We give a necessary
and sufficient condition for the tensor stability of a singly generated Calkin
function space and provide examples of stable singly generated Calkin function
spaces.

Let (M, τ), (N , σ) be two semifinite von Neumann algebras and S, T
measurable operators with respect to (M, τ), (N , σ). In the first part of the
paper, we give a necessary and sufficient condition for S ⊗ T to be a τ ⊗ σ-
measurable operator. This characterization is used in an essential way in the
study of stable submodules.

We now introduce some notation. If H is a Hilbert space, we denote by
B(H) the algebra of bounded linear operators on H. If X is a set and A⊆

Received October 22, 2015; received in final form March 7, 2016.
2010 Mathematics Subject Classification. Primary 46L10. Secondary 46L52.

577

c©2016 University of Illinois

http://www.ams.org/msc/


578 M. ANOUSSIS, V. FELOUZIS AND I. G. TODOROV

X , we denote by χA the characteristic function of A. By m we denote the
Lebesgue measure. If M is a von Neumann algebra, and P ∈M we say that
P is a projection if P is a selfadjoint idempotent.

2. The algebra M

Let M be a von Neumann algebra acting on a Hilbert space H. Let M̃ be
the set of all operators T in H which are densely defined, closed and affiliated
to M.

Assume that M admits a faithful semi-finite normal trace τ . Let M be
the subset of M̃ consisting of all T ∈ M̃ such that lims→+∞ τ(E|T |(s,+∞)) =
0, where |T | = (T ∗T )1/2 and E|T |(s,+∞) is the spectral projection of |T |
corresponding to the interval (s,+∞). Then M is a ∗-algebra with respect
to the operations (S,T ) �→ S + T , (S,T ) �→ ST , T �→ T ∗, where T denotes the
closure of an operator T [5, Paragraph 1.4]. The operators in M are called
τ -measurable. In the sequel, we shall write S + T instead of S + T and ST
instead of ST .

On M, we consider the measure topology, introduced in [10], which is the
translation invariant topology defined by the neighborhoods of 0 of the form

Uε,δ =
{
T : there exits a projection P ∈M

such that ‖TP‖< ε and τ
(
P⊥)

< δ
}
,

where ε, δ > 0 and, for a projection P , we have set P⊥ = I − P . Then M
becomes a complete topological ∗-algebra and M is a dense ∗-subalgebra of
M [10].

Let T ∈M and t > 0. We set

μt(T ) = inf
{
‖TP‖ : P is a projection in M and τ(1− P )≤ t

}
.

We will denote the function t→ μt(T ) by μ(T ).
We collect some properties of the function μ(T ) in the following proposition

[5, Proposition 2.2, Lemmata 2.5, 2.6].

Proposition 2.1. Let T , S, R be τ -measurable operators. Then the fol-
lowing properties are satisfied:

(i) The map t→ μt(T ) from (0,+∞) to [0,+∞] is non-increasing and right-
continuous. Moreover,

lim
t→0

μt(T ) = ‖T‖ ∈ [0,+∞].

(ii) μt(T ) = μt(|T |) = μt(T
∗), for t > 0.

(iii) μt(T ) = inf{s≥ 0 : τ(E|T |(s,+∞))≤ t}.
(iv) μt+s(T + S)≤ μt(T ) + μs(S), for t > 0, s > 0.
(v) μt(RTS)≤ ‖R‖‖S‖μt(T ), t > 0.
(vi) For every t > 0 and for every projection P ∈M with τ(P )≤ t we have

that μt(TP ) = 0.
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(vii) For every t > 0 and for every projection P ∈M with τ(P )> t we have
that μt(P ) = 1.

Let T in M. We will say that T is a τ -finite-rank operator if there exists
a projection P ∈ M such that τ(P ) < +∞ and T = PT . It follows from
Proposition 2.1(ii), (iii) and (vi) that T is a τ -finite rank operator if and only
if m(supp(μ(T )))<+∞. It follows from Proposition 2.1(i) that T is bounded
if and only if μ(T ) is bounded.

3. Tensor admissibility

Let (X,ν) be a σ-finite measure space. Let us denote by M (X) the linear
space of all ν-measurable functions f :X →C, where we identify the functions
which are equal ν-a.e. Let f ∈ M (X). The distribution function of f is the
function δf : (0,+∞)→ [0,+∞] given by

δf (s) = ν
({

x ∈X :
∣∣f(x)∣∣ > s

})
.

It is trivial to verify that δf is a non-increasing right-continuous function. The
decreasing rearrangement of f is the function f� : (0,+∞)→ [0,+∞] given by:

f�(t) = inf
{
s≥ 0 : δf (s)≤ t

}
.

Note that, since δf is right continuous, the latter infimum is attained, and
that f� is right continuous [2, Chapter 2, Proposition 1.7].

The following are equivalent for a function f ∈ M (X):

(1) there exists a t > 0 such that δf (t)<+∞,
(2) limt→+∞ δf (t) = 0,
(3) f�(t) �=+∞ for every t > 0.

We call a function f ∈ M (X) admissible if f satisfies the above conditions.
The set of all admissible functions is a subspace of M (X) [2, Chapter 2,
Proposition 1.3] which we will denote by L (X).

We equip the set (0,+∞) with the Lebesgue measure m and set M =
M ((0,+∞)) and L = L ((0,+∞)).

Let L∞(m) be the von Neumann algebra of all m-measurable essentially
bounded functions f : (0,+∞)→C. Then the map τ : L∞(m)→C defined by

τ(f) =
∫
f dm is a semifinite normal trace on L∞(m). The space L̃∞(m) of

operators affiliated to L∞(m) is M , while the space of τ -measurable operators

L∞(m) coincides with L and μ(f) = f∗ for every f ∈ L .
We will denote by D the cone of all decreasing and right continuous func-

tions f : (0,+∞)→ [0,+∞). Note that L = {f ∈ M : f∗ ∈ D}.
Let f, g ∈ L . We denote by f ⊗ g the function f ⊗ g : (0,+∞)× (0,+∞)→

C defined by
(f ⊗ g)(x, y) = f(x)g(y).

Definition 3.1. (1) A pair (f, g) ∈ L × L is called tensor admissible if
(f ⊗ g)� ∈ D .
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(2) A function f ∈ L is called tensor admissible if the pair (f, f) is tensor
admissible.

Note that, by definition, a pair (f, g) is tensor admissible if and only if
(f ⊗ g)�(t)<+∞ for every t > 0.

Definition 3.2. Let f ∈ D and θ ∈ (0,1). For n ∈ Z we set

In(f, θ) =
{
t > 0 : θn+1 < f(t)≤ θn

}
, Jn(f, θ) =

⋃
i<n

Ii(f, θ),

an(f, θ) =m
(
In(f, θ)

)
, An(f, θ) =

∑
i<n

ai(f, θ) =m
(
Jn(f, θ)

)
,

Lθ(f) =
∑
n∈Z

θnχIn(f,θ).

We call the function Lθ(f) the θ-approximation of f .

Let f and g be two real valued functions in L . We shall write f � g if there
exists a constant C > 0 such that for every x ∈ (0,+∞) we have f(x)≤Cg(x).
If f � g and g � f we will say that f and g are equivalent and we will write
f ∼ g.

The following remark follows directly from the definitions.

Remark 3.3. Let f ∈ D and θ ∈ (0,1). Then

(1) In(f, θ) = [An(f, θ),An+1(f, θ)) = [An(f, θ),An(f, θ) + an(f, θ)).
(2) The θ-approximation Lθ(f) of f is decreasing and right continuous and

hence belongs to D .
(3) The θ-approximation Lθ(f) of f satisfies θLθ(f)≤ f ≤ Lθ(f). Thus, f ∼

Lθ(f).
(4) We have In(f, θ) = In(Lθ(f), θ) and an(f, θ) = an(Lθ(f), θ) for every

n ∈ Z.
(5) m(suppf)<+∞ if and only if

∑
n∈Z

an(f, θ)<+∞.
(6) f is bounded if and only if there exists n0 such that an(f, θ) = 0 for n≤ n0.
(7) Lθ(Lθ(f)) = Lθ(f).

The proof of the following lemma is straightforward and we omit it.

Lemma 3.4. Let f, g, f ′, g′ ∈ D . If f � f ′ and g � g′ then (f ⊗ g)� �
(f ′ ⊗ g′)�.

In the sequel, we use the conventions 0 · (+∞) = 0 and [+∞,+∞) = ∅.
Theorem 3.5. Let f , g be in D and θ ∈ (0,1). Let an = an(f, θ) and

bn = an(g, θ), n ∈ Z. For every k ∈ Z, we set rk =
∑

i+j<k aibj . Then the pair

(f, g) is tensor admissible if and only if there exists k0 such that rk0 <+∞.
In that case, we have that

(f ⊗ g)� ∼
∑
k∈Z

θkχ[rk,rk+1).
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Proof. It follows from Lemma 3.4 and Remark 3.3 that the pair (f, g) is
tensor admissible if and only if the pair (Lθ(f),Lθ(g)) is tensor admissible and
also that an(f, θ) = an(Lθ(f), θ) and an(g, θ) = an(Lθ(g), θ). By (7) above, we
may suppose that f = Lθ(f) and g = Lθ(g).

Let t > 0.
Then f(x)g(y) > t if and only if there exist i, j such that x ∈ Ii(f, θ),

y ∈ Ij(g, θ) and θiθj = θi+j > t. Therefore,{
(x, y) : f(x)g(y)> t

}
=

⋃
i,j,θi+j>t

{
(x, y) : x ∈ Ii(f, θ), y ∈ Ij(g, θ)

}
.

Let k ∈ Z be such that θk ≤ t < θk−1. We have⋃
i,j,θi+j>t

{
(x, y) : x ∈ Ii(f, θ), y ∈ Ij(g, θ)

}
=

⋃
i,j,θi+j>θk

{
(x, y) : x ∈ Ii(f, θ), y ∈ Ij(g, θ)

}
=

⋃
i,j,i+j<k

{
(x, y) : x ∈ Ii(f, θ), y ∈ Ij(g, θ)

}
.

Thus

δf⊗g(t) =m
({

(x, y) : f(x)g(y)> t
})

=m

( ⋃
i,j,i+j<k

{
(x, y) : x ∈ Ii(f, θ), y ∈ Ij(g, θ)

})
= rk.

The pair (f, g) is tensor admissible if and only if δf⊗g(t)<+∞ for some t.
Hence, the pair (f, g) is tensor admissible if and only if for some k ∈ Z, rk <
+∞. The proof of the first assertion is complete.

Let k ∈ Z be such that rk ≤ s < rk+1. Let ε > 0 be such that θk + ε < θk−1.
By the first part of the proof it follows that δf⊗g(θ

k+ε) = rk ≤ s which implies
that (f ⊗ g)∗(s) ≤ θk + ε. Let ε > 0 be such that θk − ε > θk+1. Again by
the first part of the proof we have that δf⊗g(θ

k − ε) = rk+1 > s, which implies
that (f ⊗ g)∗(s)≥ θk − ε. Hence, (f ⊗ g)∗(s) = θk. �

The proof of the following corollary is contained in the proof of Theo-
rem 3.5.

Corollary 3.6. Let f , g be in D and θ ∈ (0,1). Assume that f = Lθ(f)
and that g = Lθ(g). Let an = an(f, θ), bn = an(g, θ). For every k ∈ Z, we set
rk =

∑
i+j<k aibj . Then

(1)

(f ⊗ g)� =
∑
k∈Z

θkχ[rk,rk+1).
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(2)

an
(
(f ⊗ g)∗

)
=

∑
i+j=n

aibj

for every n ∈ Z.

Proposition 3.7. Let f ∈ D . If f is unbounded and tensor admissible,
then limx→+∞ f(x) = 0.

Proof. Assume limx→+∞ f(x) = a �= 0. Let r > 0. Since f is unbounded the
set A= {t : f(t)> r/a} has positive measure. Then δf⊗f (r) = (m×m)({(t, s) :
|f(t)f(s)|> r})≥ (m×m)({(t, s) : t ∈A,s ∈ (0,+∞)}) = +∞. �

All the von Neumann algebras, we consider from now on, are semifinite
and atomless. Let H1, H2 be Hilbert spaces and M⊆B(H1) and N ⊆B(H2)
be von Neumann algebras. Assume that τ (resp. σ) is a faithful semi-finite
normal trace on M (resp. N ).

Let H=H1 ⊗H2 be the Hilbert tensor product of H1 and H2. We denote
by (M⊗̄N , τ ⊗ σ) the spatial tensor product of (M, τ) and (N , σ), that is,
the von Neumann algebra acting on H1 ⊗ H2, generated by the operators
A ⊗ B, where A ∈ M and B ∈ N , equipped with the trace τ ⊗ σ defined
by (τ ⊗ σ)(A⊗B) = τ(A)σ(B), A ∈M, B ∈ N . If A ∈M and B ∈ N then
A⊗B is a closed, densely defined operator affiliated to M⊗̄N and (A⊗B)∗ =
A∗⊗B∗ [12, Theorem 8.1], but it is not true in general that A⊗B ∈M⊗̄N .
The next theorem provides a characterization of the pairs (A,B) ∈M×N
with the property that A⊗B ∈M⊗̄N .

Theorem 3.8. Let H1 (resp. H2) be a Hilbert space, and M (resp. N )
be a Neumann algebra equipped with a faithful semi-finite normal trace τ
(resp. σ). Let A ∈ M and B ∈ N . Then A ⊗ B ∈ M⊗̄N if and only if
the pair (μ(A), μ(B)) is tensor admissible. In this case, we have that

μ(A⊗B) =
(
μ(A)⊗ μ(B)

)�
.

Proof. Using polar decomposition, we may suppose that A, B are positive
operators. Let EA (resp. EB) be the spectral measure of A (resp. B); thus,

A =
∫ +∞
0

xdEA(x) and B =
∫ +∞
0

y dEB(y). Let EA ⊗ EB be the spectral
measure on R×R with values in the projection lattice of H1 ⊗H2 defined by

(1) EA ⊗EB(δ1 × δ2) =EA(δ1)⊗EB(δ2),

where δ1, δ2 are Borel subsets of R. It follows from [12, Theorem 8.2] that

A⊗B =

∫ +∞

0

∫ +∞

0

xy d
(
EA ⊗EB

)
(x, y).

Let us denote by EA,B the spectral measure on R given by

(2) EA,B(δ) =
(
EA ⊗EB

)({
(x, y) : xy ∈ δ

})
.
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Then

A⊗B =

∫ +∞

0

xdEA,B(x).

For every s > 0, we set

Δs =
{
(x, y) ∈ (0,+∞)× (0,+∞) : xy > s

}
;

note that EA,B(s,+∞) = (EA ⊗EB)(Δs).

Note that A ⊗ B ∈ M⊗̄N if and only if for every t > 0 we have that
μt(A⊗B)<+∞. Since

μt(A⊗B) = inf
{
s≥ 0 : τ ⊗ σ

(
EA ⊗EB(Δs)

)
≤ t

}
and(

μ(A)⊗ μ(B)
)�
(t) = inf

{
s≥ 0 : (m×m)

({
(x, y) : μx(A)μy(B)> s

})
≤ t

}
the conclusion of the theorem will follow if we prove the following equality:

(3) (τ ⊗ σ)
(
EA ⊗EB(Δs)

)
= (m×m)

({
(x, y) : μx(A)μy(B)> s

})
.

Let s > 0. For every i, n ∈N, set

I(n,i) =

[
i

n
,
i+ 1

n

)
, J(n,i) =

(
s

i/n
,+∞

)
,

δ(n,i) = I(n,i) × J(n,i), and δn =

+∞⋃
i=1

δ(n,i).

Clearly,

(4) δ1 ⊆ δ2 ⊆ δ3 ⊆ · · · and Δs =
+∞⋃
n=1

δn.

By [5, Remark 3.3], for every Borel subset δ of R and every positive operator
T ∈M we have that

(5) τ
(
ET (δ)

)
=

∫ +∞

0

χδ

(
μt(T )

)
dt=m

({
x : μx(T ) ∈ δ

})
.

By (4) and (5),

(τ ⊗ σ)
(
EA ⊗EB(Δs)

)
= lim

n→∞
(τ ⊗ σ)

(
EA ⊗EB(δn)

)
= lim

n→∞

+∞∑
i=1

τ ⊗ σ
(
EA ⊗EB(δ(n,i))

)
= lim

n→∞

+∞∑
i=1

τ
(
EA(I(n,i))

)
σ
(
EB(J(n,i))

)
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= lim
n→∞

+∞∑
i=1

m
({

x : μx(A) ∈ I(n,i)
})

m
({

y : μy(B) ∈ J(n,i)
})

= lim
n→∞

+∞∑
i=1

(m×m)
({

x : μx(A) ∈ I(n,i)
}
×

{
y : μy(B) ∈ J(n,i)

})
= lim

n→∞
(m×m)

(
+∞⋃
i=1

{
(x, y) : μx(A) ∈ I(n,i), μy(B) ∈ J(n,i)

})

= (m×m)

(
+∞⋃
n=1

+∞⋃
i=1

{
(x, y) : μx(A) ∈ I(n,i), μy(B) ∈ J(n,i)

})
= (m×m)

({
(x, y) : μx(A)μy(B)> s

})
,

and (3) is established. �
Recall that L∞(m) is the von Neumann algebra of all m-measurable essen-

tially bounded functions f : (0,+∞)→C equipped with the faithful semifinite

normal trace τ given by τ(f) =
∫
f dm. We also have that L = L∞(m). Set-

ting M=N = L∞(m) in the above theorem we obtain the following.

Corollary 3.9. Let f ∈ L . If f is tensor admissible, then

(f ⊗ f)� =
(
f� ⊗ f�

)�
.

Definition 3.10. Let (M, τ), (N , σ) be von Neumann algebras with faith-
ful semi-finite normal traces τ , σ. Let T ∈M, S ∈N .

(1) We will call the pair (T,S) tensor admissible if T ⊗ S ∈M⊗̄N .

(2) We will call T tensor admissible if T ⊗ T ∈M⊗̄M.

Remark 3.11. By Theorem 3.8, the pair (S,T ) (resp. the operator T ) is
tensor admissible if and only if the pair (μ(S), μ(T )) (resp. the function μ(T ))
is tensor admissible.

Some properties of tensor admissible operators are described in the follow-
ing theorem.

Theorem 3.12. Let (M, τ) be a von Neumann algebra with a faithful semi-
finite normal trace τ . Let S,T ∈M.

(1) If S and T are bounded, then the pair (S,T ) is tensor admissible.
(2) If S and T are τ -finite-rank operators, then the pair (S,T ) is tensor ad-

missible.
(3) If T is tensor admissible and S is a bounded τ -finite-rank operator, then

T + S is tensor admissible.

Proof. (1) is clear.
(2) It suffices to show that the pair (μ(S), μ(T )) is tensor admissible. Since

S and T are τ -finite-rank operators, there exists r0 such that μr0(S) = 0 and
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μr0(T ) = 0. The pair (μ(S), μ(T )) is tensor admissible if, for some r > 0, the
set {(x, y) : μx(S)μy(T )> r} has finite Lebesgue measure. Since{

(x, y) : μx(S)μy(T )> r
}
⊆

{
(x, y) : μx(S)μy(T )> 0

}
and (m×m)({(x, y) : μx(S)μy(T )> 0})≤ r20 , the assertion follows.

(3) If T is a τ -finite-rank operator, the assertion follows from (2). We
assume that T is not a τ -finite-rank operator. Let s0 be such that μs0(S) = 0.
Since T is tensor admissible, there exists r such that the measure of the set

F =
{
(x, y) : μx(T )μy(T )> r

}
is finite. By Proposition 2.1, for x≤ s0 we have that

μx(T + S)≤ μx(T ) + ‖S‖.

Set c= ‖S‖
μs0 (T ) (note that, since T is not τ -finite-rank, μs0(T )> 0). We have

μx(T + S)

μx(T )
≤ μx(T ) + ‖S‖

μx(T )
≤ 1 +

‖S‖
μx(T )

≤ 1 +
‖S‖

μs0(T )
= 1+ c.

It follows that

(6) μx(T + S)≤ μx(T )(1 + c)

if 0< x≤ s0.
For every x > s0, by Proposition 2.1 we have that

(7) μx(T + S)≤ μx−s0(T ) + μs0(S) = μx−s0(T ).

We show that the set

E =
{
(x, y) : μx(T + S)μy(T + S)> r(1 + c)2

}
has finite measure. Assume that x≤ s0, y ≤ s0 and (x, y) ∈E. Then

μx(T + S)μy(T + S)> r(1 + c)2

and hence, by (6), μx(T )μy(T )> r. Thus, the set{
(x, y) ∈E : x≤ s0, y ≤ s0

}
is contained in F and therefore has finite measure.

Assume x≤ s0, y > s0 and (x, y) ∈E. We have that

μx(T + S)μy(T + S)> r(1 + c)2

and hence, by (6) and (7),

μx(T )μy−s0(T )> r(1 + c)> r.

Set

A=
{
(x, y) : x≤ s0, y > s0, μx(T )μy−s0(T )> r

}
and

B =
{
(x, y) : x≤ s0, y > 0, μx(T )μy(T )> r

}
.
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Then B is contained in F and hence has finite measure; since A is the translate
of B by the point (0, s0), we have that A has finite measure. Since {(x, y) ∈
E : x≤ s0, y > s0} is contained in A, it has finite measure.

Similarly, we can show that the set {(x, y) ∈ E : x > s0, y ≤ s0} has finite
measure.

Assume x > s0, y > s0 and (x, y) ∈E. We have

μx(T + S)μy(T + S)> r(1 + c)2

and hence, by (7),

μx−s0(T )μy−s0(T )> r(1 + c)2 > r.

Set

A′ =
{
(x, y), x > s0, y > s0 : μx−s0(T )μy−s0(T )> r

}
and

B′ =
{
(x, y), x > 0, y > 0 : μx(T )μy(T )> r

}
.

As before, B′ has finite measure; since A′ is the translate of B′ by the point
(s0, s0), we have that A′ is of finite measure. As {(x, y) ∈ E : x > s0, y > s0}
is contained in A′, it has finite measure. It follows that E has finite measure
as the union of four sets of finite measure. The statement now follows from
Remark 3.11. �

The following proposition is [4, Proposition 1 and Lemma 9]. Note that [4,
Lemma 9] was formulated for bounded functions f , but its proof works in the
case f ∈ D as well.

Proposition 3.13. Let M be a type II∞ factor acting on a separable
Hilbert space with a faithful semi-finite normal trace τ . There exists an in-
creasing strongly continuous function P : [0,+∞)→M, denoted t �→ Pt such
that:

(1) For every t ∈ [0,+∞), Pt is a projection in M.
(2) For every t ∈ [0,+∞) we have that τ(Pt) = t.
(3) limt→∞Pt = I .

Moreover, if f is a function in D and T =
∫ +∞
0

f(t)dPt, then T is a mea-
surable operator and μt(T ) = f(t).

Example 3.14 (A measurable non-tensor admissible operator). We will
construct a function in D which is not tensor admissible and then using Propo-
sition 3.13 we will find a measurable non-tensor admissible operator.

Let a > 0. We consider the function f : (0,+∞) → [0,+∞) defined by
f(t) = t−a. We have In(f,1/2) = [2n/a,2(n+1)/a). Set an = an(f,1/2); we
have

an =m
(
In(f,1/2)

)
= 2n/a

(
21/a − 1

)
.
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It follows from Theorem 3.5 that f is tensor admissible if and only if there
exists k0 such that rk0 < +∞, where rk =

∑
i+j<k aiaj for each k ∈ Z. For

k ∈ Z, we have

rk ≥
∑

i+j=k−1

aiaj =
∑

i+j=k−1

2i/a2j/a
(
21/a − 1

)2
=

∑
i∈Z

2(k−1)/a
(
21/a − 1

)2
=+∞.

We conclude that f is not tensor admissible. Let M, τ and P be as in

Proposition 3.13, and T =
∫ +∞
0

f(t)dPt. The operator T is measurable and
μt(T ) = f(t). By Theorem 3.8, T is not tensor admissible.

Example 3.15 (Two tensor admissible positive measurable operators
whose sum is not tensor admissible). Let a > 0 and f : (0,+∞) → [0,+∞)
be the function defined by: f(t) = t−a − 1 if t ∈ (0,1] and f(t) = 0 if t > 1
and g : (0,+∞)→ [0,+∞) be the function defined by: g(t) = 1 if t ∈ (0,1] and
g(t) = t−a if t > 1.

Let M, τ and P be as in Proposition 3.13. Let T1 =
∫ +∞
0

f(t)dPt, T2 =∫ +∞
0

g(t)dPt. The operators T1 and T2 are measurable and μt(T1) = f(t),
μt(T2) = g(t). Since T1 is a τ -finite-rank operator and T2 is bounded, it follows
from Theorem 3.12 that they are tensor admissible operators. However, T1 +
T2 is not tensor admissible as we saw in the previous example.

4. Tensor stability

We start this section by recalling several well-known notions.

Definition 4.1. A linear subspace S of L is called a Calkin function
space if it satisfies the following condition: for every f ∈ S and g ∈ L such
that g� ≤ f� we have that g ∈ S .

Let λ > 0. We consider the dilation operator Dλ : L →L defined by

Dλ(f)(t) = f
(
λ−1t

)
.

It follows from [9, p. 54] that if S is a Calkin function space, λ > 0 and f ∈ S ,
then Dλf ∈ S .

Let V be a linear space. Recall that a quasi-norm on V is a non-negative
function x �→ ‖x‖ defined on V and satisfying the same axioms as a norm
except for the triangle inequality which is replaced by the requirement: There
exists a constant c > 0 such that

‖x+ y‖ ≤ c
(
‖x‖+ ‖y‖

)
,

for all x, y ∈ V .
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Definition 4.2. A Calkin function space E is called a symmetric quasi-
normed function space (or a symmetric quasi-normed space) if there exists a
quasi-norm ρ on E with the following property: If f ∈ E , g ∈ E and f� ≤ g�,
then ρ(f)≤ ρ(g). If ρ is a norm with this property, E is called a symmetric
normed function space (or a symmetric normed space).

Definition 4.3. Let (M, τ) be a von Neumann algebra with a faithful
semi-finite normal trace τ . A subspace J of M such that for every T ∈ J
and A,B ∈M we have that ATB ∈ J is called a submodule of M.

Let E be a Calkin function space. Set E (M) = {T ∈M : μt(T ) ∈ E }. By
Proposition 2.1(v), E (M) is a submodule of M. It is known that, when M
is a semi-finite factor, the submodules of M are in one-to-one correspondence
with the Calkin spaces contained in L [7]. It follows that, in this case, every
submodule of M is of the form E (M) for some Calkin space E .

Let (E , ρ) be a symmetric quasi-normed space and (M, τ) be a von Neu-
mann algebra with a faithful semi-finite normal trace τ . We define a function
ρ̄ : E (M)→ [0,+∞) by

ρ̄(T ) = ρ
(
μ(T )

)
, T ∈ E (M).

It is not hard to see that ρ̄ is a quasi-norm on E (M) (see [8]). If (E , ρ) is
a normed space then (E (M), ρ̄) is a normed space. This important result
was proved by Dodds, Dodds and de Pagter [3] in the case where ρ is a Fatou
norm and by Kalton and Sukochev [8] in the general case. If (E , ρ) is a Banach
space then (E (M), ρ̄) is also a complete normed space ([3], [8]). We also note
that if (E , ρ) is a complete symmetric quasi-normed space then (E (M), ρ̄) is
also a complete quasi-normed space ([13]).

The following theorem is a consequence of Theorem 3.8.

Theorem 4.4. Let (M, τ), (N , σ) be von Neumann algebras with faithful
semi-finite normal traces τ and σ acting on the Hilbert spaces H1 and H2

respectively.

(1) Let E1, E2, E3 be Calkin function spaces. Assume that for every f ∈ E1

and g ∈ E2 we have that (f ⊗ g)� ∈ E3. Then

E1(M)⊗ E2(N )⊆ E3(M⊗̄N ).

(2) Let (E1, ρ1), (E2, ρ2), (E3, ρ3) be symmetric quasi-normed spaces and
C > 0. Assume that for every f ∈ E1 and every g ∈ E2, we have (f ⊗ g)� ∈
E3 and

ρ3
(
(f ⊗ g)�

)
≤Cρ1(f)ρ2(g).

Then
E1(M)⊗ E2(N )⊆ E3(M⊗̄N )

and for every T ∈ E1(M) and S ∈ E2(N ) we have

ρ̄3(T ⊗ S)≤Cρ̄1(T )ρ̄2(S).
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We combine the above theorem and results of O’Neil on tensor products of
Lorentz spaces [11] to obtain Theorem 4.5 below. We first recall the definition
of Lorentz spaces L(p,q).

Let f ∈ L and 0< p<+∞, 0< q ≤+∞. We set

‖f‖p,q =
{
(
∫ +∞
0

(f∗(t)t
1
p )q dm(t)

t )
1
q if q <+∞,

supt>0 t
1
p f∗(t) if q =+∞

and
L(p,q) = {f ∈ L : ‖f‖p,q <+∞}

(see [11, Definition 6.5]). It is clear that the spaces L(p,q) are Calkin spaces
and it is known that they are complete symmetric quasi-normed function
spaces [6, Theorem 1.4.11]. Theorem 4.5 below follows from [11, Theorem 7.7],
Theorem 4.4 and [9, Theorem 2.4.4].

Theorem 4.5. Let 0< p<+∞ and 0< q, r, s≤+∞ and let (M, τ), (N , σ)
be von Neumann algebras with faithful semi-finite normal traces τ and σ acting
on the Hilbert spaces H1 and H2 respectively. A necessary and sufficient
condition in order that for every T ∈ L(p,q)(M) and S ∈ L(p,r)(N ) we have
that T ⊗ S ∈ L(p,s)(M⊗̄N ) is that p, q, r, s satisfy the inequalities:

(8) q ≤ s, r ≤ s,
1

p
+

1

s
≤ 1

q
+

1

r
.

In that case there exists a constant K which depends only on p, q, r, s such
that for every T ∈ L(p,q)(M) and S ∈ L(p,r)(N ) we have that∥∥μ(T ⊗ S)

∥∥
(p,s)

≤K
∥∥μ(T )∥∥

(p,q)

∥∥μ(S)∥∥
(p,r)

.

From now on, we assume that (M, τ) is a factor of type II∞.

Definition 4.6. (1) A Calkin function space E is called tensor stable if
for every f ∈ E and g ∈ E we have that (f ⊗ g)� ∈ E .

(2) Let E be a Calkin function space. We shall say that the submodule E (M)
is tensor stable if E is a tensor stable Calkin function space.

Remark 4.7. Let E be a Calkin function space. It follows from Theo-
rem 3.8 that the submodule E (M) is tensor stable if and only if

E (M)⊗ E (M)⊆ E (M⊗M).

Remark 4.8. Let 0< p <+∞ and 0< q ≤+∞. It follows from [11, The-
orem 7.7] that the Calkin function space L(p,q) is tensor stable if and only if
q ≤ p. It follows from Theorem 4.5 that the submodule L(p,q)(M) is tensor
stable if and only if q ≤ p.

Lemma 4.9. Let f, g ∈ D and θ ∈ (0,1). Then there exists a constant C > 0
such that f ≤Cg if and only if there exists an integer r ≥ 0 such that for every
k ∈ Z we have that

Ak(f, θ)≤Ak+r(g, θ).
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Proof. Assume f ≤ Cg. We consider r ∈ Z, r ≥ 0 such that θrC ≤ 1. Let
x ∈ Jn(f, θ). Then f(x) > θn and so g(x) ≥ C−1f(x) ≥ θrf(x) > θn+r. It
follows that x ∈ Jn+r(g, θ) and Ak(f, θ)≤Ak+r(g, θ).

Suppose now that there exists an integer r ≥ 0 such that for every k ∈ Z

we have that Ak(f, θ) ≤ Ak+r(g, θ). Let n be such that x ∈ In(f, θ). Then
x ∈ [An(f, θ),An+1(f, θ)) and we have

An(f, θ)≤ x <An+1(f, θ)≤An+r+1(g, θ)

by assumption. We thus have

g(x)≥ g
(
An+r+1(g, θ)

)
> θn+r+2.

But then f(x)≤ θn = θn+r+2θ−r−2 ≤ g(An+r+1(g, θ))θ
−r−2 ≤ g(x)θ−r−2. �

Let f ∈ D . Then it follows from [9, p. 54] that the set{
g : there exists a C > 0,and λ > 0 such that g� ≤CDλf

}
is a Calkin function space and it is contained in every Calkin function space
that contains f . Hence, it is the least Calkin space containing f . We will
denote this space by Sf . We will say that a Calkin space is singly generated
if it is of the form Sf for some f ∈ D .

Theorem 4.10. The Calkin space generated by f ∈ D is tensor stable if and
only if there exists a constant C > 0 and λ > 0 such that (f ⊗ f)� ≤CDλf .

Proof. If Sf is tensor stable, then (f ⊗ f)� ∈ Sf and hence there exist
C > 0 and λ > 0 such that (f ⊗ f)� ≤CDλf .

For the converse, assume that there exist C > 0 and λ > 0 such that (f ⊗
f)� ≤CDλf . Let g1, g2 ∈ Sf . Then there exist K > 0,M > 0 and ν > 0, κ > 0
such that g�1 ≤KDνf and g�2 ≤MDκf . We show that (g1 ⊗ g2)

� ∈ Sf . We
have

(g1 ⊗ g2)
� =

(
g�1 ⊗ g�2

)�
by Corollary 3.9. Hence we may assume that g1, g2 ∈ D . Let ξ =max{ν,κ}.
Then, g1 ≤ KDνf ≤ KDξf and g2 ≤ MDκf ≤ MDξf . By Lemma 3.4, we
have

(g1 ⊗ g2)
� ≤KM(Dξf ⊗Dξf)

�.

But
(Dξf ⊗Dξf)

� =Dξ(f ⊗ f)�.

Hence,
(g1 ⊗ g2)

� ≤KMCDξDλf.

and (g1 ⊗ g2)
� ∈ Sf . �

Corollary 4.11. Let f ∈ D and θ ∈ (0,1). The Calkin space Sf is tensor
stable if and only if there exist an integer r ≥ 0 and C > 0 such that for every
k ∈ Z we have

Ak

(
(f ⊗ f)�, θ

)
≤CAk+r(f, θ).
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Proof. It follows from Lemma 4.9, Proposition 4.10 and the fact that
Ak(Dλf, θ) = λAk(f, θ). �

Definition 4.12. Let (M, τ) be a factor of type II∞ and J be a submod-
ule of M. We will say that J is singly generated if there exists T ∈M such
that J is the least submodule of M that contains T . In this case, we will say
that J is generated by T .

Remark 4.13. Let (M, τ) be a factor of type II∞, T ∈ M and J the
submodule generated by T . Let f = μ(T ). Then J = Sf (M).

Definition 4.14. Let (M, τ) be a factor of type II∞. A function f ∈ D
will be called tensor stable if Sf is tensor stable. An operator T ∈M will be

called tensor stable if the submodule of M generated by T is tensor stable.

Remark 4.15. It follows from Remark 3.3 and Corollary 4.11 that a
bounded τ -finite rank operator is tensor stable.

Let M, τ and P be as in Proposition 3.13. Let f ∈ D and T =∫ +∞
0

f(t)dPt. The operator T is measurable and μt(T ) = f(t). By Re-
mark 4.13, the operator T is tensor stable (resp. bounded, admissible) if and
only if f is a tensor stable (resp. bounded, admissible) function. It follows
that in order to construct an operator in M with a certain property it is
sufficient to construct a function in D with the corresponding property.

Example 4.16 (A bounded not tensor stable operator). Let f ∈ D be the
function defined by:

f =
∑
n∈Z

2−nχIn ,

where: In = [n,n + 1) if n ≥ 1, I0 = (0,1) and In = ∅ if n ≤ −1. Then
an(f,1/2) = m(In) = 1 for n ≥ 0 and an(f,1/2) = 0 for n ≤ −1. By Corol-
lary 3.6, for n > 0 we have

An

(
(f ⊗ f)�,1/2

)
=

∑
i+j<n

ai(f,1/2)aj(f,1/2) = n(n+ 1)/2.

Let r ∈ Z, r > 0. For n > 0, we have

An+r(f,1/2) =

n+r−1∑
i=0

ai(f,1/2) = n+ r.

Since there are no C > 0 and r ∈ Z, r > 0 such that n(n+1)/2≤C(n+ r) for
every n, it follows from Corollary 4.11 that f is not tensor stable.

Example 4.17 (An unbounded tensor admissible not tensor stable opera-
tor). Let f ∈ D be the function defined by:

f =
∑
n∈Z

2−nχIn ,
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where In = [2n/a,2(n+1)/a) if n < 0 and In = ∅ if n≥ 0, for some a > 0. Then
an(f,1/2) =m(In) = 2n/a(21/a − 1) if n < 0 and an(f,1/2) = 0 if n≥ 0. Set
an = an(f,1/2). It follows from Theorem 3.12 that f is tensor admissible.

It follows from Corollary 3.6 that

An

(
(f ⊗ f)�,1/2

)
=

∑
i+j<n

aiaj

for every n ∈ Z. Since for k <−1 we have∑
i+j=k

aiaj =
∑

i<0,j<0,i+j=k

2i/a2j/a
(
21/a − 1

)2
=

(
|k| − 1

)
2k/a

(
21/a − 1

)2
we obtain for n < 0

An

(
(f ⊗ f)�,1/2

)
=

∑
i+j<n

aiaj =

n−1∑
k=−∞

(
|k| − 1

)
2k/a

(
21/a − 1

)2
.

Assume that there exist r and C such that An((f⊗f)�,1/2)≤An+r(f,1/2)
for every n ∈ Z. If n≤min{−1,−r} we obtain

n−1∑
k=−∞

(
|k| − 1

)
2k/a

(
21/a − 1

)2 ≤ n+r−1∑
i=−∞

2i/a
(
21/a − 1

)
= 2(n+r−1)/a

(
21/a − 1

) 21/a

21/a − 1
= 2(n+r)/a.

Hence (
|n− 1| − 1

)
2(n−1)/a

(
21/a − 1

)2 ≤ 2(n+r)/a

⇒
(
|n− 1| − 1

)(
21/a − 1

)2 ≤ 2(r+1)/a

for every n ∈ Z such that n≤min{−1,−r} which is absurd. It follows from
Corollary 4.11 that f is not tensor stable.

Example 4.18 (A bounded tensor stable operator). Let a0, a1, . . . be the
sequence of Catalan numbers. They are defined as follows:

a0 = 1, an+1 =

n∑
i=1

aian−i.

We set In = ∅ for n < 0, I0 = (0,1) and In = [
∑n−1

i=0 ai,
∑n

i=0 ai) for n > 0.
Let f ∈ D be the function defined by:

f =
∑
n∈Z

2−nχIn .

Then, an(f,1/2) = m(In) = an for n ≥ 0 and an(f,1/2) = m(In) = 0 for
n < 0.
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Let n ∈ Z. Then

An

(
(f ⊗ f)�,1/2

)
=

∑
i+j<n

ai(f,1/2)aj(f,1/2) =
∑

i≥0,j≥0,i+j<n

aiaj

=
n−1∑
k=0

∑
i≥0,j≥0,i+j=k

aiaj =
n−1∑
k=0

ak+1 ≤
n∑

k=0

ak

= An+1(f,1/2).

It follows from Corollary 4.11 that f is tensor stable.

Example 4.19. An unbounded tensor stable operator.
Let 0 = n0 < n1 < n2 < · · · a strictly increasing sequence of positive integers

satisfying the following conditions:

(1) For every k ≥ 0,
k∑

i=0

ni < nk+1.

(2) There exists C > 0 such that

nk+1/nk ≤C

for every k ≥ 1.

We set N0 = 0 and, Nk =
∑k

i=0 nk for k = 1,2,3, . . . , and

(9) a0 =
1

2
and ai =

1

nk+1

1

2k+2
, if i ∈ [Nk + 1,Nk+1].

We also set In = [1 −
∑|n|

i=0 ai,1 −
∑|n|−1

i=0 ai) for n < 0, I0 = [1 − a0,1) and
In = ∅ for n > 0.

Let f ∈ D be the function defined by: f =
∑

n∈Z
2−nχIn =

∑0
n=−∞ 2−nχIn .

Then an(f,1/2) = a|n| if n≤ 0 and an(f,1/2) = 0 if n > 0.
Suppose that n < 0, |n| ∈ [Nk + 1,Nk+1], that is |n|=Nk + l, with 1≤ l≤

nk+1.
We calculate an((f ⊗ f)�,1/2). By Corollary 3.6, we have

an
(
(f ⊗ f)�,1/2

)
=

∑
i+j=n

ai(f,1/2)aj(f,1/2)

=
∑

i+j=n

a|i|a|j| =
∑

|i|+|j|=|n|
a|i|a|j|.

Suppose that |i|+ |j|= |n|; we claim that |i|>Nk−1 or |j|>Nk−1. Indeed,
if |i| ≤Nk−1 and |j| ≤Nk−1, then, by (1) above, |i|+ |j| ≤ 2Nk−1 <Nk + 1.
This is a contradiction since |i| + |j| = |n| ∈ [Nk + 1,Nk+1]. Set I = {|i| ≤
Nk−1}, J = {|i|>Nk−1}. We have

an
(
(f ⊗ f)�,1/2

)
=

∑
|i|+|j|=|n|

a|i|a|j| =
∑
|i|∈I

a|i|a|n|−|i| +
∑
|i|∈J

a|i|a|n|−|i|.
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If |i| ∈ I , then |n| − |i|= |j|>Nk−1 and

a|n|−|i| ≤
1

nk

1

2k+1
.

Since
∑

i∈Z
ai = 1 we obtain∑

|i|∈I

a|i|a|n|−|i| ≤
1

nk

1

2k+1
.

If |i| ∈ J , then |i|>Nk−1 and

a|i| ≤
1

nk

1

2k+1
.

Since
∑

i∈Z
ai = 1 we obtain∑

|i|∈J

a|i|a|n|−|i| ≤
1

nk

1

2k+1
.

Hence,

an
(
(f ⊗ f)�,1/2

)
≤ 2

1

nk

1

2k+1
≤ 4C

1

nk+1

1

2k+2
= 4Can(f,1/2).

For n= 0, we have

a0
(
(f ⊗ f)�,1/2

)
= a20 ≤ 4Ca0 = 4Ca0(f,1/2)

since C > 1. It follows from Corollary 4.11 that f is tensor stable.
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