Illinois Journal of Mathematics
Volume 56, Number 1, Spring 2012, Pages 177-194
S 0019-2082

EFFECTIVE COMPUTATION OF STRONG GROBNER
BASES OVER EUCLIDEAN DOMAINS

DANIEL LICHTBLAU

ABSTRACT. Buchberger and, independently, Kandri-Rody and
Kapur, defined a strong Groébner basis for a polynomial ideal
over a Euclidean domain in a way that gives rise to canonical
reductions. This retains what is perhaps the most important
property of Grébner bases over fields. A difficulty is that these
can be substantially harder to compute than their field counter-
parts. We extend their results for computing these bases to give
an algorithm that is effective in practice. In particular, we show
how to use S-polynomials (rather than “critical pairs”) so that
the algorithm becomes quite similar to that for fields, and thus
known strategies for the latter may be employed. We also show
how Buchberger’s important criteria for detection of unneeded
S-polynomials can be extended to work over Euclidean domains.
We illustrate with some examples.

1. Introduction

Since their introduction by Bruno Buchberger in the 1960s, the theory
and application of Grobner bases has been developed extensively. While the
original version worked with polynomial rings defined over fields, this has
been extended in different ways to other types of base ring such as Euclidean
domains or principal ideal domains. Textbook expositions for this may be
found in [2] and [1]. As might be expected, the less structured the base
ring, the more problematic becomes the theory behind, and computation of,
such bases. Moreover while the definitions for the field case are common
throughout the literature, one encounters variations when working over other
rings, motivated by the wish (or decreasing ability) to preserve various aspects

Received November 4, 2011; received in final form March 12, 2013.
2010 Mathematics Subject Classification. 11C08, 11C20, 11D04, 11R11, 13B25, 13P05,
13P10.

(©2013 University of Illinois

177

http://www.ams.org/msc/

178 D. LICHTBLAU

of the field case. One particular variant, proposed independently in [6], and
[3], defines what is termed a “strong” Grobmer basis over the integers. As
demonstrated in [7], this extends more generally to polynomial rings over
Euclidean domains. Their motivation was to define these bases in such a
way that canonical reductions to normal form are essentially unchanged from
the field case. A by-product was that one also retains similarity to the field
case in the algorithm for computing these. As a generalization, [12] developed
similar ideas but in the setting of polynomial rings over effectively computable
principal ideal domains. In this paper, we restrict attention to Euclidean
domains firstly because that is the setting wherein one may preserve the notion
of canonical forms, and secondly in order to have efficient computability with
ring elements.

There are at least two reasons to want a strong Grobner basis over a Eu-
clidean domain. One is that as noted above we obtain canonical forms, and
these are very useful in computations modulo polynomial ideals. The second
is that reduction is now cheap; with a weak Grobner basis one must compute
greatest-common-divisors in the base ring in order to perform reduction (see
[2]), whereas with a strong basis one only needs use a division algorithm (the
price of course is that the basis computation itself may be more costly).

The theory behind strong bases was largely resolved by the early 1990s but
details regarding efficient computation and preservation of the simplicity of
Buchberger’s algorithm are scattered through the references. The intent of
this paper is to gather this under one roof, so to speak, and to make explicit
mention of any improvements and simplifications of which we are aware. For
example, a straightforward reduction algorithm can be slow as it essentially
emulates the extended GCD algorithm but with coefficient arithmetic carried
over to polynomials. To remedy this [6], [7] use the extended GCD explicitly
on coefficients, but make use of two types of S-polynomial and require a re-
striction on how reduction may be performed. Another issue is that with the
notable exception of [10] the literature says relatively little about extending
the Buchberger criteria for eliminating redundant S-polynomials ([1] also con-
sidered these criteria in some exercises, but in the context of what appears to
be a very different algorithm for working over a PID). We give a form that is
very much in the spirit of the field case in [3].

It will turn out that our basis is identical to the D-Grébner basis discussed
in Chapter 10 of [2] (they refer to the two types of polynomial as S-polynomials
and G-polynomials). Our method will be computationally cheaper due to
a more general reduction, availability of redundancy criteria, and fewer S-
polynomials to consider. The algorithm we will discuss is implemented in
the kernel of Mathematica [14]. General information about Grébner bases in
Mathematica may be found in [8].

The outline of this paper is as follows. First, we cover the basic definitions,
when working in a polynomial ideal over a Euclidean domain, of term ordering,

STRONG GROBNER BASES 179

canonical rewriting, S-polynomials, and Grobner bases. We then extend the
theory presented in [3] and [7] so that it is more like the case where one works
over a field. We next extend the well-known Buchberger criteria for detecting
unnecessary S-polynomials in advance of performing actual (and often time
consuming) reductions. We follow with several general examples. We then
show some specialized applications that, among other things, connect these
bases to important areas elsewhere in computational mathematics.

In the sequel, we restrict our attention mostly to the integers for clarity of
exposition. Definitions and theorems in this paper extend readily to all Eu-
clidean domains over which one can perform effective computation, provided
one can canonically select elements in a way that will be made precise for the
integer case below. It is then straightforward to adapt the ideas behind this
case to the other common Euclidean rings for example, Gaussian integers or
univariate polynomials.

2. Notation and definitions

First, we establish notation. We work in the polynomial ring of n indeter-
minates over the integers, Z[z1,...,z,]. A power product is a product of the
form H?zl(xj)ei. A term, or monomial, is a power product times an integer
coefficient (note that some authors define one or the other of these to be what
we call a power product). We will typically denote monomials as ¢;t; where
c¢; is an integer coefficient and ¢; is a power product. One sees immediately
that any polynomial in our ring can be written as a sum of terms with dis-
tinct power products; this is the usual definition of a polynomial in expanded
form. Our typical usage of letters (possibly subscripted or otherwise anno-
tated) in the sequel will be as follows: {a,b,c,d,e} are coefficients in our ring,
{f,g9,h,p,q,r} are polynomials, {i,j,k,m,n} are integers, and {s,t,u,v} are
power products.

As in the field case we define well-founded orderings on the power products.
Let {j1,...,jn} denote the (ordered) exponent vector of nonnegative integers
for a given power product (that is, j; is the exponent of 1, etc.). Suppose u, v,
and w are any three such terms, 1 is the term with all exponents equal to zero,
and sums of exponent vectors are performed element-wise and correspond to
products of power products.

DEFINITION 1. A total ordering among such exponent vectors (and hence
among power products) is well founded provided:

(i) 1< u for nonzero (u).
(i) u<v<=u+w<v+w.

For example, we have the important “pure lexicographic” ordering wherein
{J1y---,dn}t > {m1,...,m,} whenever j; =m, for all 1 <i<k <n and j >
myg. For naming purposes, we will sometimes call a term ordering T. In the

180 D. LICHTBLAU

sequel when power products are compared it is always assumed that this is
done with respect to a well-founded order.

DEFINITION 2. We will regard our polynomials as sums of terms in descend-
ing term order. That is, if p=cyt; + -+ cpt, then we have t1 > to > -+ > ty;
this depends, of course, on the particular choice of term order. The term
ci1t1 is denoted the “head” term. In the language of rewriting rules one
says that the head term “reduces” to minus the sum of the remaining terms.
For a pair of power products v = {kq,...,k,} and w={my,...,m,} we say
that w divides v if m; <k; for all 1 <j <n. For abbreviation purposes
we will write HPP[p] = t1, (“PP” for “power product”), HCoeff[p] = ¢1, and
HMonom|p] = ¢1t;.

We will assume the reader is familiar with the basic ideas of Grébner bases
in polynomial rings over fields. Good references for this include [1], [2], [3],
[5]. Recall that one of several equivalent definitions is that one obtains a
canonical form when reducing a given polynomial by such a basis. The various
definitions are no longer equivalent when one works over a more general ring,
and it is this particular one that gives rise to strong Grobner bases when the
base ring is a Fuclidean domain. Before this can be described, we must first
see what is meant by reduction, as this is altered from the field case.

First, we will impose an ordering on elements in the coefficient ring. For
our later purposes, this too will be a total ordering, which we will denote
by <. In particular, suppose our Euclidean norm on an element c in the ring
is denoted by |c|. Then whenever |c;| < |ca| we require that ¢; < ¢3. For
integers, we could for example use absolute values with ties broken by sign.
So, following [6], [3], Section 8, we may take for our ordering 0 € 1 €« — —1 <
2L ——-2K -

As will become clear, what we really require is a way to obtain unique
minimal remainders in the division algorithm. This extra ordering suffices for
that task.

DEFINITION 3. Given a monomial m = ¢t and a polynomial p =3 c¢;t;
with ¢; the leading power product we say that p reduces m provided

(i) t1 |t (that is, we have t = s1t1).

(ii) Using the division algorithm to write ¢ = ac; +d, we have a # 0 (or, equiv-
alently, |d| < |c|). In this case we write m — m — as;p. More generally,
we may allow any multiplier a such that the remainder satisfies |d| < ||,
but the quotient a from the division algorithm is the only one we use in
actual practice.

Similarly if ¢ and p are polynomials, we say p reduces q provided it reduces
some monomial m of ¢g. Note that reduction depends on term order in general.

We make this explicit in a shorthand notation: if the resulting polynomial is r

. A
we write q {;;_)} r. Generally, we will be interested in head term reductions, but

STRONG GROBNER BASES 181

for purposes of obtaining canonical forms we will reduce lower terms as well.
Also note that it is in reductions that minimal remainders become important:
we require that the reduced polynomial be “smaller” either in head power
product or coefficient. For the case of integers, there is a small subtlety that
should be made explicit. Our division algorithm must work in such a way that
the quotient of 2 and 3 is 1, with a remainder of —1 (because —1 is smaller
than 2 in the Euclidean norm). This extends to other domains where the
valuation provides a tie in terms of ordering. The method we develop largely
avoids this issue by working with a GCD rather than iterated divisions.

DEFINITION 4. Given a polynomial ¢ and a set of polynomials F', we say
that ¢ is reducible by F' if there is a polynomial p in F' that reduces q. There
may be many such, and one may get different reductions. The point of a
Grobner basis is that we will get a unique result once no further reductions
can be applied, regardless of choices for reducing polynomials that were made

along the way. If some chain of reductions from gleads to a polynomial r
{FT}

(regardless of whether it might be further reduced by F'), we write ¢ — 7.

We now mention why this form of reduction is useful. As we will see, one
can obtain a basis computation algorithm that is quite similar to that for
fields. This is important if one is to write (almost) generic code that is at
the same time optimized for different coefficient domains. Indeed, we want
to use heuristics that are borrowed from the field case to the greatest extent
possible, and the fewer departures from that case the more readily we are
able to do this. This may also be carried beyond the Buchberger algorithm.
Specifically, we note that there has been much work over the years to do
Grobner basis conversion. One such method in particular, the Grobner walk
[4], is readily extended to Euclidean domain base rings. Yet another reason to
have this form of reduction is that it is fast; weak bases rely on slower GCD
computations rather than division.

We now define two types of S-polynomial. Recall that the idea behind these
in the field case is to combine head terms using the LCM of the lead power
products, and then kill off the lead coefficient. In the Euclidean domain case,
we can do this only if one lead coefficient divides the other, or if we will allow
coefficient multipliers that are both nonunits. Moreover, we must allow for
reducing rather than entirely removing head coefficients. For example, the
pair {2z,3y} will, in contrast to the field case, give rise to the S-polynomial
xy. While two flavors of S-polynomial marks a departure from the field case,
we will see later how these may be used in an algorithm that is virtually
identical to Buchberger’s.

DEFINITION 5 (S-polynomials). We are given polynomials p; = ¢;t; + 15
where t; = HPP[p;] for j € {1,2}. Without loss of generality, we may assume
le1] < ea|. Let {c,{a1,a2}} = ExtendedGCDJcq,c2] (that is, ¢ is the GCD

182 D. LICHTBLAU

with ¢ = a1 + agea). Let ¢ = PolynomialLCM[ty, t5] with cofactors sjand so
so that ¢ = s1t; = sate. Finally, take d = LCM [cq, co] with cofactors byand
b2 so that d = byc; = baco. With this, we define two types of S-polynomial:

SPoly, [p1,p2] = a151p1 + a2s2p2 SPoly,[p1, p2] = bisipr — basapa.

Note that the head term of SPoly, [p1, p2] had coefficient ¢ and power prod-
uct ¢, and in SPoly,[p1, pe] we have killed off that power product. Also note
that when ¢; divides co then SPoly [p1, p2] is simply a power product multiple
of p1 (because a; =1 and ay = 0). In this case it will obviously reduce to zero,
and only SPoly,[p1, p2] will be of interest. Finally note that due to choices of
cofactor, SPoly, is not uniquely defined; this will not matter for our purposes
and we merely require that an extended gcd algorithm exist. Anticipating
later results, we now define, for each pair, a unique S-polynomial.

DEFINITION 6. Again given polynomials p; = ¢;t; + r; with t; = HPP[p,]
for j € {1,2} and |e1]| <|ea]. If ¢1 divides ¢y then SPoly[py,pa] = SPolys[p1,
p2], otherwise SPoly[p1, p2] = SPoly, [p1,p2]. We remark that this is in essence
“definition CP3” in [6]. It is also the efficient generalization of the definition
from [3]. In that case one uses quotient and remainder to remove as much
of the leading coefficient as possible from the lead term of the S-polynomial.
When one lead coefficient divides the other it may be entirely removed and we
have SPoly,. When this does not happen, iterating the process emulates the
Euclidean algorithm so after some number of steps we would obtain SPoly;.

We are now ready to define a strong Grébner basis.

DEFINITION 7. A set of polynomials G in Z[z1,...,2,] is called a strong
Grobner basis over (the base ring) Z and with respect to a given term ordering
T if, given any polynomial p € Z[z1,...,z,], it has a canonical reduction by
{G,T}. What this means is that no matter what polynomials from G we use

at any given step in the process, when we can no longer reduce it we have a

G, T G, T
unique form. Restated, if p {—>} r1 and p {—>}

be further reduced by F', then ry =rs.

r9 and neither r; nor r5 can

Last, we will need a notion from the theory of Grébner bases over principal
ideal rings.

DEFINITION 8. Given a set of polynomials G = {¢1,...,9n} C Z[z1,..., 2]
and a polynomial f with f =73 h;g;. We call this a strong standard repre-
sentation of f with respect to G provided HMonom|f] = HMonomlh;g;] for
some j and HPP[hgx] < HPP[f] for all k # j (obviously this is with respect
to some given term order).

We see that in a strong standard representation one kills off the head
term with exactly one summand. There is also a notion of a weak standard
representation, wherein we allow multiple terms with the same head power

STRONG GROBNER BASES 183

product, that is useful in construction of what are called “weak” Grobner
bases. These in turn may be used to construct strong Grobner bases as
in [1], [10]. We do not pursue that approach here. Instead we will work
directly with strong standard representations. These in fact give rise to strong
Grobner bases over principal ideal rings. The characterization in that case is
that all elements of the ideal have a strong standard representation; we lose
canonical forms of arbitrary polynomials. Is is easy to see that existence of
such representations is equivalent to one of the common characterizing features
from the field case: G is a strong Grobner basis for the ideal I provided that
for any f € I there is some g € G with HMonom|g] | HMonom|[f] (we require
now that both lead coefficient and power product of f be divisible by those

of g).
3. Main results

We want to establish a type of Buchberger result connecting Grébner bases
to reduction of S-polynomials. We will do this in steps.

THEOREM 9. Given a set of polynomials G ={g1,...,9n} in A=Zx1,...,
x;] and a term order T. Let I be the ideal generated by G. Then following
are equivalent.

(i) Every g € G has a strong standard representation.
(ii) Bvery f € A has a canonical reduction by {G,T} (in other words, G is a
Grébner basis with respect to order T').

Proof. (i)=(ii) is similar to Lemma 10.22 and Theorem 10.23 in [2]. Sup-

pose we have f {ﬂ} hy and f {ﬂ} ho with hy and ho both fully reduced. We

need to show that h; = ho. Since h; — ho € I it has a strong standard represen-
tation. Let HMonom[h; — ho] = ct and hy —ha =)" q;jg; be a strong standard
representation with HPP[grgx] = ct. Let ¢; respectively, ca be the coefficient
of t in hy respectively, ho. First, suppose ¢; =0. Then HMonom[hs] = ct
and hence hy is not fully reduced, contradicting our assumption. Thus ¢; # 0
and similarly we see that c2 # 0. Hence (¢; — c2)t reduces but neither c¢;¢
nor cot reduces by G. Thus by, = HCoeff[gy] divides (¢; — ¢3). Moreover,
Quotient|cy, bx] = Quotient[ca, by = 0 for otherwise at least one of hy and hs
could not be fully reduced. Thus, ¢; and co are in the same residue class
modulo b; and so they are equal. This shows that the head term of hy — ho
is zero, in other words h; = ho as desired.

(ii)==(i) is similar in style to 10.8 of [2]. Suppose f € I, f = ct + r where

t = HPP[f]. By assumption of canonical reduction we have f {ﬂ} 0. Thus,
we may write f =" h;g; where Max,;[HPP[h,g;]] =t (we remark that this is
already a weak standard representation of f). Let J = {j: HPP[h,g;] =t}.
Assume for a contradiction that m = #J > 1, that ¢ is minimal among all
power products (with respect to T') for which this happens, and that |c| is

184 D. LICHTBLAU

minimal among coefficients for which there is no strong standard represen-
tation involving this head power product t. These assumptions are tenable
because we work with well ordered monomials over a totally ordered Euclidean
domain.

For notational convenience, assume without loss of generality that J =
{1,...,m}. Now let {¢{s1,...,5m}} = ExtendedGCD[HCoeff[g1],...,
HCoeft[g,,]] and u; =t/HPP[g,,] for 1 <j <m.

We next define g = ui1s191 + -+ + UmSmgm. Then by construction
HMonomlg] = ét. If |¢| = |¢| then m =1 because we use Euclidean reduc-
tion that forces |HCoeff[h;g;]| < |c| for 1 < j <m, yet by construction as a
GCD we have |¢| < |HCoeff[h;g;]| for 1 < j <m. Thus, |¢| < |c|.

By minimality of |c| there is a strong standard representation g =" ¢;g;
with HPP[qigx] =t and HPP[g,g;] <t for all j #k. As ¢ =HCoeff[h101] +

-+ HCoeff[hmg,] and ¢ = GCD[HCoeff[g1],. .., HCoeff[g:,]] we see that ¢| ¢,
so we have ¢ = dé for some d. Finally let f = f dg. Then HPP[f] <t and
hence f has a strong standard representation by our minimality hypothesis
which we write as f = >-p;jgj. But then d) qjg; + > p;g; is seen to be a
strong standard representation of f. U

THEOREM 10. Given a set of polynomials G in Zlxy,...,x,] and a term
order T, the following are equivalent.
(i) G is a Grébner basis with respect to term order T.

T}

(ii) For every pair of polynomials {p1,p2} C G we have SPoly, [p1,p2) &1y

G,T
and SPoly,[p1, p2] &L,

(iii) For every pair of polynomials {p1,p2} C G we have SPoly|[p;,ps) @1ty

We use both types of S-polynomial in the second equivalent statement
because it is a bit easier to show that this yields a Grobner basis. We then
show that the third statement is equivalent to the second. This is useful among
other reasons because one wants to retain the original Buchberger algorithm
intact to the extent possible, and having one rather than two S-polynomials
for a given pair clearly furthers this goal.

Proof of Theorem 10. (i) = (ii) is from the definition of a Grébner basis.
We now show (ii) = (i) (this is similar to Theorem 10.11 in [2]).

Suppose G ={g1,...,9,} and f is in the ideal generated by G. We may
write f =) h;g;. Let t =Max;[HPP[h;g;]], J ={j: HPP[h;g;] ==}, and
t = HPP[f]. We may assume ¢ is minimal among such representations. Let
m=#J. If m=1 and t =1, then we have a strong standard representation,
so we assume otherwise. If ¢ =¢ then obviously m > 1. On the other hand, if
t > 1 then we require at least two terms in the representation to have power
product of ¢ in order to kill off that term. Hence, m > 1. Reordering if
necessary, without loss of generality we may assume J ={1,...,m}.

STRONG GROBNER BASES 185

We now set up some notation. Write g; = c;t; +r; and h; = bjs; + g;
where t; = HPP[g;] and s; = HPP[h;]. Note that s;t; =¢ for 1 < j <m.
Let tl,g = PolynomialLCM[tl,tQ}, v = t/tl,g, Uy = t172/t1, and U = tl,g/tz.
From this we see at once that s; = ujv and sy = usv. We will assume for a
contradiction that |[byci| 4 -+ + [bmCrn| is minimal among all representations
of f that have a largest power product of t. Again, such a representation must
exist for well ordered monomials over a totally ordered Euclidean domain.

Let {C, {dl,dg}} = EXteIldedC}CD[Cl,62]7 €1 = LCM[Cl,CQ]/Cl, €y =
—LCM]ey, ea]/c2. So eg and eg are minimal in norm such that ejc; +egea = 0.

In terms of these definitions, we have

Spoly, [g1,92] = diu1g1 + dauzga Spoly, g1, g2] = e1u1g1 + eauzgo.

Now bicy + bacy = de for some d; moreover there exists e such that b; =
ddy + ee; and by = ddy 4 ees. Since by # 0 and bs # 0 by construction, and
¢ = GCDlJey, cq], it follows that |bycy| + |baca| > |dc|.

We now have

higi 4 haga = (ddy + eer)uivgr + q1g1 + (dda + ee2)uavga + q292
= dvSPoly [g1, g2] + evSPolys[g1, g2] + (q191 + q292)-

By hypothesis, the S-polynomials reduce to zero. Now v HPP[SPoly,[g1,
g2]] < t, HPP[g191] < t, and HPP[gag2] < ¢. Moreover, HCoeff[dv SPoly, [g1,
g2]] = de. We thus have a representation of hig; + hoge as a sum > prgx
whereby, letting K = {k: HPP[prgx] =t}, we obtain

Z ’HCOGH[pkng = |dC‘ < ‘b1C1| + |b202‘.
keK

But then we may use this representation to replace higi + hoge in the
representation of f, and this contradicts minimality of |[bicy| + -+ + |bmCiml-
Thus (ii) = (i).

Since (ii) is stronger than (iii) it is clear that (ii) = (iii). We show (iii) =
(ii).

Let p; = ¢;t; +r; with HPP[p;] =t; for j € {1,2}. Assume without loss of
generality that |ci| < |ca|. If ¢1 | c2 then SPoly,[p1,p2] is trivially a product
of paand hence known to reduce, and thus we need only use SPoly,[p1,p2].
So we may suppose that ¢; {ca. Let {c, {a1,a2}} = ExtendedGCD]cy, ¢2] with
¢y =dyc and co = dgc. Note that a1d; + asds = land in particular a; and
ay are relatively prime. Let t = PolynomialLCM][ty,t5] with s; = t/t; and
so =t/ts. Then

q = SPoly, [p1, p2]
=a1c181t1 + a18171 + axceSata + asSars

=ct+ai;s17m1 + ag8979

186 D. LICHTBLAU

and
SPoly,[p1,p2]
= (dac151t1 + dasiry) — (dicasate + disara)
= szlTl — d1$2’l"2.
Thus,

h1 = SPoly,[p1,q] = c151t1 + s171 — di(ct 4+ a1s171 + arsara)
= (1 — d — 1&1)817‘1 — d1a2527“2 = a2d251r1 — agdlsl’l“g
= ag SPoly, [PhPQ]

and similarly

hy = SPoly,[p2, q] = a1 SPoly,[p1, p2].

Also by Definition 6 it is clear that SPoly,[p;, g] = SPoly[p;, q] for j € {1,2}.
Since a1 and ay are relatively prime, we obtain SPoly, [h1, ha] = SPoly,[p1,
pa2]. This shows that, provided SPoly, [p1, p2] is not trivial, we will eventually
obtain SPoly,[p1,p2] by iterating SPoly. Hence for any pair {p1,p2} we need
only use SPoly[p1,p2] as given in Definition 6. O

From the theorems above, it is now not hard to see that our bases are
the same as the D-bases of [2], [12]. What is very different is the mode
of computation insofar as we allow Euclidean reduction of lead coefficients
rather than insist on divisibility. This will tend to make them smaller sooner,
and thus offers an advantage in efficiency. Note that this only applies when
working over a Euclidean domain, and so the algorithm in the above references
has the advantage of greater generality, albeit ours has greater flexibility in
choices of reducing polynomial.

There are other ways to improve computational efficiency. It is known from
long experience that the common bottleneck to the algorithm is the reduction
of S-polynomials. Buchberger himself was the first to give criteria under which
certain S-polynomials could be ignored (see [3] and references therein). We
will show how his criteria from the field case can be adapted to Euclidean
domain base rings.

THEOREM 11 (Theorem 3 (Buchberger’s criterion 1)). Suppose p; = c;t; +
r; with HPP[p;] =t; for j € {1,2} and ¢1 | ca. Suppose further that the lead
power products t; and ta are coprime, that is, PolynomialLCM[t,ts] = t1ta.
Then SPoly[p1, pa] will reduce to zero and hence is superfluous.

Note that we are using SPoly,[p1,p2] in this case. While the divisibility
requirement for lead coefficients might seem unduly strong, one will observe
that the algorithm proceeds in such a way as to make coefficients small with
respect to Euclidean norm. Thus in practice this requirement seems not to
be terribly restrictive.

STRONG GROBNER BASES 187

Proof of Theorem 11. SPoly[p1,p2] = c1t1p2 — cataps = (p1 — r1)p2 — (p2 —
T9)p1 = rap1 — r1p2. As ¢ divides the head term of rop; while ¢5 does not,
and ty divides the head term of r1ps while t; does not, these do not collapse

further. But clearly rop; P10 and r1p2 220, so SPoly[p1,p2] — 0. O

THEOREM 12 (Buchberger’s criterion 2). Given p; = ¢jt; + r; with
HPP[p;] =t; for j € {1,2,3} where PolynomialLCM[t1,t2] is divisible by ts.
Suppose SPoly[p1,ps] and SPoly[pa,ps] have strong standard representations
(thus far these are the conditions for criterion 2 to be in effect in the field
case). If either ¢y | c3 | ca or cg|c1|ca then SPoly[pr,pa] will have a strong
standard representation and hence is superfluous.

Note that again we are working with SPoly,[p1,p2]. Obviously the roles
of p1 and ps can be interchanged. Moreover, while the divisibility conditions
again appear to be restrictive, in general one obtains a lot of polynomials with
a unit as lead coefficient, so these conditions are not uncommon relative to
their field case counterpart.

Proof of Theorem 12. Let t = PolynomialLCM[t1,t2]. Assume inductively
that if f and g have strong standard representations, and HPP[f] < ¢,
HPP[g] < t, then so does f + g.

Define power product multipliers u; ; = PolynomialLCM[t;,t]/t;. Then

Co
SPOIYLplvPZ] = C—U1,2p1 — U2,1P2-
1

First, we assume c3 | ¢1 | c2. Then SPoly[p1,ps] = u1 3p1 — i—iu&lpg and

C2
SPOIY[p27P3] = U2,3P1 — C—U372p3-
3

Since t3 | PolynomialLCM][t1, t2] we know that uq 3 | uq,2 and similarly us 3 |
ug,1. We thus may write

Co U1 2 U2,1
= L2 SPoly|[p1, p3] — —= SPoly|ps,
oL s oly[p1,ps] " oly[p2,ps]

)

_C2 Co U1,2 Co U2,1
= —U12P1 — ——U31P3 — { U1,2P1 — — — U3,2P3
C1 C3 U1,3 C3 U2,3

)

U2,3

s

Co U1,2 U2,1
= SPoly|[p1, ps] — p3< us;1 — u372)-
C3 u

s

Now U172t1 = U;2)1t27 ’U,173t1 = u371t3, and ’U,273t2 = U372t3. This implies
u1,2 _ u2,1t2 _ u21t2 s U2,1 _ u2t2
Ul = g Us = and similarly s U2 = T

thesized term vanishes, and so

. Hence, the paren-

Co U u
SPoly[p,pa] = =+~ SPoly(py, pg] — .= SPoly[pa, ps].

))

188 D. LICHTBLAU

Now use the hypothesis that each summand has a strong standard repre-
sentation with head power product smaller than . Then so does the sum.
The case where ¢; | ¢ | ¢z is similar. For the first step, one instead shows

Co U U
SPoly[p1,p2] = C—Zﬁ SPoly|[p1,ps] — ﬁ SPoly[p2,ps].

O

A more general treatment of this criterion may be found in [10], based
on generating sets of homogeneous syzygy modules. We use the version of
Theorem 12 version because it is simple to code; as it is in essence the usual
Buchberger criterion 2 one can adapt “standard” code for the field case with
only minor modification (as indeed is done in the Mathematica implementa-
tion).

One will note that the criteria above pertain to the second type of S-
polynomial, and naturally it would be nice to have a criterion for eliminating
as redundant an S-polynomial of the first type. There is such a criterion
implicit in Theorem 10.11 of [2].

THEOREM 13. Given p; = c;jt; + r; with HPP[p;] =t; for j € {1,2,3}
with t; ; = PolynomialLCM[t;,t;]. Suppose t3 | t12. Let {c,{a1,a2}} =
ExtendedGCDley, 2] and further suppose cs | c. In other words, the head

monomial of ps divides the head monomial of SPoly[py,ps] (the latter is top-
D-reducible, in the terminology of [2]). Then SPoly[pi,p2] is redundant.

Proof. Let u; ; =t;;/t; for j € {1,2,3}. Let ¢/c3 =d and t12/t3 =v.
Then
SPoly[p1,p2] = a1ui,2p1 + a2z 1p2 = cti2 + aiuy 271 + G2 172

Also
SPoly[p1, p3] = SPoly,[p1,ps]

= (e1t1 +r1)ur,s — (c1/cs)(ests +r3)us 1
=u1,3"m — (61/03)U3,1T3
and similarly
SPOIY[pQ,p?,] = U2,3T2 — (62/03)U372T3~

Now

Ul 2U ti2/t1)(t13/t
12U31 _ (t12/t1)(t1,3/t3) =t12/ts=v
uy 3 t13/t1

. . . u U
and a similar computation shows that % =wv. Also

1
alc—1+agc—2—d=—(a1c1 -i‘61202)_d:£ —d=0.
Cc3 C3 C3 C3

STRONG GROBNER BASES 189

Hence,

u U
SPoly[p1,p2] — dvps — a; # SPoly|[p1,ps] — a2 % SPoly[pa, ps]
1,3 :

s

= ct1,2 + a1U1 271 + AUz 172 — (ct1,2 + dors)

C1 U12U3.1 C2 U2 1U3,.2
— | 11,21 —aA1——— T3 | — | QU21T2 —Q2———— T3
€3 U1,3

C3 U2,3
C1 U1,2U3,1 C2 U2,1U3,2
= <a1—— +ayg——-"" — dv r3 = 0.

€3 U3 €3 U3
We have thus a strong standard representation of SPoly[p1,p2] and this
suffices to show that it is redundant. O

We now have our algorithm, and it is virtually the same as the Buchberger
algorithm for polynomial rings over fields. It is stated as follows. List all
pairs of polynomials, marking as processed all those that the criteria warrant.
Iteratively select a pair whose S-polynomial is not yet marked, reduce it, and
if the result is not zero, form new pairs. Again use the criteria to mark
redundant pairs. Continue this iteration until there are no more pairs to
process, at which point all S-polynomials can be reduced to zero. Termination
in a finite number of steps is proven, for example, as in [7], by noting that
Z[z1,...,2,] is Noetherian and hence an ascending chain condition applies to
its ideals.

One will note that our algorithm puts a certain emphasis on SPoly,, wherein
the lead coefficient is the GCD of the leading coefficients of the critical pair.
This is in contrast to algorithms in [1], [2], [10], [12]; where the emphasis is
more on SPoly, in which, as with the field case, one entirely kills off a lead-
ing coefficient. Given the dearth of available implementations, it is an open
question as to which approach is computationally more effective in general.

4. Some special cases

Before proceeding to examples, we will discuss an important special class
of Euclidean domains. While one can show that the theory developed above
carries over in a general way, for the specific and very important case where
our base ring is the set of univariate polynomials in over a (computable) field
F one can do better. Suppose we are given a set of polynomials in some set of
indeterminates over F[z]. One augments the indeterminates with x, extending
the term order so that every power of z is smaller than all power products
containing other variables. One next computes a Grobner basis for the input
in this setting of polynomials in one more variable over F. Theorem 4.5.12
in [1] shows that this is in fact a strong Grébner basis for the ideal over
the original base ring F[z] (this fact had also been mentioned in [7]). Our
experience is that the benefits of computing a basis over a field outweigh the
efficiencies developed for working over a Euclidean domain, hence we use this

190 D. LICHTBLAU

field computation tactic in Mathematica. We show applications to working
over such polynomial rings in the examples.

The ring Z,~» is an example of a finite-chain ring. For polynomials over
such a ring, we could use the results presented in [11]. They show, among
other things, that weak and strong Grébner bases for ideals over such rings
are equivalent. They also present a structure theorem for the univariate case
and apply it to cyclic codes. One can instead regard the ring as a quotient of
Z[z] and use the computational methods of this paper.

5. Examples

We first show some simple examples adapted from [1]. For purposes of
assessing speed, we note that all timings were done with version 9 of Mathe-
matica running on a 3.1 GHz Intel processor running under a 64 bit version
of the Linux operating system.

For the first example, we wish to compute a basis for an ideal in the polyno-
mial ring Z[v/—5][z,y]. Note that our base ring, Z[\/—5], is not a Euclidean
domain (or even a unique factorization domain). In such cases one may re-
sort to a common tactic of adding a new variable and defining polynomial
so that in effect we work over a quotient ring; in this example it will be
Z[z,y,a]/{a® +5}. So our base ring will be the integers and we have added
a variable and a polynomial relation equating that variable to v/—5 (up to a
conjugate, as these are indistinguishable to this method without further vari-
ables and defining polynomials). For this to work as desired, we must have the
new variable ordered lexicographically lower than all others. We then remove
the first polynomial from the basis, which, due to this ordering, is exactly the
defining polynomial for that algebraic extension element.

EXAMPLE 14. Rest[GroebnerBasis[{2zy — ay, (1 + a)z? — zy,o? + 5},
{z,y, a}, CoefficientDomain — Integers|]

25y + 10y — bya, 15y + 5y° + y? o, —25y + xy + 5y° + 1290,
622 + 10y + 5y? — 3ya, 22 — 25y + 5y° + z2a + 12ya.
The basis in that reference is a bit different due to different notions of
coefficient handling, but the one above serves the same purposes.
As a second example, we will find a basis for the ideal intersection {3z —
2,5y — 3} N{xy — 6} in Z[z,y]. This may be done as below. Note that we
again use and subsequently eliminate an auxiliary variable, this time ordered

lexicographically greater than the others (specifying it as the third argument
tells GroebnerBasis it is to be eliminated).

ExaMPLE 15. GroebnerBasis[Flatten[{w{3z — 2,5y — 3},
(1 — w){zy — 6}}], {z,y}, w, CoefficientDomain — Integers,
MonomialOrder — EliminationOrder]

{18 — 30y — 3zy + Hay?, 12 — 18z — 2zy + 327y, 6 — 6y — Tay + xy® + 2%y }.

STRONG GROBNER BASES 191

Again, we do not obtain the identical basis due to differences in basis
definition. Specifically, theirs does not have our third polynomial; this is
because they find a weak Grobner basis and that requires fewer polynomials.

To get some idea of algorithm speed, we now show a more strenuous com-
putation.

EXAMPLE 16. polys = {7x2y? + 8zy? + 3zz — 11,1122 + 42?2y + xy22 + 2,
522yz + 22 + 222 + 52, Teyz + 3zy + 5z + 4y + T};

Timing[gbdlex = GroebnerBasis[polys, {z, y, 2},
CoefficientDomain — Integers, MonomialOrder — DegreeLexicographic]]

{0.220000, {34475640417355562336236396270436281195926,
10898452513151823962606330508750762670219 + 2,
—6355322887725405337810105619887333184234 + y,
—14760987199637601090452154096210512593721 + x}}

A similar basis computed over the field of rationals is about two orders
of magnitude faster using the same hardware and software (the result, as
might be expected, is {1} because we started with more polynomials than
variables). So the fact that the Euclidean domain case takes almost two orders
of magnitude longer is not entirely a surprise insofar as the eventual result
contains much more information. If we remove the first polynomial, then the
tasks are in some sense more similar and correspondingly the relative time
ratio of computing over the rationals vs. the integers drops to under one order
of magnitude.

An application of finding bases over the integers was pointed out to the
author around 1996 by Dan Grayson (private communication), and in fact
was implemented by him in Mathematica around 1988 (using the Grébner
basis over integers algorithm from [6]). Given a system of n + 1 polynomials
in n unknowns, find a modulus m such that the system is exactly determined
modulo m, and return all solutions (which lie in (Z,,)™). With reference to
the previous example, the above system is seen to be exactly determined in
the quotient ring Z34475640417355562336236396270436281195926-

A related application is to do computations involving ideals defined over
quotient rings that may contain zero divisors. As an example we will find all
solutions in the ring Zsg72012170009 to the system below.

ExAMPLE 17. gb = GroebnerBasis[{5072012170009,
—4984359602099 + 2 — 3y? — 92, —1780431462965 + Txy + 5y° + 22,
—4585397367278 + 23 — 3y? + z — 1223},
{z,y, 2}, CoefficientDomain — Integers]
{5072012170009, 1174872829454 + 121735019622 — 1363165624472

+16549981374522% 4 9281813080022* — 2397953241995

192

D. LICHTBLAU

—16462385385832% — 9826869303252 — 1734356432441 28
—19283167245382° + 23841068297612'0 — 2266219400230 11
—1392454057432'2 + 895384068341 213 + 1619289564282 4
+21942046400342° — 12431724666902'¢ — 1196909984892z + =18,
2247545052503 + y + 788535951374~ + 22142301663422>
+9557101415432> + 2160238766386z — 24741946925422°
—168471636427825 + 215737075791627 — 10727257917222°
+11733301065072 — 10576479422802'° — 1511353993603 2"
+132762431204822 — 5810078141262'3 4+ 1772345363132214
—1850005196542° — 15386480345892'¢ — 456160565195217,
—899617339822 + z + 2209081769554z — 5096754501562
+5664385340912> + 1828943883971z — 17784878283592°
—11205291817002°% + 12388165522162" — 18987937432182°
+1286010808749z° + 8930199141532'° + 1728960555992
+18724115433802'2 + 1420313673322 — 8804547637642 4
—12028670578252"% — 19775894650472'¢ — 2210999439349}

To obtain solutions, one would proceed exactly as if working over a field.
Specifically, we first find roots of the univariate polynomial, then back sub-
stitute each solution to solve for the remaining variables. We show the first
step explicitly. This involves root finding in a quotient ring of the integers.
The principles behind this are well known (factor the modulus, find roots
modulo each prime factor, lift to accommodate powers of primes, use the
Chinese Remainder Algorithm to combine roots modulo powers of primes).
The “hard” step, computationally speaking, is often the factorization of the

modulus.

Roots[gb[[2]] == 0, z, Modulus — gb[[1]]]

gb=

z =99999||z = 1848935269876|| z = 3102255902823.

This functionality is now built into Mathematica, in the function Reduce:

Reduce[{5072012170009,

—4984359602099 + 22 — 3y — 92z, —1780431462965 + Ty + 5y° + 22,
—4585397367278 + 23 — 3y + 2 — 1223} ==,
{z,y, 2}, Modulus — 5072012170009)

{0.050000, (x = 7T7777&&y = 88888&& 2 = 99999)
(z = 1712760123092& &y = 3989577716979& & = = 1848935269876)||
(x = 2127801384642& &y = 3379908964470& &z = 3102255902823 }.

STRONG GROBNER BASES 193

Another area of application for Grobner bases over the integers is in com-
putations with finitely presented groups, as discussed in Chapter 10 of [13].
Among other tools one requires a module Grébner basis. Further applica-
tions include Hensel lifting of univariate polynomials, computation of matrix
Hermite and Popov normal forms when elements lie in a Euclidean domain,
bivariate modular polynomial factorization, and computing small generators
of ideals in quadratic number rings. We will illustrate these with numerous
examples in a separate report [9].

6. Summary

We have presented an algorithm for computing a strong Grobner basis over
a Euclidean domain that is essentially identical to Buchberger’s method for
the case where the base ring is a field. In particular, we have retained the
S-polynomial reduction approach as well as the Buchberger criteria for elim-
ination of redundant S-polynomials. Several basic examples were presented
to illustrate diverse applications of this technology for example, working over
quotient rings and solving nonlinear systems over rings. We show a number
of specialized applications of these bases, for example, to compute Hensel lifts
in a univariate polynomial ring and to find matrix Hermite and Popov normal
forms, in [9].

Acknowledgment. I thank an anonymous referee from an earlier draft for
pointing out several typographical errors in an earlier draft of this paper,
another for drawing my attention to the related work by Norton and Salagean,
and Ana Salagean for providing a preprint of their work. I also thank Dan
Grayson for discussing this topic with me many years ago.

REFERENCES

[1] W. Adams and P. Loustaunau, An introduction to Grébner bases, Amer. Math. Soc.,
Providence, RI, 1994. MR 1287608

[2] T. Becker, H. Kredel and V. Weispfenning, Grébner bases: A computational approach
to commutative algebra, Springer, London, 1993. MR 1213453

[3] B. Buchberger, Grobner-bases: An algorithmic method in polynomial ideal theory,
Chapter 6, Reidel Publishing Company, Dodrecht, 1985, pp. 1084-2322.

[4] S. Collart, M. Kalkbrener, and D. Mall, Converting bases with the Grobner walk,
J. Symbolic Comput. 24 (1997), 465-469. MR 1484492

[5] D. A. Cox, J. Little and D. O’Shea, Ideals, varieties, and algorithms: An introduction
to computational algebraic geometry and commutative algebra, 3rd ed., Undergraduate
texts in mathematics, Springer, New York, 2007. MR 2290010

[6] A.Kandri-Rody and D. Kapur, Algorithms for computing Grobner bases of polynomial
ideals over various Euclidean rings, EUROSAM, Springer, Berlin, 1984, pp. 195-206.
MR 0779126

[7] A. Kandri-Rody and D. Kapur, Computing a Grébner basis of a polynomial ideal over
a Euclidean domain, J. Symbolic Comput. 6 (1988), 37-57. MR 0961369

[8] D. Lichtblau, Grébner bases in Mathematica 3.0, Math. J. 6 (1996), 81-88; available
at http://library.wolfram.com/infocenter/Articles/2179/.

http://www.ams.org/mathscinet-getitem?mr=1287608
http://www.ams.org/mathscinet-getitem?mr=1213453
http://www.ams.org/mathscinet-getitem?mr=1484492
http://www.ams.org/mathscinet-getitem?mr=2290010
http://www.ams.org/mathscinet-getitem?mr=0779126
http://www.ams.org/mathscinet-getitem?mr=0961369
http://library.wolfram.com/infocenter/Articles/2179/

194 D. LICHTBLAU

[9] D. Lichtblau, Applications of strong Grobner bases over Fuclidean domains, Int. J.
Algebra 7 (2013), 369-390.

[10] H. M. Moller, On the construction of Grobner bases using syzygies, J. Symbolic Com-
put. 6 (1988), 345-359. MR 0988422

[11] G. H. Norton and A. Silagean, Strong Grobner bases and cyclic codes over a finite-
chain ring, Electron. Notes Discrete Math. 6 (2001), 240-250. MR 1985246

[12] L. Pan, On the d-bases of polynomial ideals over principal ideal domains, J. Symbolic
Comput. 7 (1989), 55-69. MR 0984271

[13] C. Sims, Computation with finitely presented groups, Cambridge Univ. Press, Cam-
bridge, 1994. MR 1267733

[14] I. Wolfram Research, Champaign, Illinois, Mathematica 9; available at http://www.
wolfram.com, 2012.

DANIEL LICHTBLAU, WOLFRAM RESEARCH, INC., 100 TRADE CENTRE DR, CHAMPAIGN,
IL 61820, USA

E-mail address: danl@wolfram.com

http://www.ams.org/mathscinet-getitem?mr=0988422
http://www.ams.org/mathscinet-getitem?mr=1985246
http://www.ams.org/mathscinet-getitem?mr=0984271
http://www.ams.org/mathscinet-getitem?mr=1267733
http://www.wolfram.com
mailto:danl@wolfram.com
http://www.wolfram.com

	Introduction
	Notation and deﬁnitions
	Main results
	Some special cases
	Examples
	Summary
	Acknowledgment
	References
	Author's Addresses

