Open Access
Spring 2011 Curvature integral estimates for complete hypersurfaces
Hilário Alencar, Walcy Santos, Detang Zhou
Illinois J. Math. 55(1): 185-203 (Spring 2011). DOI: 10.1215/ijm/1355927033

Abstract

We consider the integrals of the $r$-mean curvatures $S_r$ of a complete hypersurface $M$ in the space form $\mathcal{Q}_c^{n+1}$. Among other results, we prove that $\int_MS_r\,dM=\infty$ for a complete properly immersed hypersurfaces in a space form with $S_r\geq0$, $S_r\not\equiv0$ and $S_{r+1}\equiv0$ for some $r\le n-1$.

Citation

Download Citation

Hilário Alencar. Walcy Santos. Detang Zhou. "Curvature integral estimates for complete hypersurfaces." Illinois J. Math. 55 (1) 185 - 203, Spring 2011. https://doi.org/10.1215/ijm/1355927033

Information

Published: Spring 2011
First available in Project Euclid: 19 December 2012

zbMATH: 1260.53110
MathSciNet: MR3006685
Digital Object Identifier: 10.1215/ijm/1355927033

Subjects:
Primary: 53C42

Rights: Copyright © 2011 University of Illinois at Urbana-Champaign

Vol.55 • No. 1 • Spring 2011
Back to Top