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OPTIMAL STOPPING FOR DYNAMIC CONVEX
RISK MEASURES

ERHAN BAYRAKTAR, IOANNIS KARATZAS AND SONG YAO

ABSTRACT. We use martingale and stochastic analysis techniques
to study a continuous-time optimal stopping problem, in which
the decision maker uses a dynamic convex risk measure to evalu-
ate future rewards. We also find a saddle point for an equivalent
zero-sum game of control and stopping, between an agent (the
“stopper”) who chooses the termination time of the game, and an
agent (the “controller,” or “nature”) who selects the probability
measure.

1. Introduction

Let us consider a complete, filtered probability space (2,F,P), F =
{Fi}+>0, and on it a bounded, adapted process Y that satisfies certain regu-
larity conditions. Given an arbitrary stopping time v of the filtration F, our
goal is to find a stopping time 7. (v) € S, ¢ which satisfies

(1.1) essinf pu (V) = pur ) (V)5 P

Here S, 1 is the set of stopping times v satisfying v <~ < T, P-a.s., and
the collection of functionals {p,  : L=(F,) = L>®(F,)}vesy ryes,.» i a “dy-
namic convex risk measure” in the sense of [7]. Our motivation is to solve
the optimal stopping problem of a decision maker who evaluates future re-
wards/risks using dynamic convex risk measures rather than statistical expec-
tations. This question can also be cast as a robust optimal stopping problem,
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in which the decision maker has to act in the presence of so-called “Knightian
uncertainty” regarding the underlying probability measure.

When the filtration F is generated by a Brownian motion, the dynamic
convex risk measure admits the following representation: There exists a suit-
able nonnegative function f, convex in its spatial argument, such that the
representation

P (&) —esssupEQ[ / f(s,69 ds‘]—'l,], P-a.s.
QeQ,

holds for all £ € L>°(F,). Here, Q, is the collection of probability measures

@ which are equivalent to P on F, equal to P on F,,, and satisfy a certain

integrability condition; whereas 9 is the predictable process whose stochastic

exponential gives the density of @@ with respect to P. In this setting, we

establish a minimax result, namely

(1.2) V(v )—esssup(essmeQ {Y +/ f(5,09) ds D

veS, v \ REQy

—essmf(esssupEQ [Y —|—/ f(s, HQ ds }),

QeEQ, ~ES, T

and construct an optimal stopping time 7(v) as the limit of stopping times
which are optimal under expectation criteria—see Theorem 3.9. We show that
the process {1(;>,1V (7(v) At) }ejo,r) admits an RCLL modification V" with
the property that for any v € Sp.r, we have VY =105 V(T(v) A7), P-as.

We show that the stopping time 7y (v) = 1nf{t €y, T]: VP =Y,} attains the
infimum in (1.1). Finally, we construct a saddle point for the stochastic game
n (1.2).

The discrete-time optimal stopping problem for coherent risk measures
was studied by [11, Section 6.5] and [5, Sections 5.2 and 5.3]. The papers
[6] and [14], on the other hand, considered continuous-time optimal stopping
problems in which the essential infimum over the stopping times in (1.1) is
replaced by an essential supremum. The controller-and-stopper problem of
[20] and [15], and the optimal stopping for nonlinear expectations in [1] and
[2], are the closest in spirit to our work. However, since our assumptions
concerning the random function f and the set Q, are dictated by the rep-
resentation theorem for dynamic convex risk measures, the results in these
papers cannot be directly applied. In particular, because of the integrability
assumption that appears in the definition of Q, (Section 1.1), this set may
not be closed under pasting; see Remark 3.8. Moreover, the extant results on
controller-and-stopper games would require that f and the #%’s be bounded.
We overcome these technical difficulties by using approximation arguments
which rely on truncation and localization techniques. On the other hand, in
finding a saddle point, the authors of [15] used the weak compactness of the
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collection of probability measures, in particular the boundedness of §9’s. We
avoid making this assumption by using techniques from Reflected Backward
Stochastic Differential Equations (RBSDEs). In particular, using a compari-
son theorem and the fact that V' can be approximated by solutions of RBSDEs
with Lipschitz generators, we show that V solves a quadratic RBSDE (QRB-
SDE). The relationship between the solutions of QRBSDEs and the BMO
martingales helps us construct a saddle point. We should point out that the
convexity of f is not needed to derive our results; cf. Remark 3.1.

The layout of the paper is simple. In Section 2, we recall the definition of
the dynamic convex risk measures and a representation theorem. We solve
the optimal stopping problem in Section 3. In Section 4, we find a saddle
point for the stochastic controller-and-stopper game in (1.2). The proofs of
our results are given in Section 5.

1.1. Notation and preliminaries. Throughout this paper, we let B be
a d-dimensional Brownian Motion defined on a complete probability space
(Q,F,P), and consider the augmented filtration generated by it, that is,

F={F 2 o(o(Bs;s€[0,t])) UN)

where N is the collection of all P-null sets in F. .

We fix a finite time horizon T > 0, denote by & (resp. &) the predictably
(resp. progressively) measurable o-field on © x [0,T], and let So.r be the
set of all F-stopping times v such that 0 <v <T', P-a.s. From now on, when
writing v <+, we always mean two stopping times v,y € S 1 such that v <+,

}tZO’

P-a.s. For any v <+, we define S, 2 {o€8Syr|lv<o<~,P-as.}andlet S,
denote all finite-valued stopping times in S, .
The following spaces of functions will be used in the sequel:
e Let G be a generic sub-o-field of . L°(G) denotes the space of all real-
valued, G-measurable random variables.
A A
o L2(G) ={£€L%G) : [I€]loc = esssup,,eq [€(w)] < oo}
e L.2.[0,7] denotes the space of all real-valued, F-adapted processes.

A A
o LF[0, 7] ={X € Lg[0, 77 : || X|loc = esssup(, ,epo.r)x0 [Xi(w)[ < oo}

e CR[0,T] 2 {X € LE[0,T] : X has continuous paths}, p=0,c0.
A
[ ] C%[O,T] = {X S C%[O,T] : E(supte[O’T] |Xt|2) < OO}

e HZ([0,T];R?) (resp. ﬂ%([O,T];Rd)) denotes the space of all Re-valued,
F-adapted predictably (resp. progressively) measurable processes X with
E[] X2 dt < oo.

e H([0,7];RY) denotes the space of all R%-valued, F-adapted predictably
measurable processes X with esssup(, .,)co,77xq [Xt(w)| < oo,

e Kg[0,T] denotes the space of all real-valued, F-adapted continuous increas-
ing processes K with Ky =0.
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Let us consider the set M® of all probability measures on (£2,F) which
are equivalent to P. For any @ € M*€, it is well-known that there is an
R¢valued predictable process 9 with fOT \9?|2 dt < 0o, P-a.s., such that the
density process Z? of Q with respect to P is the stochastic exponential of <,
namely,

t 1 t
ZtQ:@@(QQoB)t:exp{/ 9§st—§/ |95Q|2ds}, 0<t<T.
0 0

We denote 23, 2 72/79 = exp{[] 69 dB, — 1 [7(6Q|?ds} for any v < .

Moreover, for any v € Sy v and with the notation [0, 1/[[é {(t,w) €[0,T] x Q:
t <v(w)} for the stochastic interval, we define

P, 2{QeM:Q=PonF,)}
={QeM°: 0% (w)=0,dt @ dP-a.e. on [0, [},

{QEP EQ/ f(s,09) ds<oo}

L A
Moreover, we use the convention inf{@} = oco.

2. Dynamic convex risk measures

DEFINITION 2.1. A dynamic convex risk measure is a family of functionals
{pv,y : L®(Fy) — L=(F,)} <y which satisfy the following properties: For
any stopping times v <+ and any L*°(F,)-measurable random variables &, n,
we have

o “Monotonicity”: p, (&) < pu(n), P-as. if £ >n, P-as.

o “Translation Invariance”: p,~(§+1n) = pu~(§) —n, P-as. if n € L>(F,).
o “Convezity”: py(A+ (1 —=Nn) < Apy (&) + (1 —AN)pu~(n), P-a.s. for any
A€ (0,1).

“Normalization”: p, ~(0) =0, P-a.s.

The paper [7] provides a representation result, Proposition 2.2 below, for
dynamic convex risk measures {p, , }»<~ that satisfy the following properties:

(A1) “Continuity from above”: For any decreasing sequence {&,} C
L>(F,) with ¢ 2 lim, oo | & € L®(F,), it holds P-a.s. that
lim,, oo T pu,v(&n) = pu,'y(g)-

(A2) “Time Consistency”: For any o € S, ., we have: p, ,(—po(§)) =

puv~(€), P-as.
(A3) “Zero-One Law”: For any A € F,, we have: p,,(14§) = 1ap,(£),
P-a.s.
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(A4) essinfec 4, Ep[¢|Fi] =0 P-a.s., where A, 2 {€ €L (Fr): pr.r(E) <0}

We can think of p,(§) as a measure of the risk associated with assuming at
time v a liability £ € LO(F,), whose true size gets revealed only at time v > v.

PROPOSITION 2.2. Let {p, ~}u<~ be a dynamic convex risk measure satis-
fying (A1)—(A4). Then for any v <+~ and £ € L>(F,), we have

(2.1) pu~ (&) —esssupEQ[ / f(5,09) ds‘]—'l,}, P-a.s.
QE v

Here f:[0,T] x Q x R? — [0, 00] is a suitable measurable function, such that

(§1) f(-,+,2) is predictable for any z € R%

(f2) f(t,w,-) is proper convex, and lower semi-continuous for dt ® dP-a.e.
(t,w) €[0,T] x

(f3) f(t,w,0)=0, dt ® dP-a.e.

We refer to [22], page 24 for the notion of “proper convex function,”
and review some basic properties of the essential extrema as in [21, Propo-
sition VI-1-1] or [11, Theorem A.32].

LEMMA 2.3. Let {&}ier and {n;}iez be two classes of F-measurable ran-
dom variables with the same index set I.

(1) If &<(=)m, P-as. holds for all i € I, then esssup;cz& <
(=)esssup,cr i, P-a.s.

(2) For any A € F, it holds P-a.s. that esssup;cr(1a& + 1aen;)
1gesssup;cr & + Lacesssup,erni.  In particular, esssup;cr(1a&;) = 1a X
esssup;ez i, P-a.s.

(3) For any F-measurable random variable v and any A >0, we have

esssup(A\; +v) = Aesssupé; +v, P-a.s.
ieT i€T

Moreover, (1)—(3) hold when we replace esssup;c7 by essinfcr.

3. The optimal stopping problem

In this section, we study the optimal stopping problem for dynamic convex
risk measures. More precisely, given v € Sy, we seek an optimal stopping
time 7.(v) € Sy,r that satisfies (1.1). We shall assume throughout that the
reward process Y € Lg°[0, T is right-continuous and Qy-quasi-left-continuous:

. . . . . A
to wit, for any increasing sequence {v;, }nen in So.r with v =lim, o v, €
So,1, and any @ € Qp, we have

h—m EQ[Yun‘}—m] S EQ[YV|‘7:V1]7 P-as.

n—o0
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In light of the representation (2.1), we can alternatively express (1.1) as a
robust optimal stopping problem, in the following sense:

(3.1) esssup(ngsmeQ [Y +/ f(s,69) ds ])

YES,, T

Tv (V)
_gggmeQ[ T*(l,)-i-/ £(s,69) ds‘]—"}

REMARK 3.1. We will study the robust optimal stopping problem (3.1) in a
setting more general than alluded to heretofore: From now on, we only assume
that f: [0,T] x 2 x R — [0,00] is a 2 @ B(R?)/%(|0, 00])-measurable func-
tion which satisfies (3); that is, the convexity property (f2) is not necessary
for solving (3.1).

In order to find a stopping time which is optimal, that is, attains the
essential supremum in (3.1), we introduce the lower- and upper-value, re-
spectively, of the stochastic game suggested by (3.1), to wit, for every v €
807'1"1

V(v )éesssup<e<§smeQ[Y +/ f(s, QQ ds })7

YESL, T

V(v )éesmnf(esssupEQ[Y —|—/ f(s5,69) ds })

QEQ, YESL.T

In Theorem 3.9, we shall show that the quantities V(v) and V(v) coincide at
any v € Sg,r, that is, a min-max theorem holds; we shall also identify two
optimal stopping times in Theorems 3.9 and 3.13, respectively.

Given any probability measure @ € Qg, let us introduce for each fixed
v € Spr the quantity

(3.2) R°(v) éesssupEQ [YC +/ f(s,09)ds|F, }
CESy, T
=esssup Eg [ng,, +/ f(5,09) ds’]:] >
o€So, T v

and recall from the classical theory of optimal stopping [see [8] or [16, Appen-
dix D]] the following result.

PROPOSITION 3.2. Fiz a probability measure Q € Qp.
(1) The process {R%(t)}iejo,r) admits an RCLL (right-continuous, with
limits from the left) modification R?° such that, for any v € So 1, we have

(3.3) RZ°=R9(v), P-as.
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(2) For every v € So.r, the stopping time 79(v) 2 inf{t € [v,T]: RZ° =

Yi} €S, 1 satisfies for any v €S, 1o,

— Eq _RQ(TQ( ) + /Q(V)f(s 9Q ds‘]-"}

)
(3.4) R9(v) = Eq Yiew) +/ f(s5,62)ds

:EQ / £(5,69) ds‘]—‘u}, P-a.s.

Therefore, T9(v) is an optzmal stopping time for maximizing the quantity
EolYe + fff(s,&?)dﬂfy] over ( €S, 1.

For any v € Sp,r and k € N, we introduce the collection of probability
measures

Q2 {QeP, : 02wV f(t,w,02(w)) < k,dt ® dP-a.e. on [, T]}.

REMARK 3.3. It is clear that Q% C Q,; and from (f3) one can deduce that
for any v <~ we have

Q,CQ, and Q'CQF VkeN.

Given a @ € Q, for some v € Sy 1, we truncate it in the following way: The
predictability of the process 89 and Proposition 2.2 imply that { f (¢, 9? ) }eelo,T]
is also a predictable process. Therefore, for any given k € N, the set

(85) AL E{(tw) € T]: R W)V f(tw, 0P (W) Sk} e 2

is predictable. Then the predictable process §2" 21 42, 69 gives rise to a

probability measure Q*** € QF via the recipe dQ"’ = 5(069” "o B)rdP. Let
us define the stopping times

t
ggéinf{te[aﬂ:/|9§9|2ds>m}/\T, m € N.
0

There exists a null set N such that, for any w € Q\ N, we have 0@ (w) =T
for some m =m(w) € N. Since Efoa’?‘ 1092 dt < m holds for each m € N, we
have |09 (w)| < oo, dt @ dP-a.e. on [0,0%].

As (Uppenl0,02]) U ([0,7] x N) = [0,T] x €, it follows that |0f (w)| < oo
holds dt ® dP-a.e. on [0,T] x Q. On the other hand, since @ € Q, we have
Eq f f(s,69)ds < oo, which implies 1y, 79 (¢, w) f (¢, w, 0% (w)) < oo holds dt®
dQ@-a.s., or equlvalently dt ® dP-a.e. Therefore, we see that

(3.6) kh—g)lo T ].ASk = 1,17, dt ® dP-a.e.
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For any v € Sy 7, the upper value V(v) can be approximated from above
in two steps, presented in the next two lemmas.

LEMMA 3.4. Let v e Sor. (1) For any v € S, we have
¥
(3.7) essinf Eg [Yﬁ/y f(s,09) ds(f]
khm l(gsmeQ [Y +/ f(s, HQ ds’]—'l,], P-a.s.
—00 9] v

(2) It holds P-a.s. that

3.8 V(v) =essinf R?(v) = 1 f R?
(3.8) (v) =essinf R¥(v) kggolegzlgn (v).

LEMMA 3.5. Let k€N and v € Sy 1.
(1) For any v € S, there exists a sequence {Q)*}en C OF such that

(3.9) egsmeQ [Y +/ f(5,69) ds ]
€Q

n—oo

= lim lEQl.k {Yw—i—/ f(s,@?;’,’k)ds‘]:,,], P-a.s.

(2) There exists a sequence {lek)}neN C QF such that

(3.10) eszignkm@(y):nl% LR (1), P-as.

Let us fix v € So 7. For any k € N, the infimum of the family {79 (V) }gear
of optimal stopping times in Proposition 3.2 can be approached by a decreas-
ing sequence in this family. As a result, the infimum is also a stopping time.

LEMMA 3.6. Let v e Sy and k € N. There exists a sequence {Q%k)}neN C
Q’,j such that

7 (V) 2 ess infr?(v) = lim | 7O (v), P-as.
QeQk n—o0

in the notation of Proposition 3.2, thus 1,(v) € S,.r.

Since {QF} ey is an increasing sequence, {71, (v) }xen is in turn a decreasing
sequence. Hence,

(3.11) ()& lim | 7(v)

defines a stopping time in S, 7. The family of stopping times {7(v)},es,
will play a crucial role in this section.
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The next lemma, is concerned with the pasting of two probability measures.

LEMMA 3.7. Given v € Sy r, let @ € QF for some k€ N. For any Q € Q,
and v € S, 1, the predictable process

JAVAN ~
(3.12) 07 2 11anb2 + 1150072, t€[0,7]

induces a probability measure Q' € Q,, by dQ’ 2 éa(GQ' e B)rdP. If Q belongs
to QF, so does Q'. Moreover, for any o € Sy 1, we have

(3.13) R = R?(¢) = R%(¢) = RY®, P-as.

REMARK 3.8. The probability measure @’ in Lemma 3.7 is called the past-
ing of @ and Q; see, for example, Section 6.7 of [11]. In general, Q, is not
closed under such “pasting.”

The proofs of the following results use schemes similar to the ones in [15].
The main technical difficulty in our case is mentioned in Remark 3.8. More-
over, in order to use the results of [15] directly, we would have to assume
that f and the #%’s are all bounded. We overcome these difficulties by using
approximation arguments that rely on truncation and localization techniques.

First, we shall show that at any v € Sy 7 we have V. (v) =V (v), P-a.s.

THEOREM 3.9 (Existence of value). For any v € So 1, we have

T(v)
(3.14) V()= egzlnfEQ[ () —|—/ f(s,09 ds‘}' }

=V()>Y,, P-as.

Therefore, the stopping time T(v) of (3.11) is optimal for the robust optimal
stopping problem (3.1) (i.e., attains the essential infimum there).

We shall denote the common value in (3.14) by V(v) (=V(v) =V (v)).
PROPOSITION 3.10. For any v € So,r, we have V(1(v)) =Y,(,, P-a.s.

Note that 7(r) may not be the first time after v when the value process co-
incides with the reward process. Actually, since the value process {V (t)}sc(0,1
is not necessarily right-continuous, the random time inf{t € [v,T]: V() =Y;}
may not even be a stopping time. We address this issue in the next three
results.

PROPOSITION 3.11. Given v € Sor, Q € Q,, and v €S, (), we have

(3.15) Fo [V(fy)—i—/:f 5,69) ds‘]—"} SV(W), P-us
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LEMMA 3.12. For any v,7,0 € So, 7, we have the P-a.s. equalities

oVv
(3.16) | Y ess mf Eq [ e —|—/ f(5,09)ds ,,]
oVy
=1y essmeQ{ Ve +/ f(s, 9Q ds‘f]
¥
and
(317) l{u:'y}v(y) = 1{V:’Y}V(7)

Next, we show that for any given v € So 7, the process {1{;>,}V(7(v) A
t) }te[o,r) admits an RCLL modification VO As a consequence, the first time
after v when the process V%" coincides with the process Y, is an optimal
stopping time for the robust optimal stopping problem (3.1).

THEOREM 3.13 (Regularity of the value). Let us fiz a stopping time v €
So,r-

(1) The process {1y> V(T(V) At)}ecjo,r) admits an RCLL modification
VO such that, for any v € So 7
(3.18) VY =105,V (T(v) A7), P-as.

(2) Consequently,

(3.19) () Einf{t € v, T]: V¥ =Yy}
is a stopping time which, in fact, attains the essential infimum in (3.1).

We should point out that, in order to determine the optimal stopping
time in (1.1), knowledge of the function f in the representation (2.1) is
not necessary. Indeed, let the p-Snell envelope be the RCLL modification
of esssup. s, . (—pv~(Y5)), v € So . From our results above, the first time

after v that the p-Snell envelope touches the reward process Y is an optimal
stopping time; this is consistent with the classical theory of optimal stopping.

4. The saddle point problem

In this section, we will contruct a saddle point of the stochastic game in
(1.2). As in the previous section, we shall assume here that f: [0,7] x € x
RY — [0,00] is a & ® B(R?)/%(]0,00])-measurable function which satisfies
(f3). For any given @ € Qg and v € Sy 1, let us denote

YQAY—#/stQ and V(v /fseQ

DEFINITION 4.1. A pair (Q*,0.) € Qo X So,r is called a saddle point for
the stochastic game suggested by (3.1), if for every @ € Qy and v € Sy r we
have

(4.1) Eq-(Y,?") < Eq-(Y;?) < Eq(Y}).
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THEOREM 4.2 (Sufficient conditions for a saddle point). A pair (Q*,04) €
Qo X So,1 is a saddle point for the stochastic game suggested by (3.1), if the
following conditions are satisfied:

(i) Y,. = R (0,), P-a.s.;
(ii) for any Q € Qo, we have V(0) < Eg[V®(0.)];
(iit) for any v € Sy, , we have VO (v) = Eg«[VQ (0.)|F,], P-a.s.

To construct a saddle point, we need the following two notions.

DEFINITION 4.3 (Bounded mean oscillation). We call Z € ﬁ%([O,T];Rd) a
BMO (short for Bounded Mean Oscillation) process if

T 1/2
EU |Zs2ds’]-}]

When Z is a BMO process, Z e B is a BMO martingale; see, for example,
[17].

DEFINITION 4.4 (BSDE with reflection). Let h: [0,T] x 2 x R x R = R
be a P x B(R) x B(RY) ) B(R)-measurable function. Given S € C%[0,T] and
¢ € LO(Fp) with € > Sy, P-a.s., a triple (T, Z, K) € C%[0, T] x HZ(0, T); R%) x
Kg[0,7T] is called a solution to the reflected backward stochastic differential
equation with terminal condition £, generator h, and obstacle S (RBSDE
(&, h,S) for short), if P-a.s., we have the comparison

< 00.
oo

A
[ Z][Bmo = sup
TESo, T

T T
stgrt:@r/ h(s,Fs,Zs)ds+KT—Kt—/ Z,dB,, tel0,T),
t t

and the so-called flat-off condition

T
/ 1{F5>Ss}sz :O, P-as.
0

In the rest of this section, we shall assume that the reward process Y €
Lg°[0, 7] is continuous and that the function f: [0,7] x Q x R? — [0, oc] sat-
isfies the following additional conditions:

(H1) For every (t,w) € [0,T] x 2, the mapping z — f(t,w, z) is continuous.

(H2) It holds dt ® dP-a.e. that

ft,w,2) >elz = Te(W))> =€ VzeR™L
Here, € > 0 is a real constant, Y is an R?valued process which satisfies
A
1T [loc = esssup(, w)epo.ryxq | Te(w)] < oo, and £> ¢T3,
(H3) For any (t,w,u) € [0,T] x  x R%, the mapping z — f(t,w, z) + (u, 2)

attains its infimum over R? at some z* = z*(¢,w,u) € R?, namely,

(4.2) Fltwu) 2 inf (f(t,w.2) + (u.2))
= f(t,w, 2" (t,w,u)) + (u, z*(t,w,u)).
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Without loss of generality, we can assume that the mapping z* : [0,7] x Q x
R? — RY is & ® B(R?)/%(R?)-measurable thanks to the Measurable Selec-
tion theorem [see, e.g., Lemma 1 of [3], or Lemma 16.34 of [10]]. We further
assume that there exist a nonnegative BMO process 1 and a M > 0 such that
for dt ® dP-a.e. (t,w) € [0,T] x Q

|Z*(t7wau)|§7pt(w)+M|U| VUERd.

EXAMPLE 4.5. Let A >0 and let A, YT € H ([0, T];RY) with Ay(w) >e >0,
dt ® dP-a.e. Define

ft,w,2) éAt((,u)(|z = Te(w)[P = T (w)PT) V(tw,z) €[0,T] x Q x R™

Clearly, fT = fVv0is a Z ® Z(R?)/%(|0,c])-measurable function that sat-
isfies (f3) and (H1). It turns out that f* satisfies (H2), since dt ® dP-a.e. we
have that

Frtw,2) > ftw,2) 2 M) (|2 = Te(w)[* = 1) = Ag(w)| Te(w) 2
> el = To(w)? = [Allo L+ [ITI3EY) V2 eR™
For any (t,w,u) € [0,7] x  x R? the gradient
Vo (f(t,w,2) + (u,2)) = (24 XAy (w)|z — Tt(w)|>‘(z —Ty(w)) +u Vze R,

is null only at 2(t,w,u) = —[(2 + )\)At(u))]fl%A \u|71+¢*u + Ti(w), where the
mapping z — f(t,w,2) + (u,2) attains its infimum over RY. When |u| >

re(w) 2 (2 4+ M)A ()| Te(w) [+, we have
Atwu) € AZ [z eRY: |2 — Ty(w)] > [Te(w)]}.
It follows that
(48) I (£ (00,2) 0, 21) < 200, + (o 2(0.00)
( At w )) (u, 2(t,w, u))
( (t,w (u z))

1€n]§d( (t,w,2) + (u, 2)).

On the other hand, when |u| < r,(w) or equivalently 2(¢,w,u) ¢ A, the gradient
V. (f(t,w,z) + (u,z)) #0 for any z € A, which implies that the mapping z —
f(t,w,2) + (u,z) cannot attain its infimum over A at an interior point of A.
Thus,

f = inf = inf .
Zlg (f(t,w,2) + (u,z)) Zle%A(f(t,w, z) + (u, 2)) Z16118A<u, z)
Then it follows that

Zjelrlﬂ{d(f+(t7w,z) + (u,2)) = Zienf (u,z) A zuelf (f(t,w,2) + (u,2)) = zign%(u,z).
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The latter infimum is attained uniquely at some Z(t,w,u) € A¢, which together
with (4.3) implies that
25 (tw, 1) = 1w >r )} 2 (6w, w) + Ly <r ()} 2(E W, 0).
Therefore, f1 satisfies (H3), since for dt @ dP-a.e. (t,w) € [0,T] x Q we have
1
|2 (tw,u)| < [2(tw,u)] + [t w,w)] < (24 Ne) ™7 [u] 5 +3]| T o
_a 1
<((24+Ne) Ful+ (24 Ne) ™ +3|| Tl Vue RY.

REMARK 4.6. The “entropic” risk measure with risk tolerance coefficient
r > 0, namely

(&) Erlog{E[e *¢|F,]}, €€L>(F),

is a typical example of a dynamic convex risk measures satisfying (A1l)—(A4).

The corresponding f in (2.1) is f(z) = 5|z|?, z € R%.

EXAMPLE 4.7. Let b', b? be two real-valued processes such that —w <
bH(w) <0< b2 (w) < w, dt @ dP-a.e. for some @ > 0. Let ¢ : [0, T]x QxR — R
be a & @ B(R)/AB(R)-measurable function that satisfies the following two
assumptions:

(i) For any (t,w) € [0,T] x Q, o(t,w,-) is a bijective locally-integrable func-
tion or a continuous surjective locally-integrable function on R.
(ii) For some €1,e9 > 0, it holds dt ® dP-a.e. that

> (2612 + bj (w)) VO, if >0,
o(t,w, ) 5 .
< (2e2z + b} (w)) AO, if 2 <O0.

Then f(t,w,z) 2 Jg o(t,w,x)dz, z €R defines a & @ B(R)/%([0,0])-meas-
urable nonnegative function that satisfies (f3) and (H1). Let ¢ =&1 Aey. For

dt ® dP-a.e. (t,w) € [0,T] x Q, if 2> 0, then

ft,w,z) > /OZ (25136 + b% (w)) de =¢e,2° + b% (w)z

2 2
>el —wr=c¢ Z—E _z.
= 2e 4e’

on the other hand, if z <0, then

0 0
f(t,w,z):f/ @(t,w,z)de—/ (2802 + b} (w)) da

=222 + 0¥ (w)z > 2% + w2
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Thus, it holds dt ® dP-a.e. that f(t,w,z) > Le(z — 2)2 — 3= that is, (H2)
is satisfied.

For any (t,w,u) € [0,T] x Q x R, since £ (f(t,w,2) +uz) = p(t,w,z) + u,
the mapping z — f(t,w,z) + uz attains its infimum over R at each z € {z €
R: p(t,w,z)=a}. Thus o' (t,w,z) < 2*(t,w,u) < ¢ (t,w,x), where

o= (t,w, ) 2 inf{zeR: p(t,w,z) =z}
and
e (tw, ) 2 sup{z € R : o(t,w,z) =z}
It is clear that o(t,w, o '(t,w,z)) =z and go(t,w,apf(t,w,x)) =zx. For
dt @ dP-a.e. (t,w) €[0,T] x Q and u € R, if p~'(¢,w,x) > 0, then
—u= (p(t, w, 9071(15’ W, 7’(1,)) > 251Q0:1(t7wv ‘T) + b% (w)v
which implies that 0 < ¢! (t,w,z) < ~(Jul + @). On the other hand, if
¢_'(t,w,x) <0, one can deduce that — 2= (Ju| + @) < ¢ (t,w,z) < 0 by a sim-
ilar argument. Hence, |¢~*(t,w,x)| < 2 (Ju| + @). Similarly, this inequality
also holds for ' (¢,w, x), thus for 2*(t,w,u). Asaresult, (H3) is also satisfied.
One can easily deduce from (H2) and (f3) that dt ® dP-a.e.
1

;EW TR — < Ftw,u) <0 VueRY

which shows that f has quadratic growth in u. Thanks to Theorems 1 and
3 of [19], the RBSDE (Y7, f,Y) admits a solution (T',Z,K) € Cg[0,T] x
HZ ([0, T); RY) x Kg[0, 7).

In fact, Z is a BMO process. To see this, we set £ 2 L v (T2 + ¢). For
any v € So.r, applying Ito’s formula to e~ we get

- T o
674KF"+8I€2/ 674/§F5 Zs‘zds
v

T - T o
= YT _ 45/ 6_4“st(s7ZS) ds — 4&/ e K

T = o~
+4k / e~ 4 s Z_dB,

T T

<e YT 4 452/ e 4kTs (1+ \§S|2) ds + 4&/ e‘“fsgs dB;.

v v

Taking conditional expectations in the above expression, we obtain
_ T _ T o
e“'rleU |Z,|*ds f,} gE[/ 64“F5|Zs|zds‘fu}
v 1%

1 ~
472E1[674K1/T |fy] + 64NHFHOQT
K

<
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which implies that || Z|zmo < €4RH1:H°°($ +T)1/2,
Since the mapping z* : [0,7] x Q@ x R? — R? is &2 @ Z(R?)/%(R¢)-meas-
urable (see (H3)),
(4.4) 0 (W) 2 2 (tw, Zi(w)), (t,w)€[0,T] x Q
is a predictable process. It follows from (H3) that for any v € [0,T]

U 017 ds|F, }<2EU W2 ds| F }+2M2 [/jgszds

which implies that 6* is a BMO process.

Fix v € Sy r. Since ;" 2 150307, t €[0,7] is also a BMO process,
we know from Theorem 2.3 of [17] that the stochastic exponential {&'(8*" o

fy] , P-as.,

B)t}iepo,r) is a uniformly integrable martingale. Therefore, dQ*" 2 E(60Y e
B)7 dP defines a probability measure @Q** € P,. As

F(5,2) = f(5,2%(5, 25)) + (24, 2" (5, Z5)) = f(5.0) + (Z,,60%), dt®dP-a.e.

by (4.2), (4.4), and the Girsanov theorem, we can deduce
T

(4.5) Ty = Vi + / [£(5,02%) + (20, 07)] ds

Vi

+ Kr— Koyt — / Z,dB,
—YT+/ fSQ*Vds—&—I?T—I?VVt

—/ Z,dBY"", tel0,T],
t

where B®™" is a Brownian Motion under Q*". Letting t = 0 and taking the
expectation Eg«» yield that

Fo- / F(5,07%) ds < Egeur (T — V) < 2| T|oc
thus Q* € Q,. The lemma below shows that I' is indistinguishable from
RP™:0 on the stochastic interval [v,T].
LEMMA 4.8. Given v € Sy.r, it holds P-a.s. that
(4.6) I, =RY"Y vieT).
Let k€N and Q € QF. Tt is easy to see that the function hg(s,w, 2) =

f(s,w,09(w))+ (2,09 (w)) is Lipschitz continuous in z: to wit, for dt ® dP-a.e.
(t,w) €[0,T] x £, it holds for any z, 2’ € R? that

Iha(s,w,2) — ha(s,w, )] =|(z = 2/,02)| < [69] - |2 — /| < k|2 — 2.
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Moreover, we have

T T T
E/ \hQ(s,O)Fds:E/ | £ (s, GQ)|2ds—E/ |£(5,09)2ds < k*T.
0 0 v

Theorem 5.2 of [9] assures now that there exists a unique solution (I'?, Z%,
K@) € C[0,T] x H&([0,T);R?) x Kg[0,T] to the RBSDE(Yr, hg,Y). Fix
t €10,T]. For any v € S; 7, the Girsanov theorem implies

T T
FS_YT+/ ho(s, zQ)ds+K$—K§’—/ Z9dB,

t

v
_FQ+/ f(5,02)ds + K9 — KS—/ Z9dBY, P-as.,
t

where B? is a Brownian Motion under Q. By analogy with Lemma 4.8, it
holds P-a.s. that
(4.7) 9 =RYY vielo,T).

In particular, we see that R?C is, in fact, a continuous process.
Next, we recall a comparison theorem of RBSDESs; see Theorem 4.1 of [9].
(We restate it in a more general form.)

PROPOSITION 4.9. Let (T, Z,K) (resp. (I, 2',K')) € C[0,T] x HZ ([0, T);
R?) x Kg[0,T] be a solution of RBSDE (&, h, S) (resp. RBSDE (¢, 1/,S")) in
the sense of Definition 4.4. Additionally, assume that

(i) either h or I’ is Lipschitz in (y, z);
(ii) it holds P-a.s. that £ <& and Sy < S} for any t € [0,T];
(iii) 4t holds dt @ dP-a.e. that h(t,w,y,z) < h'(t,w,y,z) for any (y,z) €
R x R

Then it holds P-a.s. that Ty <T for any t €[0,T).
Since it holds dt ® dP-a.e. that
= N
flt,w,u) = Zlenﬂgd (f(t,w, z) + (u, z>)
< f5,w,09(w)) + (u,02(w)) = hg(s,w,u) YuecR?
we see from Proposition 4.9 and (4.7) that we have P-a.s.
(4.8) I, <I'®=R%% vielo,T].

Letting ¢t = v, taking the essential infimum of the right-hand side over Q € QF,
and then letting k — oo, we can deduce from Lemma 4.8, (3.8), and (3.3) that

R0 =T, < lim lessmfRQO— lim lessmfRQ( )
o0 Qco k—oo Qe

V)=V < RQ “(w)=RYO P-as.
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which implies that V(v) = T,, P-as. Applying Lemma 4.8 and using (3.3),
we see that the value process V() of Theorem 3.9 is connected to the solution
of a BSDE with Reflection:

(4.9) V(w)=T,=RY°=RY(v), P-as.
where Q* = Q% € Qp. It is clear that dQ* = dQ*° = &(0*° e B)rdP =

&(0* e B)rdP.
We are now ready to state the main result of this section.

THEOREM 4.10 (Existence of a saddle point). The pair (Q*,797(0)) is a
saddle point as in (4.1).

5. Proofs
5.1. Proof of the results in Sections 2 and 3.

Proof of Proposition 2.2. From [4, Proposition 1], we know that
(5.1) pv~ (&)= erssup(EQ[—ﬂ}"y] —a,4(Q)), P-as.

v,y

Here we have set Q, = {QeP,: Eglaw(Q)] < oo}, and the quantity
A
O‘V,W(Q) = esssup (EQ[_WU:V] - pl«’y(n))
neL>=(Fy)

is known as the “minimal penalty” of p, .. [The representation (5.1) was
shown for @ < P rather than @ ~ P in [4]. However, our assumption (A4)
assures that (5.1) also holds. For a proof, see [12, Lemma 3.5] and [18, The-
orem 3.1].]

Thanks to [7, Theorem 5(i) and the proof of Proposition 9(v)], there exists
a nonnegative function f: [0,7] x Q2 x R? — [0, 00] satisfying (f1)-(§3), such
that for each @ € Q, , we have

a,4(Q)=Eqg </ f(s, HQ ds >, P-a.s.

Hence, we can rewrite Q, , ={Q € P, : Eg flj f(5,09)ds < 0o}, and (5.1)
becomes

(5.2) pu~ (&)= esssupEQ[ / f(s,69) ds’]—"l,], P-as.
QeQ
Since Q, = Q, 1 C Q. 4, it follows readily that

X
; Q
(5.3) QSEIQanEQ{YV—F/ £ (5,6 ds‘}'}

QEQ, ~

> essinf Eg {Y +/ f(s,609)d V} P-as.
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On the other hand, for any given @ € Q, ,, the predictable process 9? =
1{t§7}9?, t € [0, induces a probability measure Q € P, via dQ 2 &9 e
B)pdP. Since f(t,02) = 1<y f(2 09), dt ® dP-a.e. from (3), it follows

E~ / f(s ds—E/fseQ ds—EQ/fseQ )ds < o0,
thus Q € Q.. Then we can deduce that P-a.s.

e(ggmeQ{y +/f59Q )ds| 7, }<E {Y—i—/szQ ds‘]—"}

:E@[Yﬁ/fseQ ds’]—'] EQ{Y +/fs€Q ds‘]—'}

Taking the essential infimum of the right-hand side over Q € Q, - yields

fEq|Y- Q
e(gglnu Q{ -l-/fs@ ds }

< essinf Eq [Y —|—/ f(s5,69) ds‘fy}, P-as.;
QeEQ v,y

this, together with (5.3) and (5.2), proves (2.1). O

Proof of Lemma 3.4. (1) Since {QF}ien is an increasing sequence of sets
contained in Q,, it follows that
]

< lim legbmeQ[Y —|—/ f(s, HQ ds’fy], P-a.s.

k—oo

2l
(5.4) essinf Eo [Yﬁ/ f(s,62)ds

Now let us fix a probability measure Q) € Q,,, and define the stopping times
t
69 2i f{t ewT]: / [£(s,09) + 169} ds > m} AT, meN

It is easy to see that lim,, ... 1692 =T, P-a.s. For any (m,k) € N2, the
. mok A . s
predictable process 09 =1 (1<s231 AQkH?, t € [0,7] induces a probability

measure Q™* € QF by

(5.5) dQ™* 2 (09" o B)y - dP
[recall the notation of (3.5)]. It follows from (f3) that

m,k

(5.6) f(t,09 ’):1{t§63}1AQkf(t,9?), dt © dP-a.e.
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Then we can deduce from the Bayes Rule [see, e.g., [13, Lemma 3.5.3]] that

(5.7) essmeQ [Y +/ f(s5,69) ds }
€Q

< Egm.x [Y7 +/ f(s,og’””“ms\fy]

r Qmk YASR

—E|z9; <Y7+/ 1A3kf(s,0§)ds>‘}"y}
[ Qm,,k ’YA&gL Q

<B|29% Y7+/ 1(s.02)ds ) |7,

I m,k ’y/\ém
—B|(2%" - Zfé%)@/7 +/ f(s,eg’)ds) ‘Fy}
+E(Z) g — Z]7) - Y| F) + B2, Y, | )
'y/\é?”
+E[ZVQ§Q/ (5,09 ds‘]-"}

m,k
<Yl +m)- 27" ~ 27 oI 7]
+Ylloo - E1Z2,q = Z77|17)]

YAS
T oIV, |F) + Eo [ [ s6.09)as

7]

m,k
< (Y lloe +m) - E1Z27" — Z7 0 |IF]
Y lloe - EIZ g = 2,071

gl
—l—EQ[YW—i—/ f(s,09 ds‘]—'l,], P-a.s.

From the equation (3.6) and the Dominated Convergence theorem, we observe

5Q 2
1y —1)02 st)

lim E ( / "
k—o0 v
JQ

—lim E [ (1-1,0 )|0QRds=0, P-as.
0o y v,k
Thus, we can find a subsequence of {Agk}keN (we still denote it by {Agk}keN)
such that P-a.s.
R R
lim 1A3k9§? dB, = / 6% dB,

k—oo J,
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s s
klingo/ 1A3k\9§?|2d5:/ 1022 ds

and consequently, P-a.s.:

and

59

m, m 1
(5.8)  lim Z2 - Jim exp{ / 10, (959 dB, — 5\9?? ds)}
§Q

™ 1

Since E(Z% T |.7-" ) =E( féQ |F,) =1, P-as. for any k € N, it follows from

Scheffé’s lemma [see, e.g., [23, Section 5.10]] that
(5.9) Jim B2y —ZféQH}'V] =0, P-as.

Hence, letting k — oo in (5.7), we obtain that P-a.s.

(5.10) hm legsmeQ {Y —I—/ f(s5,69) ds }

<Eq {Y7+/ f(s,09) ds‘}'} + Yoo - E [|Z§69n_z§?T||fy].

It is easy to see that lim,, .., T 6% =T, P-a.s. The right-continuity of the pro-
cess Z% then implies that lim,, Z?(SQ = ZQT7 P-a.s. Since E[Z?JQ |F] =

v,
E[Z§T|.7-',,] =1, P-a.s. for any m € N, using Scheffé’s lemma once again we
obtain

(5.11) lim E[|Z°, - Z%,||F,)=0, P-as.
m— 00 V,0m Ys
Therefore, letting m — oo in (5.10) we obtain that P-a.s.

lim LessmeQ {Y —|—/ f(s,09) ds }
k—oo  QeQ

¥
gEQ[Yﬁ/ £(5,609) ds’}']
Taking the essential infimum of right-hand side over Q € Q,, gives

lim lessmeQ{Y —|—/ f(s,69) ds }
k—oo QeQ

< essinf Fo [Y +/ £(5,69) ds‘ﬂ}, P-as.

which, together with (5.4), proves (3.7).



OPTIMAL STOPPING FOR DYNAMIC CONVEX RISK MEASURES 1045

(2) By analogy with (5.4), we have

(5.12) essinf R?(v) < lim | essinf R%(v), P-as.
QeQ, koo~ QeQk

v

Taking the essential supremum in (5.7) over v € S, r, we get

. m,k
(5.13) eszglﬁfRQ(y)gRQ (v)

m,k
<SROW)+ (Y|l +m) - B 207" = 276 |I 7]
+ Yoo - B1Z%,g - Z27|IF),  P-as,

In light of (5.9) and (5.11), letting k — oo and subsequently letting m — oo
n (5.13), we obtain

1 fR?(v) < R9(v), P-as.
kgr;olégggl (v) <R%(v) a.s

Taking the essential infimum of right-hand side over Q € Q, yields
lim | ess mf R9(v) <essinf R%(v), P-as.,
QeQ QEQ,

k—oo

which, together with (5.12)7 proves (3.8). O

Proof of Lemma 3.5. (1) We first show that the family

}
{EQ{YW—I—/ £(5.69) ds‘f”
v QeQk

is directed downwards, that is, for any Qq,Q2 € QF, there exists a Q3 € QF
such that P-a.s.

R
(5.14) Eo, [Yv+/ F(5,092) ds‘}"}

¥ ¥
< Eo, {YW +/ f(s,&?l)ds‘}"y} A Eo, {YW +/ f(s,0§2)ds’]-"y].
To see this, we let Q1,Q2 € QF and let A € F,. It is clear that

(5.15) 02 2100,y (a0 +14:002), €0,

forms a predictable process, thus we can define a probability measure Q3 € M*
via dQ3 2 &(09 @ B)p dP. Tt follows from (f3) that dt ® dP-a.e.

(5.16) Ft,02°) = 1m0y (Laf(E,02) + Lac f(£,6052)),

which together with (5.15) implies that #93 =0 dt ® dP-a.e. on [0,v] and
02 @)V £ (0,07 (@) = La(@)|OF (@) [V £ (10, 07 (@) + Lae (@)]67 (@) |V
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f(t,cu,@?2 (w)) <k, dt @ dP-a.e. on v, T]. Hence, Q3 € Q. For any v € S, ,
we have

,
(5.17) 7% = exp{/ (1409 +14.092)dB,

1 8l
~ 5 [ Al o s

v 1 v
:eXp{lA(/ esQlst—§/ |9§12ds)
Y 1 i
+1Ac</ 9§2d35—5/ |9§?2|2ds>}
v 1 s
lAeXp{/ eg?lstfi/ |9§21|2ds}
v 1 s
+1Acexp{/ 9592st—5/ |0§?2|2ds}

=142 +14:282,  P-as.

Then the Bayes Rule implies

(5.18) [Y +/ f(5,099) ds ]

:E[Z%( /fser ds)‘ }
:E[lAZfl (Y +/ f(s,091)d )
+1ALZUT(Y +/ F(5,692) ds)’]—']
~14Eq, [y7 +/ f(s,G?l)ds‘fV}
Y ol
+1ACEQ2{YA,+/ f(s HQZ ds’}"l,], P-a.s.

Letting A = {Eq, [V, + [ f(5,091)ds|F,] < Eq,[Yy + [ f(s,092)ds|F,]} €
F, above, one obtains that P-a.s.

[Y—l—/stQ?’ds ]
EQl{YJr/f 091 ds

proving (5.14). Appealing to the basic properties of the essential infimum
[e.g., [21, Proposition VI-1-1]], we can find a sequence {QY*},cn in QF such
that (3.9) holds.

g

f}/\EQQ{Y +/ f(s,092)ds
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(2) Taking essential suprema over v € S, 1 on both sides of (5.18), we can
deduce from Lemma 2.3 that

-
R (1) = esssup Eq, {Yﬂ, +/ f(s,609%)ds
YES,, T v

%)

.
=14esssup Eg, {YW +/ f(s,&?l)ds‘}"y}
YESy, T v

.
+1 4c esssup Eg, {Yv —|—/ f(s,6%)ds
YESL, T v

%)
=1,4R? (v) + 14.R? (v), P-as.

Taking A = {R@ (v) < R?2(v)} € F, yields that R93(v) = R (v) A R?2(v),

P-a.s., thus the family {R? (1)} e g is directed downwards. Applying Propo-

sition VI-1-1 of [21] once again, one can find a sequence {lek)}neN in QF such
that (3.10) holds. O

Proof of Lemma 3.6. Let Q1,Q2 € QF. We define the stopping time ~y =
() AT92(v) €S, 1 and the event A 2 {RZ10 < RY>0} e F,. It is clear
that

A
(5.19) 025 2 1oy (1402 +14:022), t€[0,7]

forms a predictable process, thus we can define a probability measure @3 € M*
by (dQs/dP) 2 & (092 @ B)p. By analogy with (5.16), we have

(5.20)  F(t,02%) = 1my (LAf(£,020) + 1ac £(£,627)),  dt ® dP-ace.

which together with (5.19) implies that %2 =0, dt ® dP-a.e. on [0,7] and
1072 ()| V f(t,w, 00 (w)) < k, dt ® dP-a.e. on ]y, T]. Hence Q3 € Q%  QF,
thanks to Remark 3.3. Moreover, by analogy with (5.17), we can deduce that
for any ¢ € S, we have

(5.21) Zj%g = 1AZ$E. + 1ACZ§{§, P-as.
Now fix t € [0,7]. For any o € Sy, (5.21) shows that P-a.s.
7Qs YA 7Q2
23 =gy =la g+ lae g =142, o+ 1aeZ 10
Z%Wt Z%th VYV

and Bayes’ Rule together with (5.20) then imply that P-a.s.

EQs |:Ya + f(376?3)d8‘f'yvt:|
YVt

=E [vai,o <Ya + [ fs,09) ds) ‘fwt]

YVt
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= ]_AE‘Q1 |:YJ + f(S 0Q1 ds‘ffy\/t]

YVt

+ L Eo, {Yo + [ Hs.09) ds‘fvvt} ~

YVt
Taking essential suprema over o € Syv,7 on both sides above, we can deduce
from Lemma 2.3 as well as (3.3) that P-a.s.

R = R¥(y V1) =14RV (y V1) + 14 R (7 V1) = 1ARZ + 14 RZ2Y.
Since R?0 i =1,2,3 are all RCLL processes, we have RS\?/’;O = lAR,Cfvl; +
1ACR$\%O,W € [0,T] outside a null set N, and this implies that P-a.s.

(5.22) 79 () =inf{t € [v,T]: R¥*°=V,} <inf{t € [y,T] : R*°=Yv;}

=1,inf{t€[y,7]: RO’ =Y}
+ 1 einf{t € [y,T]: R#° =V}

Since RQéj’( ) =Y 0, (,), P-as. for j=1,2, and since v = (V) AT (v), it
holds P-a.s. that Y, is equal either to R,Cfl’o or to Rf/h’o. Then the definition

of the set A shows that R,Cfl’o =Y, holds P-a.s. on A, and that R,Cf?’o =Y,
holds P-a.s. on A€, both of which further imply that P-a.s.

1ainf{t € [y,7]: RO* =Y} =~1,4
and
14 inf{t € [y,T]: R®*° =Y,} =41 4.
We conclude from (5.22) that 793(v) <y =791 (v) A 792(v) holds P-a.s.,
hence the family {TQ(I/)}Qegﬁ is directed downwards. Thanks to [21, page

121], we can find a sequence {Q;k)}neN in QF such that

(V) = essinf 79(v) = lim | o (v), P-as.
QeQk n—o0

The limit lim,, lTQSf) (v) is also a stopping time in S, 7. U

Proof of Lemma 3.7. Tt is easy to see from (3.12) and (f3) that

(5.23) 99 =99 =0, dt®dP-a.e. on [0,v],

and that

(5.24) Ft,02) =1y F(8,07) + Lo f(8,6°),  dt @ dP-ace.
As a result

o [ et
T ~

7EQ,/ f(5,69) d5+EQ,/ f(5,09)ds
ol
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T
<EQ/ fS@Q dS+EQ// k'dS
Y

<EQ/ f(s5,69)ds + kT < oo,

thus Q' € Q,. If Q € QF, we see from (3.12) and (5.24) that dt ® dP-a.c.

10 (@)| V £ (t,w, 67 (@) <k, on Jv,7],

gfglw 7&),0?,&) =
16 (W) v f(t (W) {|Q?(w)|\/f(t7w,9?(w))§k7 on [, 7,

which, together with (5.23), shows that Q' € QF.
Now we fix 0 € Sy 7. For any § € S, 1, Bayes’ Rule shows that P-a.s.

Eq {Kﬁ/éf(s,@?/)ds‘fg} = Eq [Y(;Jr/(sf (5,69) ds‘]—']
Eé{YaJr/éf(sé)@ 0],

5
R?/’O = RY (o) =esssup Eq {Yé +/ f(8,9§,) ds‘fo]
0ES,, T o

and (3.3) implies that P-a.s.

s _ - ~
=esssup £ [Y5+/ f(s,@?)ds‘f}—RQ(a)—R?’o.

0€Ss,T U

Proof of Theorem 3.9. Fix @ € Q,. For any m,k € N, we consider the
probability measure Q™" € QF as defined in (5.5). In light of Lemma 3.6, for
any [ € N there exists a sequence {Qg)}neN in Q) such that

l

71(v) = lim lTng)(z/), P-as.

Now let k,I,m,n € N with k£ <![. Lemma 3.7 implies that the predictable
process
okl A m,k @)
9Q 1{t<7.l(,,)}0Q + 1{t>7l(u)}9th , L€ [O,T]
induces a probability measure Q! € Q! via de ol — @@(HQZI’IC’Z e B)rdP,

k,l m,k,l
such that for any ¢ € [0, 7], we have R V)Vto = Rfl?ﬂ’w, P-a.s. Since R0

and R0 are both RCLL processes, outside a null set N we have

RO RO e [0,7)

T (v)Vi T (v)Vit

and this, together with the fact that 7;(v) < TQ:L”’M(V) AT (v), P-a.s. im-
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plies that P-a.s.

(5.25) M () = inf{t e [, T] : R m-r’“l,o v,
— inf{t € [r(v), ] ROV iy
=inf{t € [n(v),T]: RQ )O—Yt}
=inf{t € [v,T] : Rt" ; —Y}—TQ”)( )

Similar to (5.6), we have that dt ® dP-a.e.

m,k,l m,k (1)
(5:26)  FEOT) = Lpcnenf 0T+ Lmnn F(167).
Then one can deduce from (5.25) and (5.26) that

(5.27) V(v )—essmfRQ( )< RQZL'k’Z(y)

QeQ,

Qmikil
T (v) Qm,kz
— By (YTW,,M(V)JF/V (5,69 ds‘]—'u)

Qi
T (V) QnLkl
= Egpia |Y g0+ (5,097 ds‘]-‘u
Qn Qn’ (v) )

TZ(V) Qm,k,l
+EQm,k[/ (5,097 )ds‘}'l,}

QnL k,l m,k
n

=L {(Z , anw)

v, 7Qn (v)

QP
) QW
x (Y o +/ f(&@s" )ds ‘ v
A ‘

Q'(nl)( )

T v 0]

[ZuQn(u) (Y Q”)( )Jr/ f(s,@?” )ds)‘fu:|
T7n" (v )

T1(v) ek
+EQm,k[/ £(5,69 ds(f]

< ([Y]loo +1T) - UZQ - 72" |17

(1/) 1/ (V)

FEB 0 (Vg ) + R @) = () 7]

Tl(l/) m,
+ Egm.k [/ f(s,69 k ds‘]:l,], P-a.s.

B O F NG 20 oW ,
Because E( [’ (V)( 09" dB,) Efz(V)( |95Q"l 2ds < PE[r? (v) —n(v)),

which goes to zero as n — oo, using similar arguments to those that lead to
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(5.8), we can find a subsequence of {Qn tnen (we still denote it by {Qn bnen )

'm. k.l m,k m,k,l
such that lim,_ . Z%" @, = , P-as. Since E[Z " oy |.7-"]
v,7Qn" (v) v, (v) v,79n

7nk

E[ZV n(y)|}" ]=1, P-as. for any n € N, Schefté’s lemma implies

m k

(5.28) lim E \ZQ" z2 IF) =0, P-as.

n—oo (V)

On the other hand, since
)
zZ2 y)|Y o )+k(TQn v)—-nw)|<Z M(V J(IYlloo +&T),  P-as.,

and since Y is right-continuous, the Dominated Convergence theorem gives

n,k )
(5.29) lim E[ZV ) (YTQU) + k(79 (v) = (V)| 5]

m,k

= E[ZV (V) TL(V) |~7:1/] = EQm,k [Yn(y) ‘fy}, P-a.s.

Therefore, letting n — oo in (5.27), we can deduce from (5.28) and (5.29) that

T (V)

V(V) < EQm,k |:Y7.l(,j) +/ f(S, H?Mk) ds

.7-}} , P-as.
As | — oo, the Bounded Convergence theorem gives

V(v) < Egm.x [YT(V) + /T(V) f(s,0977) * ds‘]—"y}, P-as.
whence, just as in (5.7), we deduce
(5.30) V(v) < Egm.x {YT(,) + / " F(5,09™") ds‘jﬂ,}

/]

< (1Y lloo +m) - B[22, f 7@

v,T(v) DT(I/)/\

Yoo E [|ZQ Hf]

1/,7'(11)/\679L V T(V

T(v)
+ Eq [YT(,,) +/ f(5,09) ds‘fy}, P-a.s.

By analogy with (5.9) and (5.11), one can show that for any m € N we have
m,k
limy o0 E| 270, — 22 sallFv]=0, P-as. and that

v,7(V)A

lim B[|Z7 o= Z7.,F]=0, Pas.

m— 00
Therefore, letting k — oo and subsequently letting m — oo in (5.30), we obtain

_ T(v)
V(V) < EQ |:YT(V) +/ f(S,&?) ds

fu} , P-as.
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Taking the essential infimum of the right-hand side over @ € Q,, yields

™(v)
V(v )<e521nfEQ[ T(l,)—&—/ f(5,69) ds’f]

< esssup essmeQ [Y +/ f(s,69 ds’]—'] =V({)<V(v), P-as.
YESu,T

and the result follows. O
Proof of Proposition 3.10. For each fixed k € N, there exists on the strength
of Lemma 3.6 a sequence {Qn )}nEN in Q% such that
7(v) = lim LTQ" 5 (v), P-as.

o®
For any n € N, the predictable process 9 S Tgsr, ) }9 , t€[0,T] in-

duces a probability measure Qn k) by dQ(k (GQ(M e B)rdP = Zg(:) rdP.
Since v <o = T(v) <71(v) < 7Qi (v), P-a.s., we have Qn € Q’jk(y) cokFc
Q’,j and
531) W) =if{te [, T]: RO ° =Y}

—int{tc[0,7]: R =Y} =9 (), P-as.
We also know from Lemma 3.7 that for any ¢ € [0,T7:

Q.0 _ pe.0
Rrk(u)\/ti T (V)VE? P-as.

Since R0 and R0 are both RCLL processes, there exists a null set

N outside which we have R?”ZV’W = R?&U’Vt,w € [0,7]. By analogy with
(5.25) and (5.6), respectively, we have
(5.32) 7 (v)= 7 (v), P-as.
(k)
and f(t,0 ) =1ysr o (2 HtQ"k ), dt ® dP-a.e. Then we can deduce from

(5.31), ( )that

(5.33) V(o)=V(o)= egggf R%(0) < RO (o)

Qn (1,)
= E@ (Y Q(k)( ) +/ 1{S>Tk(l/ }f( ds‘]: )
. Q(M B
Qn (v) )
< g (5,097 )ds) ‘f,,]
(V)
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T ) Q)
+E|Y +/ f(s,05 )ds‘fa

el () o
QY
< (IYlloo +#T) - E[| 2 ()T@%’”( —1||5,]
+B[Y, g, + P @) = m)IF], Peas,

Just as in (5.28), it can be shown that

lim B(|29

oo . (),79% (1)

— 1“.7-}) =0, P-as;
on the other hand, the Bounded Convergence theorem implies
. (k)
T BV, 4 k(O 0) = ) IF) = B[V o), Pras

Letting n — oo in (5.33) yields V(o) < E[Y,, )| F,], P-a.s., and applying the
Bounded Convergence theorem we obtain that

V(o) < klim E|Y,, )| Fs| = EY,|F,]=Y,, P-as.
The reverse inequality is rather obvious. O

Proof of Proposition 3.11. Fix k € N. In light of (3.10), we can find a
sequence {Q%k)}neN C Q,’i such that

(5.34) QQszglfRQ( )_nli—{r;o ! RQ%’”(,Y% P-a.s.

For any n € N, Lemma 3.7 implies that the predictable process
AR A )
9th = l{tg'y}atQ + 1{t>'y}0?n , te€ [OvT]

induces a probability measure QNQ% Q via dQ(k) = (0@7&) e B)pdP, such
that for any ¢ € [0,7], RO (v)= R (), P-a.s. Since v < 7(v) < TQQC)(I/%
P-a.s., applying (3.4) yields

(5.35) V() <R (1) =By [R@i’”(fyw / ! f(s,(a?%“)ds]fy]

= By {RQ() / £(s,09) ds|F, }

=FEq [RQ&#) (7) + / f(s,69) ds‘}",,] , P-as.

It follows from (3.2) that

(5.36) —[Y oo ¥y < R (7) < |[Yloo + kT, P-as.
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Letting n — oo in (5.35), we can deduce from the Bounded Convergence the-
orem that P-a.s.

(k) v
V() < Eo[ lim | R (3|7, + Eq [/ 75,609 ds]f]

|

—|IY]|oo <essinf R (y) < ||V]|oo + kT, P-as.,
QeQk

=Eq [ess inf RQ / f(s, QQ ds|F,

Letting n — oo in (5.36), one sees from (5.34) that

which leads to that

—|Y ||loo < essinf RP(v) < essinf R?(y) < ||Y o +T, P-as.
Y oo < cssint RO() < essint RO(3) < V]

From the Bounded Convergence theorem and Lemma 3.4, we obtain now

)
EQ|:V(’)/)+/ f(5,69) ds‘fu}, P-as. O

Proof of Lemma 3.12. Fix k € N. For any Q € QF, the predictable process
Qt = 1{t>l,v,y}9t , t € [0,T] induces a probability measure Q by (dQ/dP)

&(09 o B)y = 2%, ;. Remark 3.3 shows that Q € Qf,, c Q5N Q%. By

analogy with (5.6), we have f(t,@t )= 1{t>l,\,7}f(t,9t ), dt ® dP-a.e. Then
one can deduce that

V(v )<EQL1LH;O@5§51£RQ )| Fo +EQU f(5,09)ds

oVy

(5.37)  1p-yEp [ JV7+/ f(s,e)?)ds’a}

oVv

(5,69 ds‘f]

d

fy} , P-as.,

=F |:1{V—7}EQ |:Yg\/,, + /
oVv

= l{u:'y}EQ |:Ya\/1/ +/ f(sﬂ 0?) ds
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which implies that P-a.s.

Lo—y Eq [Yo\/u + /

oVv

(5,69 ds‘]—"}

oVy

> 1, 7}esslgnfEQ[ ,,W+/ f(s,69)ds
Y

7]

Taking the essential infimum of the left-hand side over Q € QF, one can deduce
from Lemma 2.3 that P-a.s.

1,— 7}essmeQ{ le,—i—/

oVv

(5,69 ds‘}'}

oVv
_essmfl{l, - Eq {Yovy—i—/ f(s, 9Q ds‘]:]
€Q v

oVy
>14- V}essmeQ[ gw—i-/ f(s,@?)ds‘]—'v].
¥

Letting k — oo, we see from Lemma 3.4(1) that P-a.s.

1,- ,Y}ebblnfEQ|: gv,,—|—/

oVv

£(5,69) ds‘]-'}

oVy
>14- ,y}essmeQ[ Uw—i-/ f(s,@?)ds‘fv].
Y

Reversing the roles of v and 7, we obtain (3.16).
On the other hand, taking essential supremum over o € Sy on both sides
of (5.37), we can deduce from Lemma 2.3 that P-a.s.

~ oVvVy ~
l{y:W}RQ( ) = esssup 1{y ’Y}E |:YU\/7 + / f(s,@?) ds’f7:|
il

oc€So, T

oVv
=esssup ly,—1 Eq {YUVVJr/ f(s,09) ds‘f}

o€So, T
=1p= RW),
which implies that 1g,—,3 R9(v) > 1,y essinfgeor R®(y), P-as. Taking

the essential infimum of the left-hand side over Q € Q% one can deduce from
Lemma 2.3 that P-a.s.

Q Q Q
10— V}eszlgnkfR (v )—egzlnfl{,, —R%(v) > 1= 7}%251;]% ().

Letting k — oo, we see from Lemma 3.4(2) that P-a.s.

1{1/:7}‘/(7/) = 1{1/:7} egzglyf RQ(V) > 1{1/:7} Egzlgnﬂ{fRQ(’Y) = 1{1/:7}‘/(7)'

Reversing the roles of v and ~, we obtain (3.17). O
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Proof of Theorem 3.13.

Proof of (1).
Step 1: For any o,v € So 1, we define

oVv
U7 (v ) =1<n Yo + o5y essmf Eq [ vy / f(s, 0?) ds ]—"l,] .

We see from (3.7) that
7|

oVv
= lim lessmeQ[ s —|—/ f(s, GQ ds‘fl,], P-a.s.
k—»oo QeQ v

oV
(5.38) (—:SsmeQ[ JV,,—i—/ f(5,09)ds

€9,

Fix k € N. In light of (3.9), we can find a sequence {an }nen in QF such that

oVv
(5:39)  essinf Eq {nger/ £(5,69) ds‘]-"}

v

) oVv Q(k)
= lim lEQ(k) Y v + f(s,05™ Yds|F, |, P-as.

By analogy with (5.36), we have

oVv

(k)
(540)  —[[Yllso < Eygo [YUW+/ f(s,09 )ds‘]—‘,,} <Y oo + *T

P-a.s.; letting n — oo, we see from (5.39) that P-a.s.

oVv

Y |oo < essmeQ[ "V +/
QeQ v

Therefore, it holds P-a.s. that

(541) —||Y|loo gesszEQ{ le,—l—/

(5,09 ds‘}'] < Y| + KT

oVv

£(5,69) ds)f ]

QeQ;
Letting k — oo, we see from (5.38) that P-a.s.

oVv
< essinf Eq |:Y0'\/V —|—/ f(s,69) ds)]—'] <Y oo + T-

oVv

||Y||oo<(2§SlIleQ{ avﬁ/ f(s,62)ds

fu} < Yoo + T,
which implies that

(5.42) Yl ST W) SV | + T, P-as.

Let v € Sp,r. It follows from (3.16) that P-a.s.

(543) 1{1,:7} \I/U (l/)

oV
= 1{0’§V:'y}Ya + 1{0’>u:’y} eCS}ZlQanEQ |:Ycr\/u +/ f(S, 0?) ds fu:|
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oVy
=1{5<y=11 Yo + 1io5y—py essinf Eg |:YUV'y + / f(5,69) ds‘]—}}
QcQ, .
= L=y ()

Step 2: Fix o € So,r. For any ¢ € So;r, v € S¢r and k €N, we let

{lek)}neN C QF be the sequence described in (5.39). Then we can deduce
that P-a.s.

oV (¢ (k)
(544) \II‘T(C) < I{USC}YU + 1{U>C}EQ£L’“> |:YUVC +/ f(S, 9?” )dS’]:Cj|
¢
= Lio<cyYone

Ve o®
Tl B {EQ%’” [Yavc + /,; F(s,08" )ds‘}'l,}

]—'4]
=B [1{agc}YaA<

oV ( o®
+ 1o Eom [Yavc +/ f(s,05" )ds‘]—‘,,}
¢

J—'C].
On the other hand, it holds P-a.s. that
oV ( Q(k)
1{U>U}EQ£LIC) [Yg\/c -l-/ f(s,05™ )ds‘}-y:|
¢
7 e g@®
= By | Loy (Yo + : £(5,69% ) ds ’}'l,
oVv Q(k)
— B [1goouy (Yo +/ F(5,69" Y ds ‘.7-",,

oVv

f(s,GngLk)) ds’]—',,]

]-"y]
ZEQSC) 1{<<U§V} Y, + : f(S,Hs " )dS ‘Fy

= EQSIk) [1{C<JSV}Y0/\V|]:1/] = 1{C<0‘SV}YU'/\V = 1{C<0§V}YU;

= 1{G>V}EQEL’€) |:YO'\/U +/

and that

oV (¢ Q(k)
Loy Bgm {Yavﬁ/c f(s,05 ) ds

recall the definitions of the classes P,, Q, from Section 1.1. Therefore, (5.44)
reduces to that P-a.s.

oVv

(k)
F(5,097 Y ds

\I]U(C) < E|:1{O'§I/}Y0' + 1{0>V}EQ(nk) |:Ya'\/u +/V fu:| f(::| .
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We obtain then from (5.39), (5.40) and the Bounded Convergence theorem,
that P-a.s.

n—oo

\IIU(C) < lim lE|:1{o'§u}Y0'

oVv

Q(k)
ooy Eguo |Youu + [ f(s,68 ) ds| || 7

=E {1{09}3@

oVv

Fs,027) ds’]-"y]

+ 15,1 essinf B YUV—|—/ .7-"}.
{>}QeQ§ Q{ v y ¢

On the other hand, we can deduce from (5.38), (5.41) and the Bounded Con-
vergence theorem once again that P-a.s.

(545) \I’U(C) < kh—>n<’>lo l E |:]_{U<l,}}/(7

oVv )
+1,u,0essinf Eg | Y, V+/ 5,09" ds‘fu} }—}
{o>v) essiny Q[ wt | I( ) ¢

=F [1{0@}1{,
oVv

+ Lo>vy gsinf B [Yavu+ / f(s,08)ds

= B[V (v)| 7],

7]

d

which implies that {¥7(t)};c(0,7] is a submartingale. Therefore [13, Proposi-
tion 1.3.14] shows that

(5.46) P(the limit 0T 2 lim W7 (ga(t)) exists for any ¢ € [O,T]) —1

n—oo

(where ¢y, (¢) 2 rz;ﬂ AT), and that ¥2% is an RCLL process.

Step 3: For any v € Spr and n € N, ¢,(v) takes values in a finite set
D22 ([0,T) N {k2 "} pez) U {T}. Given an A € DI, it holds for any m > n
that g, (\) = A since D} C D, Tt follows from (5.46) that

Ut = lim U7(g,(\) =T7(N), P-as.

Then one can deduce from (5.43) that P-a.s.
o+ o+ __ o
V= Y Lgwm=n ¥ = ) 1im)=n ¥ ()
AEDR AEDS

=3 1) ¥ (@n(¥) = T (g (v)).
A€DE
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Thus the right-continuity of the process ¥+ implies that
(5.47) U7+ = lim ‘lfo+ )= hm U7 (qn(v)), P-as.

n—oo (

Hence, (5.45), (5.42) and the Bounded Convergence theorem imply
(5.48) U7 (v) < lim E[W(q,(v))|F,]=ENVST|F,]=99", P-as.
In the last equality we used the fact that U9+ = lim, o, V7 (g, (v)) € Fy,
thanks to the right-continuity of the Brownian filtration F.

Step 4: Set v,y € So.r and Cé T(W) N7, 2 T(V) A qn (), Vn € N. Now,
let o € SC,T~ Since lim,, o | 1{T(V)>qn('y)} = 1{T(l,)>,y},

{r) >} C{an() =au(r(v) Av)} VnEN,
and
{r() > (1)} C{am(y) =7(¥) Agn(7)} VneN,

one can deduce from (5.48), (5.47), and (5.43) that P-a.s.

(549)  1ir()>1¥7(C)
1w ¥ = 1r)>ay im 97 (. (C))
= Jim 1{7(,,)>7}\I/"(qn(r(u)/w)) = lm 105597 (gn (7))
Znh_{n Lir@)>q. (1} 27 (an (7))
= im 1rw)>q.0y Y7 (7(V) A gn (7))
n)-

n— o0

= 1{r()>yy Jim 7 (

For any n € N, we see from (3.14) and Lemma 2.3 that P-a.s.

V(¢n) = V(¢n) = esssup <gssmf Eq {Yng/ £(5,69) ds‘]_—cﬂ})

BESe,, .

QEQ¢,

oVin
> essinf EQ[ VG +/ f(s,@?)ds‘}"(n}

n

oVin
= gbgénf EQ |:1{U<Cn}YC'IL + 1{0>C"} (Yg\/gn +/ f(S QQ dS) ‘.7:(":|
C'Vl

n

oVin
= C%Ses,lnf <1{g<<n}Y§n + 1{0->C71}EQ |: oVin +/ f(s HQ dS’fg])

n

oVin
= Lo<aa) Yoo + Loncuy gisint EQ[ oVn +/ f(s,69) dSIfcn]-

n

Since {7(v) <~} C{¢n=C(=7()} and {0 > (,} C {0 > (}, it follows from
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(3.16) that P-a.s.
V(¢n) = 1{USCn}YCn

oVen
T Lo>¢n r)>y) eSSleEQ{ oVen +/ f(s,08)ds

n

fqn]

oV (¢
+ Lios¢nr(v)<v} ess 1nf Eo [ Ve —|—/ f(s, QQ ds‘]:(]
¢
=Lio<cy Yo, + 1{o><n,f(u>>v}‘1’ (Cn) + Lios¢or )< 27 (Q)-

As n — o0, the right-continuity of processes Y, (5.49) as well as Lemma 2.3
show that

i V(Gn) 2 L=y Y¢ + Lioncr(y>ay B W7 (Gn) + Lo cr() <9y U7 (C)
> (o=} Yo + 1o ¥7(C)

oV (¢
= L{o= C}YC+1{0>C}essmeQ[ gv<+/< f(5,09) ds)}}]

)

oV (¢
= essinf (1{0 C}YC + 1{U>C}EQ |:YU\/< +/ f(S, 9?) ds
QEQ. ¢

= Seinf o {1{0 Yo+ o>y (Y +/ f(5.09) dS)‘fc]

—nglnfEQ [Y —|—/ f(s, HQ ds’fg] P-a.s.

Taking the essential supremum of the right-hand side over o € S¢ 1, we obtain

(5.50)  lim V(¢,) > esssup <e5s1nfEQ [Y —|—/ f(s,69) ds‘]-}})

n— 00 o€Se,T

—V(Q)=V(), Pas.

Let us show the reverse inequality. Fix @ € Q¢ and n € N. For any k,m € N,
the predictable process

Qm Jk A
0y {Cn <t<§Q"} AZ, 9t )

€0, 7]
induces a probability measure Q™* € an by dQm* 2 é’(GQT’k e B)rdP,
where §9™ is defined by

¢
f(s,@?)d5>m} AT, meN

oQm 2 inf{t € [¢n, T
Cn
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For any (3 € S¢, r, using arguments similar to those that lead to (5.7), we
obtain that P-a.s.

B ok
07 a7,
Cn

Qmk Q
< (Y llo +m)BNZE = 22 a0 II7,]

EQ;n,k [Yg +

B
+ 1Y [ 'EHZCngg,n —Z8 1l Fe, ]+ Eq [YB+/< f(5,609) dS‘fcn]-
Then taking the essential supremum of both sides over 3 € S¢,, r yields that

(5.51) essinf R2(¢,) < RO (Co)
QeQg,

< (Y lloo +m)E[1 287 —
+ ¥l - BIZE

| F¢,.]
]

c P

§Q n C'ru
+ R9(¢,), P-as.

Just as in (5.9), we can show that
m,k

Jim Bl|Z¢y 237 sanllFe,] =0, P-as.
Therefore, letting k& — oo in (5.51), we know from Lemma 3.4(2) that
(5.52) V((n) = lim | essinf R9(¢,)

k—oo QGQ?W

<Ylee ENZZ jo0 = 28 2l1Fe )+ BOG). Pras.

Next, by analogy with (5.11), we have

lim E(|ZQ =22 JlIF,) =0, P-as.

m—00

Letting m — oo in (5.52), we obtain V' ({,,) < R?(¢,) = R?n’(], P-a.s. from (3.3).
Then the right-continuity of the process R0, as well as (3.3), imply that

lim V((,) < lim RZ? = RZ? = R?((), P-as.
Taking the essential infimum of R%(¢) over Q € Q. yields
lim V(¢,) < essinl inf R2(O)=V({)=V(¢), P-as.

This inequality, together with (5.50), shows that

(5.53) nlLII;OV(T(V) ANgn(7)) =V (r(v)Ay), P-as.
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Step 5: Now fix v € Sp . It is clear that P € Q, and that 6F =0. For any
t € 10,77, (3.17) implies that

Loy V(TW) At) =1 V(T (v) AtV Y)),  P-as.,
since {t >v} C{r(v) At=7(v) A(tVv)}. Then we can deduce from (3.15),
(f3), and (3.14) that for any s € [0,1)

Lz V(r(v )
—1{S>,,}V( S\/l/ )
T(V)A(tVV) P
< 1{s>y}E[V t \ V)) +/ f(ra 07’ )dr‘fT(V)/\(SVV):|
T(V)A(sVv)
= 1{S>V}E|:V(T(l/ AtV ) f.,-(u)/\S:|

=E[1{>n V(T ) AV )| Fryns)
<E[1psn V() AV Y) + 1psussp 1Y ool Frins)
= E[E[Liz0) (V (1) A ) + 1V lloo) 1 Fr ]I Fs] = Lz Y oo
= E[l{tZV} (V( (v) A t) + HYHOO)U'—s] - 1{521,}\\YHOO, P-as.,
which shows that {115} (V(7(v) At) + [[Yleo) }eefo,r) is @ submartingale.
Hence, it follows from [13, Proposition 1.3.14] that
P(the limit V> 2 nan;O Lig. 1>}V (T(V) A gn(t)) exists, Vt € [O,T}) =1,

and that V%" is an RCLL process.

Let ¢ € 8§ 7 take values in a finite set {t; <--- <t,,}. Forany A€ {1---m}
and n €N, since {{=1tr} C{7(¥) A gn(¢) =7(V) A ¢,(tx)}, one can deduce
from (3.17) that

L V(T (@) A gn(Q) = Licme VI(T(0) Aqu(ty)),  P-as.
As n— 00, (5.53) shows

1{(:1:}}‘/40# = ]_{Czt/\}‘/t?\v” = 1{t/\ZV}n1i_>rl'olol{C:tk}V(T(V) N qn(t,\))
= 1{“21,}”11_)1201&:“}‘/(7'(1/) A Qn(C))
= 1{C2V}1{(:t,\}V(T(V) N C), P-a.s.

Summing the above expression over A, we obtain VCO’” =1y VI(T(v) AQ),

P-a.s. Then for any v € Sp,r, the right-continuity of the process VO and
(5.53) imply that P-a.s.

VOV: lim V = lim 15, )5}V (T(0) A (7)) =Ly V(T (v) A7),

n—oo n—0oo

proving (3.18). In partlcular, V0% is an RCLL modification of the process
Ly V(T (v) At beejo,1)-
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Proof of (2).

Proposition 3.10 and (3.18) imply that VTO(:) =V(r(v)) = Y;q), P-as.

Hence, we can deduce from the right-continuity of processes V%" and Y that
Ty (v) in (3.19) is a stopping time belonging to S, -(,) and that
0o,v
Yooy =V =V(v({v)), P-as.,
where the second equality is due to (3.18). Then it follows from (3.15) that
for any Q € Q,

V(v) < Eq |:V(Tv(V)) +/V

Ty (V)

f(s,@?)ds’fy]

Tv (V)
=Eg [YTV(V) —I—/ f(5,09) ds’}",,], P-a.s.

Taking the essential infimum of the right-hand side over @) € Q,, yields that

Tv (V)
< essinf F, Q)

<esssup(§§s1nfEQ {Y —|—/ f(s,09) ds })

YES,, T

=V(v)=V(v), P-as.,
from which the claim follows. O
5.2. Proofs of results in Section 4.
Proof of Theorem 4.2. Tt is easy to see from (i) that
(5.54) Y, =V(0.)=R% (0,), P-as.
which together with (ii) and (iii) shows that for any @) € Qg
Eq- V2] = Eg- VY (0.)] =V (0) = V(0) < Eq[V ()] = Eq[¥2].

Thus the second inequality in (4.1) holds for (Q*,0.). Now we show that
(Q*, 0.) satisfies the first inequality in (4.1) in three steps:
e When v € S, , property (iii) and (5.54) imply that P-a.s.

(5.55) V2 <V (1) = Eq- VY (0.)|F)] = Eg-[YE | 7).

Taking the expectation Eq« on both sides yields that Eq-[Y,9"] < Eg-[V¢].
e When v € S,, 7, it follows from (5.54) that
Fo |4 [ 509 as]

< Eg- [RQ* )+ [ s a?*)ds] — oY),
0

Eo-[Y2'] = Eq- {EQ [Y +/ f(5,097) ds|F,
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e For a general stopping time v € S 7, let us define v; =v Ao, € Sp 0.
and vy =v Vo, €S,, 7. Since {v <o,} € Fyns, = Fy,, one can deduce from
(5.55) that

EQ* YQ EQ* [EQ* I:]-{l/<o'*} + 1{1/>U*}
[

= B+ [Lw<o ) Y3 + 1501 Bor [

SEJQ" 1{u§a*}Yu? +1{V>0’ ( U*

= Eq- (Lo VP + 10500 YS

= Bq- 11,01 Y, +1{u>o 1 Eq- [V |F.]]

< Eg- [1{V<U*}EQ* DNFol+ Lso Bq- [YE |

= Eo-[Y2). 0

Proof of Lemma 4.8. Fix t € [0,T]. For any v € S,yt,1, we see from (4.5)
that P-a.s.

~ R *,U
A r+/ f(s,057)ds + K, Kwtf/ Z,dB%"

vVt

Applying Eg«v[-|F,vi) to both sides, we obtain

~ ~ v ~ ~
(556) FV\/t = EQ*,V |:F'Y + f(S,GZ’U) ds + Kfy — Kyvt fy\/t]
vVt
v
(5.57) > g [Yw [ g0 ds]fm], P-as.
vVt

Let 0%, 2i nf{s e [vVt,T]: [,= Y:} € Suve.r. The flat-off condition satisfied

Vi
by (T, Z K) and the continuity of K imply that

0= / 1 oy dK, = K
[vVt,okye) {Ta>Ye} [vVt,o ’

V)

= lim IN(S—[?VW:I?U;W—[?Wh P-a.s.

s/ 00t

Hence, taking v = o7, in (5.56), we obtain that

Tove =Eg-» |:Yo'*\/t +/ ’ lf(s,ﬁz’”)ds‘fuvt} P-as.,

Vi

which, together with (5.57) and (3.3), shows that

¥
I'yve = esssup Eg«v {Yw —|—/ f(s,0%%) ds‘]—'l,w}
vVt

YES v, T
=RY"(wvi)= Rf?\j:’o, P-a.s.

Then the right-continuity of the processes [ and RQ™" implies (4.6). O
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Proof of Theorem 4.10. We shall show that (Q*,79 (0)) satisfies condi-
tions (i)—(iii) of Theorem 4.2:

(1) It follows easily from Proposition 3.2 that Y o« = R%;O(O) =
RO (797(0)), P-a.s.

(2) For any k € N and Q € QF, we can deduce from (4.9), the right-
continuity of processes R?0 and T, as well as (4.8) that P-a.s.

RI =T, <R vtel0,T).
In particular, we have Y.q() < R%’(g) < R?(’;,O(O) = Ye(y), P-a.s. Hence
Yie) = RTQ(0)7 P-a.s., which implies further that 79" (0) < 72(0), P-a.s.

Taking the essential infimum of right-hand side over Q € Qf and letting
k — oo, we deduce that, in the notation of (3.11), we have

Q0) < li f =7(0 P-
T im essm T 7(0), a.s.
0)< i ! S ol 2(0) =7(0)

Then (3.15) shows V(0) < Eg[V?(7%97(0))] for any Q € Qp.
(3) For any v € S ;e* (o), and since v < 797(0) <797 (v) holds P-a.s., one
can deduce from (4.9) and (3.4) that

VS W) =RY )+ [ f(s,6")ds

= Eg- [RQ*(TQ*(O)) +/VT f(s,0%)ds

fy} - (5,00 ds

= Eq-[VQ (79 (0))|F,], P-as. O
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