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THE REGULATED PRIMITIVE INTEGRAL

ERIK TALVILA

Abstract. A function on the real line is called regulated if it has
a left limit and a right limit at each point. If f is a Schwartz dis-
tribution on the real line such that f = F ′ (distributional or weak

derivative) for a regulated function F then the regulated primitive

integral of f is
∫
(a,b)

f = F (b−) − F (a+), with similar definitions

for other types of intervals. The space of integrable distributions

is a Banach space and Banach lattice under the Alexiewicz norm.

It contains the spaces of Lebesgue and Henstock–Kurzweil inte-
grable functions as continuous embeddings. It is the completion

of the space of signed Radon measures in the Alexiewicz norm.

Functions of bounded variation form the dual space and the space

of multipliers. The integrable distributions are a module over the

functions of bounded variation. Properties such as integration by

parts, change of variables, Hölder inequality, Taylor’s theorem
and convergence theorems are proved.

1. Introduction

One way of defining an integral is via its primitive. The primitive is a
function whose derivative is in some sense equal to the integrand. For example,
if f and F are functions on the real line and F is absolutely continuous (AC )
such that F ′(x) = f(x) for almost all x ∈ (a, b), then the Lebesgue integral of f

is
∫ b

a
f = F (b) − F (a). The same method can be used to define the Henstock–

Kurzweil integral, for which F ∈ ACG∗. We get the wide Denjoy integral if
F ∈ ACG and we use the approximate derivative. See, for example, [25] for
the definitions of these function spaces and the wide Denjoy integral. The
Henstock–Kurzweil integral is equivalent to the Denjoy integral and is defined
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further in this introduction. Note that C1 � AC � ACG∗ � ACG � C0. The
symbols ⊂ and ⊃ allow set equality. If we use the distributional derivative,
then the primitives need not have any pointwise differentiation properties.
See [30] for an integral with continuous functions as primitives. In this paper,
we will describe an integral whose primitives are regulated functions. This
integral will contain all of the integrals above. As well, it can integrate signed
Radon measures.

We will now describe the space of primitives for the regulated primitive
integral. Function F : R → R is regulated if it has left and right limits at each
point in R. For a ∈ R write F (a−) = limx→a− F (x), F (a+) = limx→a+ F (x),
F (−∞) = limx→ − ∞ F (x), F (∞) = limx→∞ F (x). Then F is left continuous at
a ∈ R if F (a) = F (a−) and right continuous if F (a) = F (a+). We define BR =
{F : R → R | F is regulated and left continuous on R, F (−∞) = 0, F (∞) ∈ R}.
Hence, elements of BR are real-valued functions defined on the extended real
line R = [−∞, ∞]. It will be shown below that BR is a Banach space un-
der the uniform norm. The space of integrable distributions will be those
distributions that are the distributional derivative of a function in BR. We
will see that elementary properties of distributions can be used to prove that
the set of integrable distributions is a Banach space isometrically isomorphic
to BR. Most of the usual properties of integrals hold: fundamental theorem
of calculus, addivity over intervals, integration by parts, change of variables,
Hölder inequality, Taylor’s theorem, convergence theorems. The multipliers
and dual space are the functions of bounded variation. This defines a prod-
uct that makes the integrable distributions into a module over the functions
of bounded variation. There is a Banach lattice structure. The subspace
of primitives of bounded variation corresponds to absolutely convergent inte-
grals. Each integrable distribution is a finitely additive measure defined on
the algebra of sets of bounded variation. We get a finite measure if and only if
the convergence is absolute. These distributions are signed Radon measures.
The regulated functions are continuous in the topology of half-open intervals.
It is shown that the space of integrable distributions is the completion of
the space of signed Radon measures in the Alexiewicz norm. See the para-
graph preceding Theorem 4 for the definition. This embedding is continuous.
Note, however, that the spaces of Lebesgue and Henstock–Kurzweil integrable
functions are separable in the Alexiewicz norm topology while our space of
integrable distributions is not separable. Hence, it is not the completion of
these function spaces.

The integral in the present paper has several possible extensions to Euclid-
ean spaces. In Rn, geometrical considerations change the character of the
integral. And there is the problem of which differential operator to invert.
There are integrals associated with inverting the nth order distributional dif-
ferential operator ∂n/∂x1 · · · ∂xn. For continuous primitives, this type of
integral was introduced in [22] and developed systematically in [1]. At the
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other extreme, there are integrals that invert the first order distributional di-
vergence operator. See [23]. If a set S ⊂ Rn has a normal vector at almost
all points of its boundary then we can use this direction to define limits along
the normal from within and without S. This then defines functions that are
regulated on the boundary of this particular set S. The divergence theorem
for sets of finite perimeter ([8], [35]) can then be used to define an integral
over S for distributions that are the distributional derivative of a regulated
function. If S is a hypercube in Rn, then its boundary is a hypercube in Rn−1

so that the divergence theorem in Rn yields the integral of [1]. Details will be
published elsewhere.

If μ is a Borel measure on the real line, we use the notation Lp(μ) (1 ≤
p < ∞) for the functions f : R → R such that the Lebesgue integral

∫
R

|f |p dμ

exists. For Lebesgue measure λ we write Lp.
To proceed further, we will fix some notation for distributions. The test

functions are D = C∞
c (R), that is, the smooth functions with compact sup-

port. The support of a function φ is the closure of the set on which φ does
not vanish. Denote this as supp(φ). There is a notion of continuity in D.
If {φn} ⊂ D, then φn → φ ∈ D if there is a compact set K ⊂ R such that for
all n ∈ N, supp(φn) ⊂ K, and for each integer m ≥ 0, φ

(m)
n → φ(m) uniformly

on K as n → ∞. The distributions are the continuous linear functionals
on D, denoted D ′. If T ∈ D ′, then T : D → R and we write 〈T,φ〉 ∈ R for
φ ∈ D. If φn → φ in D, then 〈T,φn〉 → 〈T,φ〉 in R. And, for all a1, a2 ∈ R

and all φ,ψ ∈ D, 〈T,a1φ + a2ψ〉 = a1〈T,φ〉 + a2〈T,ψ〉. If f ∈ Lp
loc for some

1 ≤ p ≤ ∞, then 〈Tf , φ〉 =
∫ ∞

− ∞ fφ defines a distribution. The differentiation
formula 〈T ′, φ〉 = −〈T,φ′ 〉 ensures that all distributions have derivatives of all
orders which are themselves distributions. This is known as the distributional
derivative or weak derivative. The formula follows by mimicking integration
by parts in the case of Tf where f ∈ C1. We will usually denote distributional
derivatives by F ′ and pointwise derivatives by F ′(t). For T ∈ D ′ and t ∈ R

the translation τt is defined by 〈τtT,φ〉 = 〈T, τ−tφ〉 where τtφ(x) = φ(x − t) for
φ ∈ D. Most of the results on distributions we use can be found in [10].

Schwartz [28] defined the integral of distribution T as 〈T,1〉, provided this
exists. This agrees with

∫ ∞
− ∞ f if T = Tf for f ∈ L1 (i.e., f is integrable with

respect to Lebesgue measure). In Schwartz’s definition, the integral is then a
linear functional on the constant functions. We will see that, as a result of the
Hölder inequality (Theorem 13), our integral can be viewed as a continuous
linear functional on functions of bounded variation (Theorem 17). It then ex-
tends Schwartz’s definition. Other methods of integrating distributions have
been considered by Mikusiński, Musielak and Sikorski. See the last paragraph
in Section 11 of [30] for references. As will be seen in Section 5 below, the inte-
gration by parts formula connects the regulated primitive integral with a type
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of Stieltjes integral that has been studied by Kurzweil, Schwabik and Tvrdý
[31].

Denjoy’s original constructive approach to a nonabsolute integral that in-
tegrated all pointwise and approximate derivatives was a type of transfinite
induction applied to sequences of Lebesgue integrals. The method of ACG∗

functions and ACG functions is due to Lusin. See [15] and [25]. In what
follows, we define an integral that integrates weak derivatives of regulated
functions. It also has a definition based on a previously defined integral; in
this case from Riemann integrals on compact intervals.

Another approach to nonabsolute integration is through Riemann sums.
The Henstock–Stieltjes integral is defined as follows ([21, Section 7.1] where it
is called the gauge integral). A gauge on R is a mapping γ from R to the open
intervals in R (cf. Remark 3) with the property that for each x ∈ R, γ(x) is an
open interval containing x. Note that this requires γ(±∞) = R or γ(−∞) =
[−∞, a) or γ(∞) = (b, ∞] for some a, b ∈ R. A tagged partition is a finite
set of pairs of closed intervals and tag points in the extended real line, P =
{([xn−1, xn], zn)}N

n=1 for some N ∈ N such that zn ∈ [xn−1, xn] for each 1 ≤
n ≤ N and −∞ = x0 < x1 < x2 < · · · < xN = ∞. In addition, z0 = −∞ and
zN = ∞. Given a gauge, γ, the partition P is said to be γ-fine if [xn−1, xn] ⊂
γ(zn) for each 1 ≤ n ≤ N . If F,g : R → R then F is integrable with respect to
g if there is A ∈ R such that for all ε > 0 there is gauge γ such that for each
γ-fine tagged partition we have |

∑N
n=1 F (zn)[g(xn) − g(xn−1)] − A| < ε. We

will use the Henstock–Stieltjes integral only for regulated functions F and g
so we can use limits to define the values of these functions at ±∞. If g(x) = x,
we have the Henstock–Kurzweil integral, that is, integration with respect to
Lebesgue measure. In this case, we take F (±∞) = 0. For integration over a
compact interval, a function is Riemann integrable if and only if the gauge γ
can be taken to be constant, that is, γ(x) = (x − δ, x + δ) for some constant
δ > 0.

If function F has a pointwise derivative at each point in [a, b], then the
derivative is integrable in the Henstock–Kurzweil sense and

∫ b

a
F ′(x)dx =

F (b) − F (a). In this sense, the Henstock–Kurzweil integral inverts the point-
wise derivative operator. It is well known that the Riemann and Lebesgue
integrals do not have this property. For details, see [21]. There are functions
for which this fundamental theorem of calculus formula holds and yet these
functions do not have a pointwise derivative at each point. In this sense, the
Henstock–Kurzweil integral is not the inverse of the pointwise derivative. The
C-integral of Bongiorno, Di Piazza and Priess is defined using Riemann sums
and a modification of the gauge process above. A function has a C-integral if
and only if it is everywhere the pointwise derivative of its primitive. See [4].
In this sense, the C-integral is the inverse of the pointwise derivative. The
integral defined in the present paper inverts the distributional derivative but
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only for primitives that are regulated functions. The restriction to regulated
primitives is useful as it leads to a Banach space of integrable distributions.

2. The regulated primitive integral

Define AR = {f ∈ D ′ | f = F ′ for some F ∈ BR}. A distribution f is inte-
grable if it is the distributional derivative of some primitive F ∈ BR, that is,
for all φ ∈ D we have 〈f,φ〉 = 〈F ′, φ〉 = −〈F,φ′ 〉 = −

∫ ∞
− ∞ F (t)φ′(t)dt. Since F

is regulated and φ is smooth with compact support, the last integral exists as a
Riemann integral. We will use the following convention in labeling primitives
of elements in AR.

Convention 1. When f, g, f1, h̃, etc. are in AR we will denote their re-
spective primitives in BR by F,G,F1, H̃ , etc.

It will be shown in Theorem 4 below that primitives are unique and that
the spaces AR and BR are isometrically isomorphic, the integral constituting
a linear isometry. If f ∈ AR and −∞ < a < b < ∞, then∫

(a,b)

f =
∫ b−

a+

f = F (b−) − F (a+) = F (b) − F (a+),(1)

∫
(a,b]

f =
∫ b+

a+

f = F (b+) − F (a+),(2)

∫
[a,b)

f =
∫ b−

a−
f = F (b−) − F (a−) = F (b) − F (a),(3)

∫
[a,b]

f =
∫ b+

a−
f = F (b+) − F (a−) = F (b+) − F (a).(4)

If F is continuous, then these four integrals agree. For a = −∞ and b = ∞,
we write these four integrals as

∫ ∞
− ∞ f = F (∞). We can also define

∫
{a} f =∫

[a,a]
f =

∫ a+

a− f = F (a+) − F (a−).
Elements of BR are tempered distributions of order one, while elements of

AR are tempered distributions of order two. See [10] for the definitions.

3. Examples

(a) If F ∈ AC and F ′(t) = f(t) for almost all t ∈ R, then for φ ∈ D we can
integrate by parts to get

〈F ′, φ〉 = −〈F,φ′ 〉 = −
∫ ∞

− ∞
F (t)φ′(t)dt

=
∫ ∞

− ∞
F ′(t)φ(t)dt − [F (t)φ(t)]∞

t=− ∞

=
∫ ∞

− ∞
f(t)φ(t)dt = 〈f,φ〉.
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Each of the integrals above is a Lebesgue integral. It then follows that if
F (−∞) = 0 and F (∞) exists then f is Lebesgue integrable and L1 � AR.
Similarly, the regulated primitive integral contains the Henstock–Kurzweil
integral and wide Denjoy integral. See [5, pp. 33–34] for the integration by
parts formula for these integrals.

(b) Suppose F ∈ BR is continuous but differentiable nowhere. Then f
defined by f = F ′ ∈ AR and

∫
I
f = F (b) − F (a) for I = (a, b), (a, b], [a, b), [a, b]

whenever −∞ ≤ a < b ≤ ∞. Note that for φ ∈ D we have 〈f,φ〉 = 〈F ′, φ〉 =
−〈F,φ′ 〉 = −

∫ ∞
− ∞ F (t)φ′(t)dt. This last integral exists in the Riemann sense.

(c) If F : R → R is a continuous function such that F ′(x) = 0 for almost
all x ∈ R then for all [a, b] ⊂ R the Lebesgue integral

∫ b

a
F ′(t)dt exists and

is zero, while
∫ b

a
F ′ = F (b) − F (a). An example of such a function F is the

Cantor–Lebesgue function (devil’s staircase).
(d) Let B V denote the functions of bounded variation, that is, functions F

for which V F := sup
∑

|F (xi) − F (yi)| is bounded, where the supremum is
taken over all disjoint intervals {(xi, yi)}. Note that if F ∈ B V then F is
regulated and F (±∞) exist. Hence, F ′ ∈ AR. Although F ′(t) exists for al-
most all t ∈ R, and the Lebesgue integral

∫ b

a
F ′(t)dt exists, it need not equal

F (b) − F (a). If F ∈ L1
loc, then the essential variation of F is ess varF :=

sup
∫ ∞

− ∞ F (t)φ′(t)dt where the supremum is taken over all φ ∈ D with ‖φ‖∞ ≤
1. And, essvarF = inf V G such that F = G almost everywhere. The essential
variation can also be computed by restricting the points xi, yi above to be
points of approximate continuity of F . Denote the functions with bounded
essential variation as E B V . If F ∈ E B V , then the distributional derivative
of F is a signed Radon measure, that is, there is a signed Radon measure μ
such that for all φ ∈ D we have 〈F ′, φ〉 = −〈F,φ′ 〉 =

∫ ∞
− ∞ φ(t)dμ(t). Radon

measures are Borel measures that are finite on compact sets, inner regular
with respect to compact sets (μ(E) = supμ(K) where E is a Borel set and
the supremum is taken over all compact sets K ⊂ E) and outer regular with
respect to open sets (μ(E) = inf μ(G) where E is a Borel set and the infimum
is taken over all open sets G ⊃ E). In R, the Radon measures are the Borel
measures that are finite on compact sets. See, for example, [3, Section 26].
A signed Radon measure is then the difference of two finite Radon measures.
If μ is a signed Radon measure, then F defined by F (x) =

∫
(− ∞,x)

dμ is a
function of bounded variation. For, if {(xi, yi)} are disjoint intervals then∑

|F (xi) − F (yi)| =
∑

|
∫
[xi,yi)

dμ| ≤
∑∫

[xi,yi)
d|μ| ≤ |μ|(R) < ∞. The regu-

larity of μ shows F ∈ BR. Hence, each signed Radon measure is in AR. Since
functions of bounded variation can have a pointwise derivative that vanishes
almost everywhere, we cannot use a descriptive definition of the integral of a
measure using the pointwise derivative of its primitive.

If ν is a Radon measure and f ∈ L1(ν), then the set function μ defined by
μ(E) =

∫
E

f dν is a signed Radon measure. Hence, μ ∈ AR. If ν is absolutely
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continuous with respect to Lebesgue measure (ν � λ) and f ∈ L1(ν), then it
follows from the Radon–Nikodým theorem that f dν/dλ ∈ L1 ⊂ AR.

(e) A distribution T is said to be positive if 〈T,φ〉 ≥ 0 whenever φ ∈ D
with φ ≥ 0. It is known that positive distributions correspond to Radon
measures, that is, T ∈ D ′ is positive if and only if there is a Radon measure
μ such that for all φ ∈ D we have 〈T,φ〉 =

∫ ∞
− ∞ φ(t)dμ(t). For example, [34,

p. 17]. An example of a positive distribution in BR is the Dirac distribution.
Define the Heaviside step function by H1(x) = 0 for x ≤ 0 and H1(x) = 1
for x > 0. The Dirac distribution is then given by 〈δ,φ〉 = φ(0) (φ ∈ D).
And, 〈H ′

1, φ〉 = −
∫ ∞
0

φ′(t)dt = φ(0) so H ′
1 = δ, H1 ∈ BR, δ ∈ AR. We have∫

(0,1)
δ =

∫
(0,1)

H ′
1 = H1(1−) − H1(0+) = 1 − 1 = 0 while

∫
[0,1)

δ = H1(1−) −
H1(0−) = 1 − 0 = 1. Define H2(x) = 0 for x < 0 and H2(x) = 1 for x ≥ 0. In
D, H1 = H2 and H ′

1 = H ′
2 = δ. Note that H2 /∈ BR but

∫
I
H ′

2 =
∫

I
H ′

1 for every
interval I ⊂ R. This discrepancy in BR is discussed in Remark 5 below. Note
also that δ is a Radon measure defined by δ(E) = χE(0) for all E ⊂ R. And,∫

{0} δ = 1.
(f) If {ak } is a sequence in R such that

∑∞
1 ak converges (absolutely or

conditionally), then we can define a function F : [0, ∞) → R by F (x) =
∑n

1 ak

if x ∈ (n,n + 1] for some n ∈ N and F (x) = 0 if x ≤ 1. Then F is regulated,
left continuous, F (0) = 0 and F (∞) =

∑∞
1 ak. We have F ′ = f where f ∈ AR

is the distribution f =
∑∞

1 ak(τkδ). (See the Introduction for the definition
of translation.) This gives

∫
[1,N ]

f =
∑N

1 ak for each N ∈ N and for N = ∞.
Hence, integration in AR includes series.

(g) Some finitely additive measures are also in AR. For example, if f(t) =
sin(t2) define F (x) :=

∫ x

− ∞ f(t)dt. Then F (I) = F (b) − F (a) for interval I
with endpoints −∞ ≤ a < b ≤ ∞ defines a finitely additive measure on the
algebra generated by intervals on the real line. And, F ∈ BR with F ′ =
Tf . Since the integral converges conditionally, F is not countably additive.
Thus,

∑∞
0 F ([

√
2nπ,

√
(2n + 1)π)) = ∞ while

∑∞
1 F ([

√
(2n − 1)π,

√
2nπ)) =

−∞ but F ([0, ∞)) =
∫ ∞
0

sin(t2)dt =
√

π/23/2. A similar example is obtained
with f(t) = (d/dt)[t2 sin(t−4)].

(h) If F : R → R is any function then the Riemann–Stieltjes integral∫ b

a
dF = F (b) − F (a) exists for all (a, b) ⊂ R. The Riemann–Stieltjes inte-

gral then contains the regulated primitive integral. We will see that AR is a
useful restriction since it is a Banach space. Below it will be shown that we
can define

∫ ∞
− ∞ f dg under more general conditions than can be done for the

Riemann–Stieltjes or Lebesgue–Stieltjes integrals.

4. Properties of the integral

First, we have some properties of our space of primitives.
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Theorem 2 (Properties of BR). (a) If F ∈ BR then it is uniformly regu-
lated, i.e., for each ε > 0 there exists δ > 0 such that for each x ∈ R, if y ∈
(x − δ, x) then |F (x−) − F (y)| < ε and if y ∈ (x,x+δ) then |F (x+) − F (y)| < ε.
If y < 1/δ then |F (y)| < ε. And, if y > 1/δ then |F (∞) − F (y)| < ε. Similarly,
F is uniformly left continuous. (b) If F ∈ BR, then F is bounded and has at
most a countable number of discontinuities. (c) Using pointwise operations,
BR is a Banach space under the uniform norm: ‖F ‖ ∞ = supx∈R |F (x)|, for
F ∈ BR. (d) BR is not separable.

Proof. (a) Let ε > 0. There is α < 0 such that if y ≤ α then |F (y)| < ε. For
each x ∈ R, there is ηx > 0 such that if y ∈ (x − ηx, x] then |F (y) − F (x)| < ε.
There is γx > 0 such if y ∈ (x,x+γx) then |F (y) − F (x+)| < ε. There is β > 0
such that if y ≥ β then |F (y) − F (∞)| < ε. Let ζx = min(ηx, γx). The family of
open intervals {(x − ζx, x+ ζx)}x∈R forms an open cover of the compact inter-
val [α,β]. There is then a finite index set J ⊂ R such that {(x − ζx, x+ζx)}x∈J

is again an open cover of [α,β]. Now let δ = min(−1/α,1/β,minx∈J ζx). Since
δ > 0, this shows F is uniformly regulated and uniformly left continuous.

(b) In (a) let ε = 1. Then

|F (x)| ≤ 1 + max
(

|F (α)|,max
x∈J

(
|F (x)|, |F (x+)|

)
, |F (β)|

)
< ∞.

See [21, p. 225] for a proof that there are at most countably many points of
discontinuity.

(c) By (b), if F ∈ BR then F is bounded and measurable. To prove BR

is a Banach space, first note it is a linear subspace of L∞(R) since BR is
clearly closed under linear combinations. And, if F ∈ BR such that ‖F ‖ ∞ = 0
then F (x) = 0 for almost all x ∈ R. But F is left continuous so if there were
b ∈ R such that F (b) > 0 then there is an interval (a, b] on which F is positive,
which is a contradiction, so F (x) = 0 for all x ∈ R. Positivity, homogeneity
and the triangle inequality are inherited from L∞(R). To show BR is complete,
suppose {Fn} is a Cauchy sequence in BR. Then {Fn} is a Cauchy sequence
in L∞(R) so there is F ∈ L∞(R) such that ‖F − Fn‖ ∞ → 0. To show F is left
continuous, suppose a ∈ R. For x < a and n ∈ N,

|F (a) − F (x)| ≤ |F (a) − Fn(a)| + |Fn(a) − Fn(x)| + |Fn(x) − F (x)|(5)
≤ 2‖F − Fn‖ ∞ + |Fn(a) − Fn(x)|.

Given ε > 0, fix n large enough so that ‖F − Fn‖ ∞ < ε/3. Then let x → a−.
Hence, F is left continuous on R. Using |F (a)| ≤ ‖F − Fn‖ ∞ + |Fn(a)|, we see
that F (−∞) = 0. We can see that F has a right limit at a ∈ R by taking x, y >
a and letting x, y → a+ in |F (x) − F (y)| ≤ 2‖F − Fn‖ ∞ + ‖Fn(x) − Fn(y)|.
And, F (∞) is seen to exist by letting x, y → ∞ in this inequality. Therefore,
F ∈ BR and the space is complete.

(d) To see that BR is not separable, consider the family of translations
{τtH1 | t ∈ R}. The function H1 is defined in Example 3(e). Given 0 < ε < 1/2,
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for each t ∈ R a dense subset of BR would have to contain a function Ft with
|Ft| < ε on (−∞, t] and |Ft − 1| < ε on (t, ∞). Hence, no such dense set can
be countable. �

Further properties of regulated functions can be found in [9] and [14].

Remark 3. Note that the construction in (a) gives a compactification
of R. A topological base for R consists of the usual open intervals (a, b) with
−∞ ≤ a < b ≤ ∞, as well as [−∞, a) with −∞ < a ≤ ∞, and (a, ∞] with
−∞ ≤ a < ∞. This makes R into a compact Hausdorff space. A different
topology is introduced in Section 10, under which all functions in BR are
continuous.

We now present some of the basic properties of the integral. One of the
main results is that AR is a Banach space under the Alexiewicz norm. For
f ∈ AR, this is defined as ‖f ‖ = ‖F ‖∞ where, as usual, F is the unique
primitive in BR (Convention 1). Linear combinations are defined by 〈a1f1 +
a2f2, φ〉 = 〈a1F

′
1 + a2F

′
2, φ〉 for φ ∈ D; a1, a2 ∈ R; f1, f2 ∈ AR with primitives

F1, F2 ∈ BR.

Theorem 4 (Basic properties of the integral). (a) The integral is unique.
(b) Addivity over intervals. If f ∈ AR, then for all −∞ ≤ a < b < c < ∞ we
have

∫
(a,b]

f +
∫
(b,c]

f =
∫
(a,c]

f . There are similar formulas for other intervals.
(c) With the Alexiewicz norm, AR is a Banach space. The integral provides
a linear isometry and isomorphism between AR and BR. (d) AR is not sep-
arable. (e) Linearity. If f1, f2 ∈ AR and a1, a2 ∈ R, then a1f1 + a2f2 ∈ AR

and
∫ ∞

− ∞(a1f1 + a2f2) = a1

∫ ∞
− ∞ f1 + a2

∫ ∞
− ∞ f2. (f) Reverse limits of integra-

tion. Let −∞ ≤ a1 < a2 ≤ ∞ and ε1, ε2 ∈ {+, −}. Then
∫ a2ε2

a1ε1
f = −

∫ a1ε1
a2ε2

f .
If a1 = −∞, then we don’t need ε1 and if a2 = ∞ then we don’t need ε2.

Proof. (a) To prove the integral is unique we need to prove primitives
in BR are unique. Suppose F,G ∈ BR and F ′ = G′. Then (F − G)′ = 0 and
the only solutions of this distributional differential equation are the constant
distributions [10, Section 2.4]. The only constant distribution in BR is the
zero function.

(b) Note that [F (b+) − F (a+)] + [F (c+) − F (b+)] = F (c+) − F (a+).
(c) Linearity of the distributional derivative shows AR is a linear subspace

of D ′. To prove ‖ · ‖ is a norm, let f, g ∈ AR.
(i) By uniqueness of the primitive, ‖0‖ = ‖0‖ ∞ = 0. If ‖f ‖ = 0, then

‖F ‖ ∞ = supx∈R |F (x)| = 0 so F (x) = 0 for all x ∈ R and therefore f = F ′ = 0.
(ii) Let k ∈ R. Then (kF )′ = kF ′ so ‖kf ‖ = ‖kF ‖ ∞ = |k| ‖F ‖ ∞ = |k| ‖f ‖.
(iii) Since f + g = F ′ + G′ = (F + G)′ we have ‖f + g‖ = ‖F + G‖∞ ≤

‖F ‖∞ + ‖G‖ ∞ = ‖f ‖ + ‖g‖.
This shows AR is a normed linear space. To prove it is complete, suppose

{fn} is a Cauchy sequence in AR. Then ‖Fn − Fm‖ ∞ = ‖fn − fm‖ so {Fn} is



1196 E. TALVILA

a Cauchy sequence in BR. There is F ∈ BR such that ‖Fn − F ‖ ∞ → 0. And
then ‖fn − F ′ ‖ = ‖Fn − F ‖ ∞ → 0. Since F ∈ BR, we have F ′ ∈ AR and AR

is complete.
A linear bijection ψ : AR → BR is given by ψ(f) = F where f ∈ AR and

F is its unique primitive in BR. Since the integral is linear, so is ψ. It is an
isometry because ‖f ‖ = ‖F ‖ ∞ = ‖ψ(f)‖ ∞.

(d) To show that AR is not separable, consider the set {τtδ | t ∈ R}. Now
proceed as in the proof of Theorem 2(d).

(e) Since a1f1 +a2f2 = (a1F1 +a2F2)′, we have
∫ ∞

− ∞(a1f1 +a2f2) = (a1F1 +
a2F2)(∞) = a1F1(∞) + a2F2(∞) = a1

∫ ∞
− ∞ f1 + a2

∫ ∞
− ∞ f2.

(f)
∫ a2ε2

a1ε1
f = F (a2ε2) − F (a1ε1) = −[F (a1ε1) − F (a2ε2)] = −

∫ a1ε1
a2ε2

f . �

No space of integrable functions or distributions for which primitives are
continuous can be dense in AR. If G is a continuous primitive, then ‖G′ −
H ′

1‖ = ‖G − H1‖ ∞ ≥ 1/2. Thus, L1 is not dense in AR, nor are the spaces of
Henstock–Kurzweil or wide Denjoy integrable functions. The completion of
these spaces in the Alexiewicz norm is the Banach space AC = {f ∈ D ′ | f =
F ′ for some F ∈ BC }, where BC = {F ∈ C0(R) | F (−∞) = 0 and F (∞) ∈ R}.
If f ∈ AC and F ′ = f where F is its unique primitive in BC , then the contin-
uous primitive integral of f is

∫ b

a
f = F (b) − F (a). This integral is discussed

in [30], where further references can also be found. Note that the spaces of
Henstock–Kurzweil and wide Denjoy integrable functions are barrelled but
not complete under the Alexiewicz norm.

Remark 5. In defining BR, we have chosen the primitives to be left contin-
uous. This is convenient but somewhat arbitrary. If two regulated functions
have the same left and right limit at each point, then the functions can be
different on a countable set but will still define the same distribution and thus
have the same distributional derivative. This does not affect the integral since
it only depends on limits at endpoints of an interval and not on the value of
the primitive at the endpoints. It is clear that an equivalence relation between
such primitives could be established, namely, F ≡ G if and only if F (x−) =
G(x−) for all −∞ < x ≤ ∞ and F (x+) = G(x+) for all −∞ ≤ x < ∞. An
advantage of using left continuous functions rather than just regulated func-
tions is that the norm on BR can be taken as ‖F ‖ ∞ = supx∈R |F (x)| rather
than essential supremum. This choice also affects the lattice operations in
Section 9. Other obvious conventions are to take primitives that are right
continuous or for which F (x) = [F (x−) + F (x+)]/2. As pointed out in [16],
any normalising condition F (x) = (1 − λ)F (x−) + λF (x+) suffices for fixed
0 ≤ λ ≤ 1. In Lebesgue and Henstock–Kurzweil integration, we have equiva-
lence classes of functions that agree almost everywhere. In AR there are no
such equivalence classes, for two distributions are equal if they agree on all
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test functions. For example, if f, g ∈ L1
loc and f = g almost everywhere then

Tf = Tg .

Our definition of the integral builds in half of the fundamental theorem of
calculus. The other half follows easily from uniqueness.

Theorem 6 (Fundamental theorem of calculus). (a) Let f ∈ AR. Define
G1(x) =

∫
(− ∞,x)

f . Then G1 = F on R and G′
1 = f in D. Define G2(x) =∫

(− ∞,x]
f . Then G2 is right continuous, G2(−∞) = 0, G2(∞) exists and

G′
2 = f . (b) Let G be a regulated function with limits at ±∞. Then G′ ∈ AR

and, for all x ∈ R,
∫
(− ∞,x)

G′ = G(x−) − G(−∞) and
∫
(− ∞,x]

G′ = G(x+) −
G(−∞).

Proof. (a) Since f ∈ AR there is a unique function F ∈ BR such that F ′ = f
and G1(x) =

∫
(− ∞,x)

f = F (x−) = F (x) for all x ∈ R. For x ∈ R, we have
G2(x) =

∫
(− ∞,x]

f = F (x+). It follows that G2 is right continuous. And,
limx→ − ∞ G2(x) = limx→ − ∞ F (x+) = F (−∞) = 0. As well, limx→∞ G2(x) =
limx→∞ F (x+) = F (∞). Therefore, G2 = F except perhaps on a countable
set. They then define the same distribution and G′

2 = F ′ = f .
(b) Define F1(x) = G(x−) − G(−∞). Then F1 ∈ BR and F ′

1 = G′ so G′ ∈
AR. Since G((x−)−) = G(x−), we have

∫
(− ∞,x)

G′ = F1(x−) = G(x−) −
G(−∞). As well, G((x−)+) = G(x+) so

∫
(− ∞,x]

G′ = F1(x+) = G(x+) −
G(−∞). �

As with the Henstock–Kurzweil integral, there are no improper integrals.

Theorem 7 (Hake theorem). Suppose f ∈ D ′ and f = F ′ for some regu-
lated function F . If F (−∞) and F (∞) exist in R, then f ∈ AR and

∫ ∞
− ∞ f =

limx→∞
∫
(0,x)

f + limx→ − ∞
∫
(x,0]

f = F (∞) − F (−∞).

There are similar versions of this theorem on compact intervals.
If T is a distribution and G : R → R is an increasing C∞ bijection, then for

test function φ define ψ ∈ D by ψ = (φ ◦ G−1)/(G′ ◦ G−1). The composition
T ◦ G ∈ D ′ is then defined by 〈T ◦ G,φ〉 = 〈T,ψ〉. This follows from the change
of variables formula for integration of smooth functions. See [10, Section 7.1].

For the case at hand, we can reduce the requirements on G. If F ∈ BR and
the real line can be partitioned into a finite number of intervals, on each of
which G is monotonic (i.e., G is piecewise monotonic), then F ◦ G is regulated
so we can integrate its derivative. This gives a change of variables formula.

Theorem 8 (Change of variables). (a) Let F ∈ BR. For each point in R

let G : R → R have left and right limits with values in R. Let G be piece-
wise monotonic with lim± ∞ G existing in R. Then F ◦ G is regulated on R

with real limits at ±∞. Define (F ′ ◦ G)G′ := (F ◦ G)′. (b) Let f ∈ AR. In
addition to (a), assume G is increasing, left continuous, lim− ∞ G = −∞ and
lim∞ G ∈ (−∞, ∞]. Then F ◦ G ∈ BR and

∫ ∞
− ∞(f ◦ G)G′ =

∫ ∞
− ∞(F ◦ G)′ =
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∫
(− ∞,G(∞))

f = F (G(∞)−). (c) Let f ∈ AR. Assume G as in (a). Let −∞ <

a1 < a2 < ∞. For each i ∈ {1,2}, let σi, εi ∈ {+, −}. Then∫ a2ε2

a1ε1

(f ◦ G)G′ =
∫ a2ε2

a1ε1

(F ◦ G)′ =
∫ G(a2ε2)σ2

G(a1ε1)σ1

f(6)

= (F ◦ G)(a2ε2) − (F ◦ G)(a1ε1)
= F (G(a2ε2)σ2) − F (G(a1ε1)σ1).

For each i ∈ {1,2}, σi = εi if G is increasing on an interval with endpoints
ai and aiεiδ for some δ > 0, and σi �= εi if G is decreasing on an interval
with endpoints ai and aiεiδ for some δ > 0. If G(aiεi) = ±∞, then we don’t
need σi.

If a1 = −∞, then replace a1ε1 with −∞ in (6). If a2 = ∞ then replace a2ε2
with ∞ in (6). If G is increasing in a neighbourhood of −∞, then σ1 = +. If
G is decreasing in a neighbourhood of −∞, then σ1 = −. If G is increasing
in a neighbourhood of ∞, then σ2 = −. If G is decreasing in a neighbourhood
of ∞, then σ2 = +. If G(−∞) ∈ {−∞, ∞}, then we don’t need σ1 and if
G(∞) ∈ {−∞, ∞} then we don’t need σ2. (d) Let f ∈ AC . (See the paragraph
preceding Remark 5 for the definition.) Let G be regulated with lim± ∞ G
existing in R. Then F ◦ G is regulated and∫ a2ε2

a1ε1

(f ◦ G)G′ =
∫ a2ε2

a1ε1

(F ◦ G)′ =
∫ G(a2ε2)

G(a1ε1)

f

= (F ◦ G)(a2ε2) − (F ◦ G)(a1ε1).

The last integral exists as a continuous primitive integral [30].

Proof. (a) Let x ∈ R. For small enough δ > 0, G is monotonic on inter-
vals with endpoints x and x ± δ. Suppose G is decreasing on (x,x + δ).
If limy→x+ G(y) ∈ R, then for each ν > 0 there exists η(ν) > 0 such that if
y ∈ (x,x+η(ν)) then G(y) ∈ (G(x+) − η(ν),G(x+)). Since limz→G(x+)− F (z)
exists we have that for every ε > 0 there is ν(ε) > 0 such that if z ∈ (G(x+) −
ν(ε),G(x+)) then |F (z) − F (G(x+)−)| < ε. To show limz→x+(F ◦ G)(z) ex-
ists, let ε > 0 and let y ∈ (x,x+η(ν(ε))). Then |(F ◦ G)(y) − F (G(x+)−)| < ε.
Other cases are similar with only minor modifications, including showing left
or right continuity of F ◦ G. Similarly in part (c).

(c) Suppose −∞ < a < b < ∞ and for some δ > 0 we have G increasing
on (a − δ, a) and decreasing on (b, b + δ). Then a1 = a, a2 = b, ε1 = σ1 = −,
ε2 = +, σ2 = − and we have∫ b+

a−
(f ◦ G)G′ =

∫
[a,b]

(F ◦ G)′ = (F ◦ G)(b+) − (F ◦ G)(a−)

= F
(
G(b+)−

)
− F

(
G(a−)−

)
=

∫ G(b+)−

G(a−)−
f.
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Other cases are similar and (b) is included in (c).
(d) There need be no interval on which G is monotonic. However, since F

is continuous we have∫ a2ε2

a1ε1

(f ◦ G)G′ = (F ◦ G)(a2ε2) − (F ◦ G)(a1ε1)

= lim
x→G(a2ε2)

F (x) − lim
x→G(a1ε1)

F (x)

= F (G(a2ε2)) − F (G(a1ε1))

=
∫ G(a2ε2)

G(a1ε1)

f.

The cases when a1 = −∞ or a2 = ∞ are similar. �
Note that in (c) there are 16 cases, depending on whether G is increasing

or decreasing at each of the endpoints for the four types of integrals in (1).
There are four cases for endpoints at ±∞.

Note that G need not be strictly monotonic but then we have to use the left
continuity of F to interpret the integral. For example, if f ∈ AR and G = H1

then
∫ ∞

− ∞(F ◦ H1)′ =
∫ ∞

− ∞(f ◦ H1)δ = (F ◦ H1)(∞) − (F ◦ H1)(−∞) = F (1) −
F (0) = F (1−) − F (0−) =

∫
[0,1)

f . And, G need not be bounded. For example,
let G(x) = 1 + x−2 for x �= 0. The value of G at 0 is immaterial. Let f ∈ AR.
Then

∫
(− ∞,0)

(f ◦ G)G′ = (F ◦ G)(0−) − (F ◦ G)(−∞) = F (∞) − F (1+). We

have a1 = −∞, a2 = 0, ε2 = −, σ1 = +, which gives
∫ G(0−)

G(− ∞)+
f =

∫ ∞
1+

f =
F (∞) − F (1+) =

∫
(− ∞,0)

(f ◦ G)G′.

Theorem 9 (Translations). (a) AR is invariant under translation, that is,
f ∈ AR if and only if τtf ∈ AR for all t ∈ R. (b) ‖τtf ‖ = ‖f ‖ for all f ∈ AR

and all t ∈ R.

Proof. (a) Let f ∈ AR. Then f = F ′ for F ∈ BR. For φ ∈ D we have

〈(τtF )′, φ〉 = −〈τtF,φ′ 〉 = −〈F, τ−tφ
′ 〉 = −〈F, (τ−tφ)′ 〉

= 〈F ′, τ−tφ〉 = 〈τtF
′, φ〉 = 〈τtf,φ〉.

If f ∈ D ′ such that τtf ∈ AR, reverse the above steps.
(b) Note that ‖τtf ‖ = supx∈R |τtF (x)| = supx∈R |F (x − t)| = ‖F ‖ ∞ = ‖f ‖.

�
We have continuity in norm if for f ∈ AR we have ‖f − τxf ‖ → 0 as x → 0.

But this is not true in AR. For example, ‖H ′
1 − τxH ′

1‖ = 1 if x �= 0.

5. Integration by parts

An integration by parts formula is obtained using the Henstock–Stieltjes
integral. (See the Introduction.) This allows us to prove versions of the Hölder
inequality and Taylor’s theorem.
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The integration by parts formula in AR follows from integration by parts
for the Henstock–Stieltjes integral [21, p. 199]. The integrals

∫ ∞
− ∞ F dg and∫ ∞

− ∞ g dF exist when one of F and g is regulated and one is of bounded
variation. See also [31] and [33] where various properties of these integrals are
established.

We first need to define the product of f ∈ AR and g ∈ B V .

Proposition 10. For f ∈ AR and g ∈ B V , let {cn} contain all t ∈ R such
that both F and g are not right continuous at t. Define Ψ(x) = F (x)g(x) −∫ x

− ∞ F dg −
∑

cn<x[F (cn) − F (cn+)][g(cn) − g(cn+)]. Then Ψ ∈ BR. The sum
is over all n ∈ N such that cn < x. The integral and series defining Ψ converge
absolutely.

Proof. There is M ∈ R such that |g| ≤ M and V g ≤ M . Let x ∈ R. Then

|Ψ(x)| ≤ |F (x)|M +
∥∥Fχ(− ∞,x]

∥∥
∞V g + 2

∥∥Fχ(− ∞,x+1]

∥∥
∞V g

→ 0 as x → −∞.

This also shows that the integral and series defining Ψ converge absolutely.
Let y < x. Then

Ψ(y) − Ψ(x) = [F (y) − F (x)]g(y) +
∫ x

y

[F (t) − F (x)]dg(t)

−
∑

cn ∈[y,x)

[F (cn) − F (cn+)][g(cn) − g(cn+)]

so that, using the uniform left continuity of F (Theorem 2),

lim
y→x−

|Ψ(y) − Ψ(x)| ≤ lim
y→x−

|F (y) − F (x)|M + 2 lim
y→x−

sup
s,t∈[y,x]

|F (s) − F (t)|V g

= 0.

Therefore, Ψ is left continuous. Similarly, using the uniform right regularity
of F we see that Ψ has a right limit at each point. Letting x, y → ∞ in the
above inequality shows Ψ(∞) exists. �

If F is taken as regulated but not left continuous, then there is an additional
term in Ψ involving F (cn) − F (cn−). See [21, p. 199].

For an arbitrary distribution T ∈ D ′, we have the product Tψ defined for
all ψ ∈ C∞(R) by 〈Tψ,φ〉 = 〈T,ψφ〉 for φ ∈ D. Distributions in AR can be
multiplied by functions of bounded variation.

Definition 11 (Product). With Ψ as in Proposition 10 and φ ∈ D, the
product of f ∈ AR and g ∈ B V is defined by 〈fg,φ〉 = 〈Ψ′, φ〉 = −〈Ψ, φ′ 〉.

This defines fg ∈ AR since Ψ ∈ BR. Each of the three terms in Ψ is regu-
lated so the product Ψ(t)φ(t) is Riemann integrable.
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Definition 12 (Integration by parts). Let f ∈ AR and g ∈ B V and use the
notation of Proposition 10. Define the integral of fg by∫ ∞

− ∞
fg =

∫ ∞

− ∞
g dF

= F (∞)g(∞) −
∫ ∞

− ∞
F dg −

∑
n∈N

[F (cn) − F (cn+)][g(cn) − g(cn+)].

Notice that if F is continuous or if g is right continuous then the sum in
the integration by parts formula vanishes and we recover the more familiar
formula

∫ ∞
− ∞ fg = F (∞)g(∞) −

∫ ∞
− ∞ F dg. Note also that we have defined the

integration by parts formula to agree with the Stieltjes integral but we have
no way of proving the formula. However, when F is appropriately smooth
it reduces to the usual formula for Lebesgue (F ∈ AC ), Henstock–Kurzweil
(F ∈ ACG∗) and wide Denjoy integrals (F ∈ ACG). Density arguments show
we have the correct formula in AR. Since step functions are dense in the
regulated functions [21, Section 7.13], given f ∈ AR there is a sequence of step
functions {Fn} ∈ BR such that ‖Fn − F ‖ ∞ → 0. Definition 12 certainly holds
for fn = F ′

n and g ∈ B V . To see this it suffices, to prove the formula for f = δ,
F = H1 and g ∈ B V . We have F (∞)g(∞) = g(∞). To evaluate

∫ ∞
− ∞ F dg,

take a gauge γ that forces 0 to be a tag. If P = {([xn−1, xn], zn)}N
n=1 is γ-fine

then
N∑

n=1

H1(zn)[g(xn) − g(xn−1)] =
∑
zn>0

[g(xn) − g(xn−1)]

= g(∞) − g(z),

where z is the smallest positive tag in P . We can take γ so that z is as close
to 0 as we like. Therefore,

∫ ∞
− ∞ F dg = g(∞) − g(0+). And, −

∑
[H1(cn) −

H1(cn+)][g(cn) − g(cn+)] = g(0) − g(0+). Hence, F (∞)g(∞) −
∫ ∞

− ∞ F dg −∑
n∈N

[F (cn) − F (cn+)][g(cn) − g(cn+)] = g(0). And,
∑N

n=1 g(zn)[H1(xn) −
H1(xn−1)] = g(0) so that

∫ ∞
− ∞ g dF = g(0). The Hölder inequality (Theo-

rem 13 below) then gives |
∫ ∞

− ∞(fn − f)g| ≤ ‖Fn − F ‖∞ ‖g‖ B V → 0 as n → ∞.
This justifies the integration by parts formula.

The calculation above shows that
∫ ∞

− ∞ δg = g(0) for each function g that
has a right limit at 0 and a limit at ∞. Thus, the integration by parts formula
is in accordance with the action of δ as a measure. For example, let a ∈ R

and define

(7) ga(x) =

⎧⎪⎨
⎪⎩

0, x < 0,

a, x = 0,

1, x > 0.
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Then for φ ∈ D, we have 〈δga, φ〉 = 〈δ, gaφ〉 = aφ(0). Putting a = 0 gives
〈δH1, φ〉 = 0 so δH1 ∈ AR and δH1 = 0; a = 1 gives 〈δH2, φ〉 = φ(0) so δH2 ∈
AR and δH2 = δ. See [24] for references to other methods of multiplying the
Dirac and Heaviside distributions. We also see that changing g at even one
point can affect the value of the integral of fg, that is, for f = δ the integral
depends on the value of g(0). And, defining a function F to be the right side
of (7) we see that the integration by parts formula does not depend on our
convention of using left continuous primitives. For such F and any g ∈ B V ,
both right sides of Definition 12 give zero, provided we use the more general
formula [21, p. 199] that allows discontinuities from the left and right.

The integration by parts formula leads to a version of the Hölder inequality.
Note that B V is a Banach space under the norm ‖g‖B V = ‖g‖ ∞ + V g.

Theorem 13 (Hölder). Let f ∈ AR and g ∈ B V . Then |
∫ ∞

− ∞ fg| ≤
|
∫ ∞

− ∞ f | |g(∞)| + ‖f ‖V g ≤ ‖f ‖ ‖g‖ B V . The inequality is sharp in the sense that
if |

∫ ∞
− ∞ fg| ≤ ‖f ‖(α|g(∞)| +βV g) for all f ∈ AR and all g ∈ BR then α,β ≥ 1.

For each −∞ ≤ a ≤ ∞ there is the inequality |
∫ ∞

− ∞ fg| ≤ ‖f ‖(|g(a)| + 2V g).

Proof. Use the fact that
∫ ∞

− ∞ fg =
∫ ∞

− ∞ g dF . Given ε > 0 there is a parti-
tion {(zn, [xn−1, xn])}N

n=1 so that |
∫ ∞

− ∞ g dF −
∑N

n=1 g(zn)[F (xn) −
F (xn−1)]| < ε. Since F (x0) = F (−∞) = 0,

∣∣∣∣
∫ ∞

− ∞
fg

∣∣∣∣ ≤ ε +

∣∣∣∣∣
N∑

n=1

g(zn)[F (xn) − F (xn−1)]

∣∣∣∣∣
= ε +

∣∣∣∣∣
N∑

n=1

g(zn)F (xn) −
N −1∑
n=1

g(zn+1)F (xn)

∣∣∣∣∣
= ε +

∣∣∣∣∣F (∞)g(∞) −
N −1∑
n=1

F (xn)[g(zn+1) − g(zn)]

∣∣∣∣∣
≤ ε +

∣∣∣∣
∫ ∞

− ∞
f

∣∣∣∣|g(∞)| + ‖F ‖ ∞V g

≤ ε + ‖f ‖ ‖g‖B V .

The final estimate follows upon noting that |g(∞)| ≤ |g(a)| + |g(∞) − g(a)| ≤
|g(a)| + V g.

We can see the estimate is sharp by letting F (x) = (P/π)(π/2+arctan(x))
and g(x) = Q for x ≤ a and g(x) = R for x > a, where P > 0 and Q > R > 0.
Then

∫ ∞
− ∞ fg = PR+(Q − R)F (a). As a → ∞ we see this approaches F (∞) ×

g(∞) + ‖f ‖V g. �

For a proof using the Henstock–Stieltjes integral, see [31, Theorem 2.8] and
[33].
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Integration by parts and the fundamental theorem can be used to prove a
version of Taylor’s theorem.

Theorem 14 (Taylor). Let f : [a, ∞) → R. Let n ∈ N. If f ∈ Cn−1([a, ∞))
so that f (n) is regulated and right continuous on [a, ∞), then for all x ∈ (a, ∞)
we have f(x) = Pn(x) + Rn(x) where

Pn(x) =
n∑

k=0

f (k)(a)(x − a)k

k!
and Rn(x) =

1
n!

∫
(a,x]

f (n+1)(t)(x − t)n dt.

We have the estimates |Rn(x)| ≤ supa≤t<x |f (n)(t) − f (n)(a)|(x − a)n/n! for
x ∈ (a, ∞) and ‖Rnχ(a,b)‖ ≤ ‖Rnχ(a,b)‖1 ≤ (b − a)n+1 supa≤t<b |f (n)(t) −
f (n)(a)|/(n + 1)!.

Integration by parts gives an induction proof. The remainder exists because
the function t �→ (x − t)n is in B V for each x. The estimates on the remainder
follow from the Hölder inequality (Theorem 13). Note that Rn(x) = o((x −
a)n) as x → a+. If f (n) is left continuous on (−∞, a], then we expand f
in powers of a − x and Rn(x) = o((a − x)n) as x → a−. Usual versions of
Taylor’s theorem require f (n+1) to be integrable. For the Lebesgue integral,
this means taking f (n) to be absolutely continuous. Here we only require f (n)

to be regulated. The case n = 0 corresponds to Theorem 6.

6. Norms and dual space

Multipliers are those functions g for which fg is integrable for all inte-
grable f . In this section, we consider some equivalent norms on AR and then
show that the space of multipliers of AR and the dual space of AR are both
given by B V .

Theorem 15 (Equivalent norms). (a) The following norms are equivalent
to ‖ · ‖ in AR. For f ∈ AR, define ‖f ‖′ = supI |

∫
I
f |, where the supremum is

taken over all finite intervals I ⊂ R; ‖f ‖ ′ ′ = supg

∫
fg, where the supremum is

taken over all g ∈ B V such that ‖g‖ ∞ ≤ 1 and V g ≤ 1. (b) Let g ∈ B V and be
normalised so that g(x) = (1 − λ)g(x−) + λg(x+) for fixed 0 ≤ λ ≤ 1 and all
x ∈ R. Then for f ∈ AR we have |

∫ ∞
− ∞ fg| ≤ |

∫ ∞
− ∞ f | inf |g| + ‖f ‖ ′V g. (c) Let

a ∈ R. The norms ‖g‖ ′
B V = |g(a)| +V g and ‖g‖B V = ‖g‖ ∞ +V g are equivalent

on B V .

Proof. (a) Note that ‖f ‖ ≤ ‖f ‖′. And, we have ‖f ‖ ′ = supa<b |
∫
(a,b)

f | =
supa<b |F (b−) − F (a+)| ≤ 2‖f ‖. Similarly, for other types of intervals. Hence,

‖ · ‖ and ‖ · ‖ ′ are equivalent. Let g ∈ B V such that ‖g‖ ∞ ≤ 1 and V g ≤ 1. By
the Hölder inequality (Theorem 13),∣∣∣∣

∫ ∞

− ∞
fg

∣∣∣∣ ≤ ‖f ‖[|g(∞)| + V g] ≤ 2‖f ‖.
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And,

‖f ‖ ′ ′ ≥ max
(

sup
x∈R

∫ ∞

− ∞
fχ(− ∞,x], − sup

x∈R

∫ ∞

− ∞
fχ(− ∞,x]

)
.

It follows that 1
2 ‖f ‖ ′ ′ ≤ ‖f ‖ ≤ ‖f ‖ ′ ′.

(b) The alternative Hölder inequality is proved as Lemma 24 in [29].
(c) Clearly, ‖g‖′

B V ≤ ‖g‖ B V . Let x ∈ R. The inequality |g(x)| ≤ |g(a)| +
|g(a) − g(x)| ≤ |g(a)| + V g shows ‖g‖B V ≤ 2‖g‖ ′

B V . �
The Hölder inequality can be reformulated in any of these equivalent norms.
For the Henstock–Kurzweil and continuous primitive integral [30] the mul-

tipliers and dual space are the functions of essential bounded variation. (See
Example 3(d) for the definition.) For AR, the multipliers and dual space are
the functions of bounded variation.

Theorem 16. The set of multipliers for AR is B V .

Proof. The multipliers are defined in Definition 12. Hence, every function
of bounded variation is a multiplier. In order for a function g to be a multiplier
the integral

∫ ∞
− ∞ g dF must exist for every F ∈ BR. Taking F to be a step

function F =
∑

σnχ(an,bn] for disjoint intervals {(an, bn)} and σn ∈ R, we see
that

∫ ∞
− ∞ g dF =

∑
σn[g(an) − g(bn)]. Taking σn = sgn(g(an) − g(bn)) shows

g ∈ B V . �
If {fn} is a sequence in AR such that ‖fn‖ → 0 then the Hölder inequality

shows that
∫ ∞

− ∞ fng → 0 for each g ∈ B V . Hence, for each fixed g ∈ B V ,
Tg(f) :=

∫ ∞
− ∞ fg defines a continuous linear functional on AR. Hence, A ∗

R ⊃
B V . In fact, all continuous linear functionals on AR are of this form, i.e.,
A∗

R = B V . We can prove this by using the representation of the dual of the
space of regulated functions.

Various authors have used different specialised integrals to represent the
continuous linear functionals on regulated functions. See Kaltenborn [16]
(Dushnik interior integral) for compact intervals (also [14]), Hildebrandt [11]
(refinement or Young integral) for R, Tvrdý [31], [32], [33] (Henstock–Stieltjes
integral, where it is called the Perron–Stieltjes integral). Tvrdý gives a rep-
resentation for such a functional acting on regulated function F on compact
interval [a, b] as T (F ) = qF (a) +

∫ b

a
g dF for some function g ∈ B V and q ∈ R.

See also [27]. Extension to regulated functions on R follows by replacing a
with −∞ and b with ∞, using our definition of the Henstock–Stieltjes in-
tegral (Section 5) and compactification of R (Remark 3). For F ∈ BR, the
functional then becomes Tg(F ) =

∫ ∞
− ∞ g dF =

∫ ∞
− ∞ F ′g. The connection be-

tween the Dushnik interior and Young integrals is given in [13]. Equality of
Young and Henstock–Stieltjes integrals for one function regulated and one of
bounded variation is established in [26].

Theorem 17. The dual space of AR is B V (A ∗
R = B V ).
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Proof. Let ψ : AR → BR be given by ψ(f) = F . Then ψ−1 : BR → AR is
given by ψ−1(F ) = F ′. Let {fn} ⊂ AR such that ‖fn‖ → 0. Then ‖Fn‖ ∞ → 0.
If T ∈ A∗

R then T (fn) = T (ψ−1(Fn)) → 0. Hence, T ◦ ψ−1 ∈ B ∗
R. Using the

result of the previous paragraph, we have B ∗
R = B V . There exists g ∈ B V such

that T ◦ ψ−1(Fn) =
∫ ∞

− ∞ F ′
n dg =

∫ ∞
− ∞ fng. Hence, T (fn) =

∫ ∞
− ∞ fng. �

The integration by parts formula also shows that 〈f, g〉 =
∫ ∞

− ∞ fg for all
f ∈ AR and all g ∈ B V so that we could use integration by parts as a starting
point to define the integral as a continuous linear functional on B V .

In the space of Henstock–Kurzweil integrable functions, we identify func-
tions almost everywhere so the dual of this space is E B V rather than B V ,
that is, if T is a continuous linear functional on the space of Henstock–
Kurzweil integrable functions then there exists a function g ∈ B V such that
T (f) =

∫ ∞
− ∞ fg for each Henstock–Kurzweil integrable function f . The inte-

gral is that of Henstock–Kurzweil. Changing g on a set of measure zero does
not affect the value of this integral so the dual space is E B V .

In AR, we do not have this equivalence relation so the dual of AR is B V and
not E B V . Similarly, for no normalisation in B V (see Remark 5) is the dual of
AR equal to functions of normalised bounded variation. To see this, note that
the function g = χ{0} is not equivalent to 0 since

∫ ∞
− ∞ fg = F (0+) − F (0−).

But every normalisation makes g = 0.
No concrete description of B V ∗ seems to be known. But note that if {gn} ⊂

B V such that ‖gn‖ B V → 0 then
∫ ∞

− ∞ fgn → 0 for each f ∈ B V . Hence, Tf (g) =∫ ∞
− ∞ fg defines a continuous linear functional on B V . The Hölder inequality

shows that for each regulated function F the linear functional

TF (g) =
∫ ∞

− ∞
F dg = −

∫ ∞

− ∞
F ′g + F (∞)g(∞) − F (−∞)g(−∞)(8)

−
∑
n∈N

[F (cn) − F (cn+)][g(cn) − g(cn+)]

+
∑
n∈N

[F (cn) − F (cn−)][g(cn) − g(cn−)]

is in B V ∗, that is, if ‖gn‖ B V → 0 then TF (gn) → 0 in R. Hence, B V ∗ contains
the space of regulated functions. If we let F = χ{0}, then TF (g) =

∫ ∞
− ∞ F dg =

g(0+) − g(0−) and |TF (g)| ≤ V g so TF ∈ B V ∗ but as an element of AR, F ′ = 0.
Hence, B V ∗ � AR. And, consider the following example. Let S = {1/n | n ∈
N}, F = χS and define UF : B V → R by UF (g) =

∫ ∞
− ∞ F dg. Then F is not of

bounded variation and since limx→0+ F (x) does not exist, F is not regulated.
But, for g ∈ B V , UF (g) =

∑∞
n=1[g(n−1+) − g(n−1−)]. This can be seen by

taking a gauge that forces 0 to be a tag and forces n−1 to be a tag for some N0

and all 1 ≤ n ≤ N0. We then have |UF (g)| ≤ V g. This shows that UF ∈ B V ∗.
Hence, B V ∗ properly contains the space of regulated functions. More precisely,
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the space of regulated functions is identified with finitely additive measures
defined by μ([a, b]) = F (b+) − F (a−) for regulated function F . Similarly
for other intervals. These measures are defined on the algebra generated by
intervals.

Hildebrandt [13] and Aye and Lee [2] have given explicit representation of
the dual of B V ∗ in the topology of uniform bounded variation with uniform
convergence. A sequence {gn} ⊂ B V converges to 0 in this sense if ‖gn‖ ∞ → 0
and there is M ∈ R so that for all n ∈ N, V gn ≤ M . These authors show that
the dual of B V in this topology contains only (pairs of) regulated functions.
This dual must then be a proper subset of B V ∗ since UF from the preceding
paragraph is not continuous in the topology of uniform bounded variation
with uniform convergence. For example, define the piecewise linear functions
gn(x) = n−1

∑n
m=1(1 − m+m2x)χ[m−1,m−1+m−2](x). Then ‖gn‖ ∞ = 1/n and

V gn = 1. Hence, gn → 0 in the topology of [13] and [2]. But,

UF (gn) = n−1
n∑

m=1

F (m−1)[g(m−1+) − g(m−1−)] = 1 �→ 0.

Mauldin ([20] and references therein) and Hildebrandt [12] have given rep-
resentations of B V ∗ in terms of abstract integrals.

7. B V-module

In Definition 11, we have a product defined from AR × B V onto AR. It
has distributive, commutative and associative properties that make AR into
a Banach B V -module. See [6] for the definition. Properties of the integral of
fg then follow from properties of the product.

Theorem 18 (Products). Let f, f1, f2 ∈ AR; g, g1, g2 ∈ B V ; k ∈ R. The
product has the following properties. (a) Distributive. (f1 + f2)g = f1g +
f2g, f(g1 + g2) = fg1 + fg2. (b) Homogeneous. (kf)g = f(kg) = k(fg).
(c) Commutative. f(g1g2) = f(g2g1). (d) Compatible with distribution prod-
uct. 〈fg,φ〉 = 〈f, gφ〉 for all φ ∈ D. (e) Associative. (fg1)g2 = f(g1g2).
(f) Zero divisors. There are f �= 0 and g �= 0 such that fg = 0. (g) Com-
patible with pointwise product. If f and g are functions that are continuous
at a ∈ R, then 〈fg,φn〉 → f(a)g(a) for any δ-sequence supported at {a}.

Proof. Properties (a), (b) and (c) follow immediately from the definition.
Notice we can include terms in the sum (also labeled cn but not necessarily

points were F and g are simultaneously discontinuous from the right) so that
sup cn = ∞. To prove (d), let f ∈ AR, g ∈ B V and φ ∈ D. Then

〈fg,φ〉 = −
∫ ∞

− ∞
F (x)g(x)φ′(x)dx +

∫ ∞

− ∞

∫ x

− ∞
F (t)dg(t)φ′(x)dx

+
∫ ∞

− ∞

∑
cn<x

[F (cn) − F (cn+)][g(cn) − g(cn+)]φ′(x)dx.
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Note that |
∫ ∞

− ∞
∫ x

− ∞ F (t)dg(t)φ′(x)dx| ≤ ‖F ‖∞V g‖φ′ ‖1 so by the Fubini–
Tonelli theorem,

∫ ∞
− ∞

∫ x

− ∞ F (t)dg(t)φ′(x)dx = −
∫ ∞

− ∞ F (t)φ(t)dg(t). And,
|
∫ ∞

− ∞
∑

cn<x[F (cn) − F (cn+)][g(cn) − g(cn+)]φ′(x)dx| ≤ 2‖F ‖ ∞V g‖φ′ ‖1.
Again, ∫ ∞

− ∞

∑
cn<x

[F (cn) − F (cn+)][g(cn) − g(cn+)]φ′(x)dx

=
∞∑

n=1

[F (cn) − F (cn+)][g(cn) − g(cn+)]
∫

x>cn

φ′(x)dx

= −
∞∑

n=1

[F (cn) − F (cn+)][g(cn) − g(cn+)]φ(cn).

Therefore,

〈fg,φ〉 = −
∫ ∞

− ∞
F (t)g(t)φ′(t)dt −

∫ ∞

− ∞
F (t)φ(t)dg(t)(9)

−
∞∑

n=1

[F (cn) − F (cn+)][g(cn) − g(cn+)]φ(cn).

And, gφ ∈ B V with compact support, so using the continuity of φ,

〈f, gφ〉 =
∫ ∞

− ∞
f(gφ)

= −
∫ ∞

− ∞
F d(gφ) −

∑
[F (cn) − F (cn+)][g(cn)φ(cn) − g(cn+)φ(cn+)]

= −
∫ ∞

− ∞
F d(gφ) −

∑
[F (cn) − F (cn+)][g(cn) − g(cn+)]φ(cn).

Now show that
∫ ∞

− ∞ F d(gφ) =
∫ ∞

− ∞ Fg dφ +
∫ ∞

− ∞ Fφdg. Each of these inte-
grals exists because, in each case, one of the integrands and integrators is
of bounded variation and one is regulated. For ε > 0 there is then a tagged
partition {(zn, [xn−1, xn])}N

n=1 such that |SN −
∫ ∞

− ∞ F d(gφ) +
∫ ∞

− ∞ Fg dφ +∫ ∞
− ∞ Fφdg| < ε, where

SN =
N∑

n=1

F (zn){[g(xn)φ(xn) − g(xn−1)φ(xn−1)]

− g(zn)[φ(xn) − φ(xn−1)] − φ(zn)[g(xn) − g(xn−1)]}.

But,

|SN | ≤
N∑

n=1

|F (zn)| { |[g(xn) − g(xn−1)| |φ(xn) − φ(zn)|

+ |g(xn−1) − g(zn)| |φ(xn) − φ(xn−1)| }.
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Since φ is uniformly continuous we can arrange the partition so that the max-
imum of |φ(xn) − φ(tn)| for tn ∈ [xn−1, xn] is less than ε for each 1 ≤ n ≤ N .
Then |SN | ≤ 2ε‖F ‖ ∞V g. Hence,

∫ ∞
− ∞ F d(gφ) =

∫ ∞
− ∞ Fg dφ +

∫ ∞
− ∞ Fφdg.

Now using (9) we see that 〈fg,φ〉 = 〈f, gφ〉.
Associativity (e) then follows by writing 〈f(g1g2), φ〉 = 〈f, (g1g2)φ〉 = 〈f,

g1(g2φ)〉 = 〈fg1, g2φ〉 = 〈(fg1)g2, φ〉.
To prove (f), let F ∈ BR and g ∈ B V be continuous with disjoint support.

Then F ′g = 0.
A δ-sequence supported at a is a sequence {φn} ⊂ D such that φn ≥ 0,∫ ∞

− ∞ φn = 1, supp(φn) is an interval containing a in its interior such that
supp(φn) → {a}. For such a sequence, suppose supp(φn) ⊂ [a − δ, a+δ]. Then
for (g), ∣∣∣∣f(a)g(a) −

∫ ∞

− ∞
fgφn

∣∣∣∣ =
∣∣∣∣
∫ ∞

− ∞
[f(a)g(a)φn − fgφn]

∣∣∣∣
≤

∫ a+δ

a−δ

|f(a)g(a) − f(x)g(x)|φn(x)dx

→ 0 using the continuity of f and g. �
If g ∈ C∞, then we see the product reduces to the usual product of a dis-

tribution and a smooth function (cf. the paragraph preceding Definition 11).
Each result in Theorem 18 concerning a product can be integrated. For

example,
∫ ∞

− ∞ f(gh) =
∫ ∞

− ∞(fg)h. Taking g to be the characteristic function
of an interval and integrating by parts recovers each of the four integrals
defined in (1)–(4):

∫ ∞
− ∞ fχI =

∫
I
f for any interval I . Each of the integrals∫ ∞

− ∞ F dχI and
∫ ∞

− ∞ χI dF exists as a Henstock–Stieltjes integral because we
can take a gauge that forces endpoints of I to be tags. If F is not continuous
at the endpoints of I , then these integrals will not exist as Riemann–Stieltjes
integrals.

The usual pointwise product makes B V into an algebra with unit g = 1.
Our product on AR × B V makes AR into a (left) Banach B V -module.

Theorem 19 (Banach B V -module). B V is a Banach algebra. AR is a
Banach B V -module.

Proof. For g1, g2 ∈ B V , the inequalities

‖g1g2‖ B V = ‖g1g2‖ ∞ + V (g1g2)
≤ ‖g1‖ ∞ ‖g2‖ ∞ + ‖g1‖ ∞V g2 + V g1‖g2‖ ∞

≤ ‖g1‖ B V ‖g2‖ B V

show that B V is closed under multiplication. It then follows easily that B V is
a Banach algebra.

The second statement follows from (a), (b), (c) and (e) of Theorem 18 and
the inequality ‖fg‖ ≤ ‖f ‖ ‖g‖B V , valid for all f ∈ AR and g ∈ B V . �
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Notice that B V is not a division ring since χ[0,1] �= 0 has no multiplicative
inverse. There are zero divisors. For example, χ[0,1]χ[2,3] = 0.

Notice that if g1, g2 ∈ B V then (g1g2)′ = g′
1g2 + g1g

′
2 ∈ AR. The product on

the left is pointwise in B V while the products on the right are as per Defini-
tion 11. Hence, the distributional derivative is a derivation on the algebra B V
into the Banach B V -module AR. See [6].

8. Absolute integrability

The primitives of an L1 function are absolutely continuous and hence are
functions of bounded variation. Whereas, if function f is Henstock–Kurzweil
or wide Denjoy integrable but |f | is not integrable in this sense then the
primitives of f are not of bounded variation. We use this observation to define
absolute integrability in AR. We also show that L1 and the space of signed
Radon measures are embedded continuously in AC and AR, respectively.

Definition 20 (Absolute integrability, N B V ). Define the functions of nor-
malised bounded variation as N B V = BR ∩ B V . A distribution f ∈ AR is
absolutely integrable if it has a primitive F ∈ N B V . Denote the space of ab-
solutely integrable distributions by AN B V .

Hence, A N B V is isometrically isomorphic to the space of signed Radon
measures under the Alexiewicz norm. For f ∈ AN B V , let its primitive in
N B V be F . As in Example 3(d), there is a unique signed Radon measure μ
such that F ′ = μ, i.e., 〈F,φ′ 〉 = −

∫ ∞
− ∞ φdμ for all φ ∈ D. And, if μ is a signed

Radon measure then a function defined by F (x) = μ((−∞, x)) is in N B V . The
Alexiewicz norm of μ identified with f ∈ AN B V is ‖μ‖ = supx∈R |μ((−∞, x))|.

This then gives an alternative definition of the regulated primitive integral.
It is the completion of the space of signed Radon measures in the Alexiewicz
norm. Integration in A N B V is thus Lebesgue integration.

Denote the space of signed Radon measures by M. A norm is given by
‖μ‖M = |μ|(R) = μ+(R) + μ−(R), which is the total variation of μ.

Theorem 21. (a) N B V is a Banach subspace of BR under the norm
‖g‖ B V = ‖g‖ ∞ + V g. (b) For each a ∈ R, the norms ‖g‖ B V and ‖g‖ B Va :=
|g(a)| + V g are equivalent. (c) N B V is not a Banach space under ‖ · ‖ ∞.
(d) N B V is dense in BR. The completion of N B V in ‖ · ‖ ∞ is BR. (e) AN B V
is a Banach subspace of AR. (f) AR is the completion of the space of signed
Radon measures in the Alexiewicz norm. (g) The embeddings L1 ↪→ AC and
M ↪→ AR are continuous.

Proof. (a) It is a classical result that functions of bounded variation form
a Banach space. For example, see [17]. The case of N B V is similar, as in
the proof of Theorem 2. (b) See Theorem 15(c). (c) Let g(x) = x sin(x−2) for
x > 0 and g(x) = 0 for x ≤ 0. Then g ∈ C0 \ B V . Let gn = [1 − χ[0,(nπ)−1/2]]g.
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Each gn ∈ N B V . And, ‖gn − g‖ ∞ ≤ (nπ)−1/2 → 0. In ‖ · ‖∞, the sequence
{gn} converges to g /∈ B V . (d) Let F ∈ BR and let ε > 0 be given. There
exists M > 0 such that |F (x)| < ε for all x ≤ −M and |F (x) − F (∞)| < ε for
all x ≥ M . For each x ∈ [−M,M ] there is δx > 0 such that if y ∈ (x − δx, x],
then |F (y) − F (x)| < ε and if y ∈ (x,x + δx) then |F (y) − F (x+)| < ε. Let
Ix = (x − δx, x + δx). The collection {Ix}x∈[−M,M ] is an open cover of the
compact interval [−M,M ]. There is then a finite subcover, {Ix}x∈J for some
finite set J ∈ [−M,M ]. We can then take open subintervals I ′

x ⊂ Ix such that
each point in [−M,M ] is in either one or two of these intervals. Then we
can define g(x) = 0 for x ≤ −M , g(x) = F (∞) for x > M and g is piecewise
constant on each interval I ′

x such that g ∈ N B V and ‖g − F ‖∞ < ε. Hence,
N B V is dense in BR and its completion is BR. (e), (f) These follow from the
isomorphism between AR and BR given by the integral. (g) For μ ∈ M we
have

‖μ‖ = sup
x∈R

|μ((−∞, x))| ≤ sup
x∈R

[μ+((−∞, x)) + μ−((−∞, x))] = ‖μ‖ M.

If f ∈ L1 then ‖f ‖ = supx∈R |
∫ x

− ∞ f | ≤ ‖f ‖1. �

In Proposition 24 below, it is shown that distributions in AR are finitely
additive measures that are finite when their primitives are of bounded varia-
tion.

Here is an alternative way of defining functions of normalised bounded
variation. Fix 0 ≤ λ ≤ 1. For g ∈ B V define gλ(x) = (1 − λ)g(x−) + λg(x+),
gλ(−∞) = g(−∞) and gλ(∞) = g(∞). Define N B V λ = {gλ | g ∈ B V }. Then

N B V λ is a Banach space under ‖g‖B V = ‖g‖ ∞ +V g. The connection with the
functions of essential bounded variation is the following. As in Example 3(d),
we have E B V = {g ∈ L1

loc | essvarg < ∞}. This is a Banach space under the
norm ‖g‖E B V = ess sup |g| + essvarg. The space E B V consists of equivalence
classes of functions identified almost everywhere. For each g ∈ E B V , there is a
unique gλ ∈ N B V λ such that ess supg = ‖gλ‖ ∞ and essvarg = V gλ. For each
0 ≤ λ ≤ 1, the Banach spaces N B V λ and E B V are isometrically isomorphic.
These spaces are distinct from B V . For example, χ{0} is equivalent to 0
in E B V , its normalisation is 0 in N B V λ but V χ{0} = 2 in B V . Note that
N B V is isometrically isomorphic to the signed Radon measures and to AN B V ,
whereas N B V λ is isometrically isomorphic to A N B V × R. If g ∈ N B V λ then
its distributional derivative is a Radon measure μ and g(−∞) ∈ R. For more
on essential variation see [35].

If F ∈ N B V , then there are increasing functions of normalised bounded
variation G and H such that F = G − H . A distribution T is positive if
〈T,φ〉 ≥ 0 for each φ ∈ D with φ ≥ 0. Suppose φ ≥ 0. Let [a, b] contain the
support of φ. By the second mean value theorem for integrals [21, p. 211],
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there is ξ ∈ [a, b] such that

〈G′, φ〉 = −
∫ b

a

Gφ′ = −
[
G(a)

∫ ξ

a

φ′ + G(b)
∫ b

ξ

φ′
]

= [G(b) − G(a)]φ(ξ) ≥ 0.

Hence, f ∈ A N B V if and only if it can be written as f = G′ − H ′ for G,H ∈
N B V with G′,H ′ ≥ 0.

In the next section, we will introduce an ordering suitable for all distribu-
tions in AR.

9. Banach lattice

In BR, there is the partial order: F ≤ G if and only if F (x) ≤ G(x) for all
x ∈ R. Note that this order depends on our choice that functions in BR be
left continuous. Since AR is isomorphic to BR it inherits this partial order.
For f, g ∈ AR, define f � g if and only if F ≤ G, where F and G are the
respective primitives in BR. This order is not compatible with the usual
order on distributions: if T,U ∈ D ′ then T ≥ U if and only if 〈T − U,φ〉 ≥ 0
for all φ ∈ D such that φ ≥ 0. Nor is it compatible with pointwise ordering in
the case of functions in AR. For example, if f(t) = H1(t) sin(t2) then F ≥ 0
so f � 0 in AR but not pointwise. And, f is not positive in the distributional
sense. Note, however, that if f ∈ AR is a measure or a nonnegative function
or distribution then f � 0 in AR.

The importance of this ordering is that it interacts with the Alexiewicz
norm so that AR is a Banach lattice. If � is a binary operation on set S, then
it is a partial order if for all x, y, z ∈ S it is reflexive (x � x), antisymmetric
(x � y and y � x imply x = y) and transitive (x � y and y � z imply x � z).
If S is a Banach space with norm ‖ · ‖S and � is a partial order on S, then S
is a Banach lattice if for all x, y, z ∈ S

(1) x ∨ y and x ∧ y are in S. The join is x ∨ y = sup{x, y} = w such that
x � w, y � w and if x � w̃ and y � w̃ then w � w̃. The meet is x ∧ y =
inf{x, y} = w such that w � x, w � y and if w̃ � x and w̃ � y then w̃ � w.

(2) x � y implies x + z � y + z.
(3) x � y implies kx � ky for all k ∈ R with k ≥ 0.
(4) |x| � |y| implies ‖x‖S ≤ ‖y‖S .
If x � y, we write y � x. We also define |x| = x ∨ (−x), x+ = x ∨ 0 and
x− = (−x) ∨ 0. Then x = x+ − x− and |x| = x+ + x−.

We have absolute integrability: if f ∈ AR so is |f |. The lattice operations
are defined for F,G ∈ BR by (F ∨ G)(x) = sup(F,G)(x) = max(F (x),G(x)).
And, (F ∧ G)(x) = inf(F,G)(x) = min(F (x),G(x)).

Theorem 22 (Banach lattice). (a) BR is a Banach lattice. (b) For f, g ∈
AR, define f � g if F ≤ G in BR. Then AR is a Banach lattice isomorphic
to BR. (c) Let F,G ∈ BR. Then (F ∨ G)′ = F ′ ∨ G′, (F ∧ G)′ = F ′ ∧ G′,
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|F ′ | = |F | ′, (F+)′ = (F ′)+, and (F −)′ = (F ′)−. (d) If f ∈ AR then |f | ∈ AR

with primitive |F | ∈ BR. For each interval I ⊂ R, we have |
∫

I
f | ≥ |

∫
I

|f | |.
For each −∞ < x ≤ ∞, we have |

∫
(− ∞,x)

f | =
∫
(− ∞,x)

|f |. And, ‖|f | ‖ = ‖f ‖,
‖f ± ‖ ≤ ‖f ‖. (e) If f ∈ AR then f ± ∈ AR with respective primitives F ± ∈ BR.
Jordan decomposition: f = f+ − f −. And,

∫
I
f =

∫
I
f+ −

∫
I
f − for every

interval I ⊂ R. (f) AR is distributive: f ∧ (g ∨ h) = (f ∧ g) ∨ (f ∧ h) and
f ∨ (g ∧ h) = (f ∨ g) ∧ (f ∨ h) for all f, g, h ∈ AR. (g) AR is modular: For all
f, g ∈ AR, if f � g then f ∨ (g ∧ h) = g ∧ (f ∨ h) for all h ∈ AR. (h) Let F and
G be regulated functions on R with real limits at ±∞. Then

F ′ � G′ ⇐⇒ F (x−) − F (−∞) ≤ G(x−) − G(−∞) ∀x ∈ R(10)
⇐⇒ F (x+) − F (−∞) ≤ G(x+) − G(−∞) ∀x ∈ R.(11)

Proof. (a) Let F,G ∈ BR. Define Φ = (F ∨ G) and Ψ = (F ∧ G). We
need to prove Φ,Ψ ∈ BR. Let a ∈ R and prove Φ is left continuous at a.
Suppose F (a) > G(a). Given ε > 0 there is δ > 0 such that |F (x) − F (a)| < ε,

|G(x) − G(a)| < ε and F (x) > G(x) whenever x ∈ (a − δ, a). For such x, |Φ(x) −
Φ(a)| = |F (x) − F (a)| < ε. If F (a) = G(a), then |Φ(x) − Φ(a)| ≤ max(|F (x) −
F (a)|, |G(x) − G(a)|) < ε. Therefore, Φ is left continuous on (−∞, ∞]. For
x ∈ (−∞,1/δ) we can assume max(|F (x)|, |G(x)|) < ε. Therefore, |Φ(x)| < ε.
Similarly, Φ has a right limit at each point so that Φ ∈ BR. Similarly with the
infimum. Hence, Φ,Ψ ∈ BR.

The following properties follow immediately from the definition. If F ≤ G,
then for all H ∈ BR we have F + H ≤ G + H . If F ≤ G and a ≥ 0 then
aF ≤ aG. If |F | ≤ |G|, then ‖F ‖ ∞ ≤ ‖G‖ ∞. Hence, BR is a Banach lattice.

(b), (c) First, we show that AR is closed under the operations f ∨ g and
f ∧ g. For f, g ∈ AR, we have f ∨ g = sup(f, g). This is h such that f � h,
g � h, and if f � h̃, g � h̃, then h � h̃. This last statement is equivalent to
F ≤ H , G ≤ H , and if F ≤ H̃ , G ≤ H̃ , then H ≤ H̃ . But then H = max(F,G)
and h = H ′ so f ∨ g = (F ∨ G)′ ∈ AR. Similarly, f ∧ g = (F ∧ G)′ ∈ AR.
And, |F ′ | = F ′ ∨ (−F ′) = F ′ ∨ (−F )′ = (F ∨ (−F ))′ = |F | ′. The proofs that
(F+)′ = (F ′)+ and (F −)′ = (F ′)− are similar.

If f, g ∈ AR and f � g, then F ≤ G. Let h ∈ AR. Then, F + H ≤ G + H .
But then (F + H)′ = F ′ + H ′ = f + h � g + h. If k ∈ R and k ≥ 0, then
(kF )′ = kF ′ = kf so kf � kg. And, if |f | � |g| then |F | ′ � |G| ′ so |F | ≤ |G|,
that is, |F (x)| ≤ |G(x)| for all x ∈ R. Then ‖f ‖ = ‖F ‖∞ ≤ ‖G‖∞ = ‖g‖. And,
AR is a Banach lattice that is isomorphic to BR.

(d) Note that |
∫
(a,b)

f | = |F (b−) − F (a+)| ≥ | |F (b−)| − |F (a+)| | =
|
∫
(a,b)

|F | ′ | = |
∫
(a,b)

|F ′ | |. Similarly for other intervals. The other parts of
(d) and (e) follow from (c) and the definitions. (f) The real-valued functions
on any set form a distributed lattice due to inheritance from ≤ in R. There-
fore, BR is a distributed lattice and hence so is AR. See [19, p. 484] for an
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elementary proof and for another property of distributed lattices. (g) Mod-
ularity is also inherited from ≤ in R via BR. (h) We have F ′,G′ ∈ AR with
respective primitives ΦF ,ΦG ∈ BR given by ΦF (x) = F (x−) − F (−∞) and
ΦG(x) = G(x−) − G(−∞). The definition of order then gives (10). The rela-
tions F (x±) = limy→x± F (y) = limy→x± F (y−) then give (11). �

For the function f(t) = H1(t) sin(t2), we have f+ = |f | = f and f − = 0.
Notice that the definition of order allows us to integrate both sides of f � g

in AR to get F ≤ G in BR. The isomorphism allows us to differentiate both
sides of F ≤ G in BR to get F ′ � G′ in AR. If F and G are regulated functions
on R with real limits at ±∞, then the inequality |F ′ | � G′ lets us prove that
|F (x±)| − |F (−∞)| ≤ G(x±) − G(−∞) for all x ∈ R. This is then a type
of mean value theorem. See [18] where the inequality |F ′(x)| ≤ G′(x) yields

|F (b) − F (a)| ≤ G(b) − G(a) under the assumption that F is continuous or
absolutely continuous and the first inequality holds except on a countable set
or set of measure zero. In [18], G is required to be increasing.

A lattice is complete if every subset that is bounded above has a supremum.
But BR is not complete. Let Fn(x) = H1(x − 1/n) sin(π/x) and let S = {Fn |
n ∈ N}. Then an upper bound for S is H1 but sup(S)(x) = H1(x) sin(π/x),
which is not regulated. Hence, AR is also not complete.

In this section, we have considered only the most elementary lattice prop-
erties. Other questions, such as the relation of AR and BR to abstract L
spaces and abstract M spaces, will be dealt with elsewhere.

10. Topology and measure

In this section, we define a topology on R so that regulated functions are
continuous. We then describe AR in terms of finitely additive measures.

The topology of half-open intervals or Sorgenfrey topology on the real line
is defined by taking a base to be the collection of all intervals (a, b] for all
−∞ < a < b < ∞. See, for example, [3, p. 156]. Call the resulting topology τL.
Then (R, τL) is separable and first countable but not second countable. This
topology is finer than the usual topology on R, hence it is a Hausdorff space.
However, it is not locally compact. Each interval (a, b] is also closed. Observe
that [0,1] ⊂ (−1,0] ∪

⋃∞
n=1(1/(n + 1),1/n], so [0,1] is not compact in τL. In

fact, each compact set is countable.
All functions in BR are continuous in (R, τL). This follows from the fact

that every regulated function is the uniform limit of a sequence of step func-
tions [21, Section 7.13]. Hence, it is only necessary to consider H1. But we
have H−1

1 ((0.5,1.5)) = (0, ∞) ∈ τL and H−1
1 ((−0.5,0.5)) = (−∞,0] ∈ τL. No-

tice that right continuous functions need not be continuous in (R, τL). For
example, H−1

2 ((0.5,1.5)) = [0, ∞) /∈ τL. See Example 3(e) for the definition
of H2. Functions such as f(x) = sin(1/x) for x > 0 and f(x) = 0, otherwise,
and g(x) = 1/x for x > 0 with g(x) = 0, otherwise, are continuous in (R, τL),
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that is, left continuous functions are continuous as functions from (R, τL) to
R with the usual topology.

If X is a nonempty set, then an algebra on X is a collection of sets A ⊂ P(X)
such that (i) ∅,X ∈ A and if E,F ∈ A then (ii) E ∪ F ∈ A and (iii) E \ F ∈ A.
Since E \ F = (X \ F ) \ (X \ E), (iii) can be replaced with X \ E ∈ A. By de
Morgan’s laws, A is also closed under intersections. Hence, A is closed under
finite unions and intersections. A set E ⊂ R is a B V set if χE ∈ B V . If A is
an algebra, then ν : A → R is a finitely additive measure if whenever E,F ∈ A
such that E ∩ F = ∅ then ν(E ∪ F ) = ν(E)+ν(F ). Notice that ν(∅) = 0. We
have the following results.

Proposition 23. (a) The B V sets form an algebra over R. (b) If f ∈ AR

define νf (∅) = 0 and νf (E) =
∫ ∞

− ∞ fχE for a B V set E. Then νf is a finitely
additive measure on B V sets. If S is a B V set, then |f(S)| ≤ ‖f ‖(1 + V χS).

Proof. (a) Note that χ∅ = 0 ∈ B V and χR = 1 ∈ B V . If E and F are
B V sets, then χR\E = 1 − χE ∈ B V . And, χE∪F = χR\[(R\E)∩(R\F )] = 1 −
χ(R\E)∩(R\F ) = 1 − χR\EχR\F = 1 − [1 − χE ][1 − χF ] = χE + χF − χEχF ∈
B V . (b) Since the functions of bounded variation are multipliers for AR, we
have that νf is a real-valued function on B V sets. If E and F are disjoint
B V sets, then χE∪F = χE + χF and νf (E ∪ F ) =

∫ ∞
− ∞ fχE∪F =

∫ ∞
− ∞ f(χE +

χF ) =
∫ ∞

− ∞ fχE +
∫ ∞

− ∞ fχF = νf (E) + νf (F ). We have |f(S)| = |
∫ ∞

− ∞ fχS | ≤
‖f ‖(1 + V χS) using the Hölder inequality Theorem 13. �

A finitely additive measure ν on algebra A is finite if supE∈A |ν(E)| < ∞.
As finitely additive measures, elements of AR need not be finite. For example,
if g(x) = sin(x)/x for x �= 0 then f := Tg ∈ AR. Let En =

⋃n
k=0[2kπ, (2k+1)π].

Then νf (En) → ∞ as n → ∞. We have the following connection between
absolute integrability and the finitely additive measures that are finite in AR.

Proposition 24. Let f ∈ AR. Then νf is finite if and only if F ∈ N B V .

Proof. Let F ∈ N B V and E be a B V set. Then |νf (E)| = |
∫ ∞

− ∞ χE dF | ≤
V F . Hence, |νf | ≤ V F < ∞.

Suppose |νf | < ∞. Let (xi, yi) be disjoint intervals. Then
∑

|F (xi) −
F (yi)| = νf (

⋃
[xi, yi)). Therefore, F ∈ N B V . �

The B V sets do not form a σ-algebra. For example, the set
⋃∞

n=1[2n,2n+1]
is not a B V set.

Let F : R → R be any function. Let I be an interval with endpoints −∞ ≤
a < b ≤ ∞. Define ν(∅) = 0 and ν(I) = F (b) − F (a). Then ν is a finitely
additive measure on B V sets. But F need not be regulated so AR does not
contain all finitely additive measures on B V sets.



THE REGULATED PRIMITIVE INTEGRAL 1215

11. Convergence theorems

There are different modes of convergence in AR. If {fn} ⊂ AR then fn →
f ∈ AR strongly if ‖fn − f ‖ → 0. The convergence is weak in D if 〈fn − f,φ〉 =∫ ∞

− ∞(fn − f)φ → 0 for all φ ∈ D and the convergence is weak in B V if
∫ ∞

− ∞(fn −
f)g → 0 for all g ∈ B V . Clearly, strong convergence implies weak convergence
in B V (Theorem 15), which implies weak convergence in D. We would like
conditions under which

∫ ∞
− ∞ fn →

∫ ∞
− ∞ f . Certainly weak convergence in B V

is sufficient, take g = 1. Weak convergence in D is not sufficient. For example,
let fn = τnδ, for which Fn(x) = H1(x − n). Then {fn} converges weakly in D
to 0 but Fn(∞) = 1.

Strong convergence is equivalent to uniform convergence of the sequence of
primitives.

Theorem 25. Let {fn} ⊂ AR and let {Fn} ⊂ BR be the respective prim-
itives. Suppose F : R → R and Fn → F on R. (a) Fn → F uniformly on R

if and only if ‖fn − f ‖ → 0. (b) If Fn → F uniformly on R then F ′ ∈ AR,
fn → F ′ strongly and

∫ ∞
− ∞ fng →

∫ ∞
− ∞ F ′g for each g ∈ B V . In particular,∫

I
fn →

∫
I
F ′ for each interval I ⊂ R.

Part (b) follows from the Hölder inequality.
If {Fn} is a sequence of continuous functions that converges uniformly to

function F then F is continuous. A necessary and sufficient condition for F
to be continuous is that the convergence be quasi-uniform. Because of our
compactification of R (Remark 3), Arzelà’s theorem applies. See [7, p. 268].
We have a similar criteria for regulated functions.

Theorem 26. Let each function Fn : R → R be regulated on R. Suppose
Fn → F at each point in R. We require F (±∞) ∈ R and Fn(±∞) ∈ R for
each n ∈ N but do not require Fn(±∞) = limx→ ± ∞ Fn(x). Let ε > 0. Suppose
that for each a ∈ R and each N ∈ N there exist n ≥ N and δ > 0 such that if
x ∈ (a − δ, a + δ) then |Fn(x) − F (x)| < ε, for a ∈ R. For a = −∞ we require
x ∈ [−∞, −1/δ). For a = ∞ we require x ∈ (1/δ, ∞]. Then F is regulated
on R.

Proof. Let ε > 0. Write

|F (x) − F (y)| ≤ |F (x) − Fn(x)| + |F (y) − Fn(y)| + |Fn(x) − Fn(y)|.
We have n ≥ 1 and δn > 0 such that if x ∈ (1/δn, ∞] then |F (x) − Fn(x)| < ε.
Each Fn has a limit at ∞ so there is ηn > 0 such that if x, y ∈ (1/ηn, ∞) then
|Fn(x) − Fn(y)| < ε. Take δ = min(δn, ηn). If x, y ∈ (1/δ, ∞), then |F (x) −
F (y)| < 3ε. Hence, limx→∞ F (x) exists. Similarly, F has a limit at −∞.

The proof that F has a left limit at a ∈ R is similar. Now the intervals be-
come x ∈ (a − δn, a) and x, y ∈ (a − ηn, a) and finally x, y ∈ (a − δ, a). Similarly
for the right limit. �
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See [9, Proposition 3.6] for a another sufficient condition on {Fn}, called
bounded ε-variation, that ensures F is regulated.

Corollary 27. If {Fn} ⊂ BR, then F ∈ BR. Now, as usual for functions
in BR, we define Fn(±∞) = limx→ ± ∞ Fn(x). Let fn = F ′

n and f = F ′. Then
for each x ∈ (−∞, ∞] we have

∫
(− ∞,x)

fn →
∫
(− ∞,x)

f .

Proof. Let ε > 0. For a ∈ R, write

|F (x) − F (a)| ≤ |F (x) − Fn(x)| + |Fn(x) − Fn(a)| + |Fn(a) − F (a)|.
Since Fn(a) → F (a) we have Na ∈ N such that if n ≥ Na then |Fn(a) −
F (a)| < ε. We now have existence of n ≥ Na and δn > 0 such that if x ∈
(a − δn, a] then |F (x) − Fn(x)| < ε. And, each Fn is left continuous at a so
there is ηn > 0 such that if x ∈ (a − ηn, a] then |Fn(x) − Fn(a)| < ε. Take
δ = min(δn, ηn). If x ∈ (a − δ, a], then |F (x) − F (a)| < 3ε so F is left con-
tinuous at a. Similarly, limx→ − ∞ F (x) = 0 = F (−∞) and limx→∞ F (x) =
F (−∞) ∈ R. �

The Sorgenfrey topology of Section 10 makes each function in BR contin-
uous. However, no interval in R is compact in this topology. Hence, Arzelà’s
theorem ([7, p. 268]), establishing that quasi-uniform convergence is a neces-
sary and sufficient condition for the limit of a sequence of continuous functions
to be continuous, is not applicable. We do not know necessary and sufficient
conditions under which a sequence in BR will converge to a function in BR.
However, Theorem 25 and Theorem 32 give a sufficient condition while The-
orem 26 and Theorem 29 with their corollaries give conditions under which
left continuity is preserved.

Example 28. The example fn = τnδ in the first paragraph of this section
shows the condition at ∞ cannot be dropped. For then, we have Fn(x) =
H1(x − n). For each x ∈ R, we have Fn(x) → 0 but Fn(∞) = 1 so F (x) = 0 for
x ∈ [−∞, ∞) and F (∞) = 1. Hence, F /∈ BR. Although fn → 0 weakly in D,
we have

∫ ∞
− ∞ fn = Fn(∞) = 1 �→ 0. Note that if n < x < ∞ then |Fn(x) −

F (x)| = 1 so the condition at infinity in Theorem 26 is not satisfied.

Weak convergence in D of fn to f is not sufficient for {Fn} to converge to
a function in BR. The following theorem gives conditions in addition to weak
convergence in D so that

∫
(− ∞,x)

fn →
∫
(− ∞,x)

f .

Theorem 29. Let {fn} ⊂ AR and let F : R → R be regulated and left con-
tinuous on R with real limits at ±∞. Suppose {Fn} is uniformly bounded on
each compact interval in R and Fn → F on R. Then fn → F ′ weakly in D
and

∫
(− ∞,x)

fn →
∫
(− ∞,x)

F ′ for each x ∈ (−∞, ∞].

The ordering introduced in Section 9 restores absolute convergence to the
integral. Using this order, we can rephrase part of the above conditions in
terms of dominated convergence.
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Corollary 30. Let {fn} ⊂ AR and let F : R → R be regulated and left
continuous on R with real limits at ±∞. Suppose there is g ∈ AR such that
|fn| � g for all n ≥ 1. Suppose fn → f weakly in D for some f ∈ D ′. Suppose
Fn → F on R. Then f = F ′ ∈ AR and

∫
(− ∞,x)

fn →
∫
(− ∞,x)

f for each x ∈
(−∞, ∞].

The proofs are easy modifications of Theorems 8 and 9 in [1]. See also
Theorem 17 in [30].

Example 31. Let fn = nχ(0,1/n) − τ1/nδ. Then Fn(x) = nx for 0 ≤ x ≤ 1/n

and Fn(x) = 0, otherwise. We have Fn → 0 on R. The convergence is
not uniform, since Fn(1/n) = 1. Theorem 25 is not applicable. The con-
vergence Fn → 0 on R satisfies the conditions of Corollary 27. This then
gives

∫
(− ∞,x)

fn → 0 for each x ∈ (−∞, ∞]. Note that |Fn(x)| ≤ 1 so {Fn}
is uniformly bounded. Theorem 29 then gives the same conclusion. Note
that 0 ≤ Fn ≤ H1, so |fn| � H ′

1 = δ ∈ AR. For φ ∈ D, we have
∫ ∞

− ∞ fnφ =
n

∫ 1/n

0
φ(x)dx − φ(1/n) → 0 by continuity. Hence, fn → 0 weakly and Corol-

lary 30 also gives the same conclusion.

The following theorem follows from the Hölder inequality. See also [31],
[33].

Theorem 32 (Uniform bounded variation). Suppose {fn} ⊂ AR, f ∈ AR,
{gn} ⊂ B V and g ∈ B V such that ‖fn − f ‖ → 0, V (gn − g) → 0 and gn(a) →
g(a) for some a ∈ R. Then ‖gn − g‖ ∞ → 0 and

∫ ∞
− ∞ fngn →

∫ ∞
− ∞ fg.

Proof. First, note that

|gn(x) − g(x)| ≤ |gn(a) − g(a)| + |[gn(x) − g(x)] − [gn(a) − g(a)]|
≤ |gn(a) − g(a)| + V (gn − g)

→ 0 as n → ∞.

Hence, ‖gn − g‖∞ → 0. Now use the Hölder inequality (Theorem 13) to write∣∣∣∣
∫ ∞

− ∞
fngn −

∫ ∞

− ∞
fg

∣∣∣∣ =
∣∣∣∣
∫ ∞

− ∞
fn(gn − g) + (fn − f)g

∣∣∣∣
≤ ‖fn‖ ‖gn − g‖ B V + ‖fn − f ‖‖g‖ B V

→ 0 as n → ∞. �

Corollary 33. Suppose {fn} ⊂ AR and f ∈ AR such that ‖fn − f ‖ → 0.
If g ∈ B V , then

∫ ∞
− ∞ fng →

∫ ∞
− ∞ fg.

Corollary 34. Suppose f ∈ AR, {gn} ⊂ B V and g ∈ B V such that V (gn −
g) → 0 and gn(a) → g(a) for some a ∈ R. Then

∫ ∞
− ∞ fgn →

∫ ∞
− ∞ fg.

Note that in Theorem 32 and the two corollaries we also get convergence
on each subinterval of R.
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Example 35 (Convolution). Suppose f ∈ AR and g ∈ AC such that both
limits limx→ ± ∞ g(x) exist in R. The convolution (f ∗ g)(x) =

∫ ∞
− ∞ f(x −

y)g(y)dy exists for all x ∈ R. By the change of variables theorem, f ∗ g = g ∗ f .
(Use G(y) = x − y in Theorem 8.) By the Hölder inequality, ‖f ∗ g‖∞ ≤

‖f ‖(‖g‖∞ + V g). For each x ∈ R, we have g(x − ·) ∈ B V . For each y, z ∈ R,
we have limx→z g(x − y) = g(z − y). And,

V
(
g(z − ·) − g(x − ·)

)
= ‖g′(z − ·) − g′(x − ·)‖1

→ 0 as z → x by continuity in the L1 norm.

By Corollary 34, f ∗ g is uniformly continuous on R.
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