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THE BOUNDARY PROBLEM FOR L1-PREDUALS

JIŘÍ SPURNÝ

Abstract. Let E be an L1-predual and B ⊂ BE∗ be a bound-
ary. We show that any bounded σ(E,B)-compact subset of E is

weakly compact. We also present an example of an L1-predual
E that is not angelic in the σ(E, extBE∗ )-topology.

1. Introduction

If E is a Banach space, let BE stand for its closed unit ball. A subset
B of the closed dual unit ball BE∗ is called a boundary, if for each x ∈ E
there exists b ∈ B such that ‖x‖ = b(x). We consider on E the locally convex
topology σ(E,B) generated by all functionals from B. The following open
boundary problem was formulated by Godefroy in [13, Question V.2]:

Let K ⊂ E be a bounded σ(E,B)-compact set. Is K weakly compact?
Despite serious effort of many mathematicians, only partial results are

known. The answer is known to be positive, if
• B = extBE∗ , i.e., B consists of all extreme points of BE∗ (see [3, Theo-

rem 1]),
• K is convex (see [10, Sections 8, 8.1, Corollary 1]),
• E does not contain �1[0,1] (see [5, Theorem D]),
• E = C(L) for some compact Hausdorff topological space L (see [4, Proposi-

tion 3]),
• B is relatively sequentially compact in (BE∗ ,weak∗) (see [7, Corollary C]),

or
• E = �1(Γ) (see [6, Theorem 4.9]).

Among goals of our paper is to provide the positive answer for the bound-
ary problem in case E is an L1-predual, i.e., E∗ is isometric to L1(μ) for a
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suitable measure μ. The most important examples of L1-preduals are C(L)
spaces and spaces of affine continuous functions on Choquet simplices (see
[11, Proposition 3.23]). We refer the reader to [16] for a classification of L1-
preduals.

A more general version of the boundary problem is the following question
on angelicity of a boundary topology:

Let E be a Banach space and B ⊂ BE∗ be a boundary. Is (BE , σ(E,B))
angelic?

(We recall that a regular topological space X is angelic, if every relatively
countably compact subset A of X is relatively compact and its closure A is
made up of the limits of sequences from A.) The point of this question is
that its affirmative answer would provide a positive solution for the bound-
ary problem via the Simons lemma [18, Theorem 8]. Moreover, all known
examples of boundary topologies are angelic on bounded sets. We recall a
classical example of an angelic space, namely the space C(L) endowed with
the topology of pointwise convergence (see [12, Theorem 462B]). Hence, any
Banach space is angelic in its weak topology (see [12, Theorem 462D]).

An ingenious construction of Moors and Reznichenko in [17, Section 4]
provides an example of a Banach space E and its σ(E, extBE∗ )-compact sub-
set K that is not angelic in the σ(E, extBE∗ )-topology (of course, K is not
bounded in E). This answers a question asked by Cascales and Shvydkoy in
[6, Problem 4.11]. In the second part of our paper, we show that the Banach
space E in their construction is even an L1-predual. Hence, the assumption
of boundedness is essential in the question of angelicity of boundary topolo-
gies even for L1-preduals. This might be of some interest since a particular
example of an L1-predual, namely a C(L) space, has the property that any
boundary topology is angelic on C(L) (see [4, Theorem 5]).

We summarize the results of our paper in the following theorem.

Theorem 1.1.

(a) Let E be an L1-predual and B ⊂ BE∗ be a boundary. Then any bounded
σ(E,B)-compact subset K of E is weakly compact. Moreover, the space
(BE , σ(E,B)) is angelic.

(b) There exists a subset K of an L1-predual E such that K is a compact
nonangelic space in the σ(E, extBE∗ )-topology.

If E is a Banach space, we write weak (respectively weak∗) for the weak (re-
spectively weak∗) topology. If A is a subset of E, coA (respectively spanA) is
the convex (respectively linear) hull of A. Throughout the paper, we consider
the space E to be canonically embedded in its double dual E∗ ∗.

If X is a locally compact space, we write M+(X) (respectively M1(X))
for the set of all positive (respectively probability) Radon measures on X . If
X is compact, we consider M+(X) endowed with the weak∗ topology given



THE BOUNDARY PROBLEM FOR L1-PREDUALS 1185

by all continuous functions on X . We write εx for the Dirac measure at a
point x ∈ X .

If X is a compact convex subset of a locally convex space, a convex set
F ⊂ X is a face, if x, y ∈ F , whenever x, y ∈ X and some α ∈ (0,1) satisfy
αx+(1 − α)y ∈ F . We write A(X) for the Banach space of all affine continuous
functions on X endowed with the sup-norm.

If μ is a probability measure on X , let r(μ) stand for the barycenter of μ
(see [1, p. 12]). The convex cone of all convex continuous functions determines
a partial ordering on M+(X), namely μ � ν if and only if μ(f) ≤ ν(f) for
any continuous convex function f on X . The set X is called a Choquet
simplex (briefly a simplex ) if for every point x ∈ X there exists a unique
probability measure μ maximal with respect to � such that r(μ) = x (see [2,
Theorem 7.3]).

If X is a set and B a subset of X , we write τB for the topology of pointwise
convergence on B for the space R

X of all functions from X to R.

2. Boundaries of compact convex sets

A different point of view on the boundary problem is the following. Let
X be a compact convex subset of a locally convex space. A set B ⊂ X is a
boundary of X , if every function from A(X) attains its maximum on B (cf.
[17, Section 2, p. 7]). Then the boundary problem can be reformulated as
follows:

Let K ⊂ A(X) be a bounded τB-compact set. Is it τX -compact?
To see this, we notice that a boundary B ⊂ BE∗ of a Banach space E is also

a boundary of the compact convex set (BE∗ ,weak∗) in the sense mentioned
above. Moreover, the topology τB on E is nothing else than the topology
σ(E,B) and τBE∗ coincides on E with the weak topology.

Conversely, if B ⊂ X is a boundary of a compact convex set X , the dual
unit ball BA(X)∗ can be identified with co(X ∪ −X). (We refer the reader to [1,
Chapter 2, Section 2] and [2, Theorem 4.7] for proofs of this representation.)
Then B ∪ −B is a boundary of the Banach space A(X) and the topologies τB

and σ(A(X),B ∪ −B) may be identified as well as the topology τX with the
weak topology on A(X).

In this setting, Khurana proved in [14, Theorem 1] that any bounded τextX -
compact subset of A(X) is τX -compact. It also follows from his proof, or from
the method of [3], that the space (BA(X), τextX) is angelic.

As was already mentioned in the Introduction, the space A(X) is an L1-
predual for any Choquet simplex X (see [11, Proposition 3.23]). Hence, The-
orem 1.1(a) yields the following corollary.

Corollary 2.1. Let B ⊂ X be a boundary of a Choquet simplex X . Then
(a) any bounded τB-compact set K ⊂ A(X) is τX -compact, and
(b) (BA(X), τB) is an angelic space.
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3. L1-preduals and boundary topologies

Our solution of the boundary problem in L1-preduals starts with Lem-
ma 3.1. It enables to use geometrical properties of separable L1-preduals (see
Lemmas 3.2 and 3.3) and employ the technique of [3]. The key Lemma 3.4
relies upon the fact that any extreme point of BE∗ for a separable L1-predual
space E is even weak∗ exposed (see Lemma 3.3(b)). Since any weak∗ exposed
point of BE∗ is contained in any boundary B ⊂ BE∗ , we get that the set of
extreme points is contained in an arbitrary boundary. As was pointed out
in [4, Theorem 6], this property already implies the positive answer for the
boundary problem.

Lemma 3.1. Let Y be a separable subspace of an L1-predual E. Then there
exists a separable L1-predual Z such that Y ⊂ Z ⊂ E.

Proof. See [15, Chapter 7, Section 23, Lemma 1]. �

If E is a Banach space and Y a locally convex space, a multivalued mapping
ϕ : BE∗ −→ Y is called convex if for any x∗, y∗ ∈ BE∗ and α ∈ [0,1],

αϕ(x∗) + (1 − α)ϕ(y∗) ⊂ ϕ
(
αx∗ + (1 − α)y∗)

.

The mapping ϕ is weak∗ lower semicontinuous if

ϕ−1(U) = {x∗ ∈ BE∗ : ϕ(x∗) ∩ U 
= ∅}

is weak∗ open in BE∗ for each U ⊂ Y open. We say that ϕ is odd if ϕ(−x∗) =
−ϕ(x∗) for each x∗ ∈ BE∗ .

A selection for ϕ is a mapping f : BE∗ −→ Y such that f(x∗) ∈ ϕ(x∗),
x∗ ∈ BE∗ .

Theorem 3.2. Let E be an L1-predual and Y be a Fréchet space. Let
ϕ : BE∗ −→ Y be a convex odd weak∗ lower semicontinuous mapping with
nonempty closed convex values. Let F ⊂ BE∗ be a face of BE∗ such that
H = co(F ∪ −F ) is weak∗ closed and h : H −→ Y is a weak∗ continuous odd
affine selection of ϕ �H .

Then ϕ admits an affine odd weak∗ continuous selection f such that f �H=
h.

Proof. See [16, Theorem 2.2] or [15, Chapter 7, Section 22, Theorem 2]. �

Lemma 3.3. Let E be a separable L1-predual and x∗ ∈ extBE∗ .

(a) If y∗ ∈ extBE∗ \ {x∗, −x∗ }, then there exists an element x ∈ BE such that
x∗(x) = 1 and y∗(x) = 0.

(b) There exists x ∈ BE such that x∗(x) = 1 and

|y∗(x)| < 1 for each y∗ ∈ BE∗ \ co({x∗ } ∪ { −x∗ }).
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Proof. Assume that E is a separable L1-predual space and x∗ ∈ extBE∗ is
given. We denote H = co({x∗ } ∪ { −x∗ }). For the proof of (a), let y∗ be a
point of extBE∗ that is distinct from x∗ and −x∗.

We define a multivalued mapping ϕ : BE∗ −→ [−1,1] as

ϕ(z∗) =

{
0, z∗ ∈ {y∗, −y∗ },

[−1,1], otherwise.

Then ϕ is weak∗ lower semicontinuous odd convex mapping with nonempty
closed convex values in R. Further,

h : H −→ [−1,1],
λx∗ + (1 − λ)(−x∗) �→ 2λ − 1, λ ∈ [0,1],

is a weak∗ continuous odd affine selection of ϕ �H .
According to Theorem 3.2, ϕ admits a weak∗ continuous odd affine selection

f : BE∗ −→ [−1,1] such that f = h on H . Hence, there exists x ∈ BE such
that f(z∗) = z∗(x), z∗ ∈ BE∗ . Then x∗(x) = 1 and y∗(x) = 0. This concludes
the proof of (a).

For the proof of (b), let y∗ ∈ extBE∗ \ H be given. Using (a), we find a
point xy∗ ∈ BE such that x∗(xy∗ ) = 1 and y∗(xy∗ ) = 0, and a weak∗ open
neighbourhood Uy∗ of y∗ such that |u∗(xy∗ )| < 1 for each u∗ ∈ Uy∗ . Since
extBE∗ \ H is a weak∗ separable metrizable space, we can select countably
many points {y∗

n : n ∈ N} ⊂ extBE∗ \ H such that

extBE∗

∖
H ⊂

∞⋃
n=1

Uy∗
n
.

We set

x =
∞∑

n=1

1
2n

xy∗
n
.

Then x ∈ BE , x∗(x) = 1 and |u∗(x)| < 1 for each u∗ ∈ extBE∗ \ H .
Let z∗ ∈ BE∗ \ H be given. Using the Choquet representation theorem

[9, Theorem 4.43], we find a measure μ ∈ M1(BE∗ ) carried by extBE∗ that
represents z∗, i.e.,∫

extBE∗
u∗(y)dμ(u∗) = z∗(y) for each y ∈ E.

Since z∗ /∈ H , μ(extBE∗ \ H) > 0. Thus,

z∗(x) =
∫

extBE∗ ∩H

u∗(x)dμ(u∗) +
∫

extBE∗ \H

u∗(x)dμ(u∗) < 1.

By symmetry, (−z∗)(x) < 1. This finishes the proof. �
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Lemma 3.4. Let E be an L1-predual and B ⊂ BE∗ be a boundary. If
K ⊂ BE is σ(E,B)-relatively countably compact, then it is weakly relatively
sequentially compact.

Proof. If E is an L1-predual, it follows from Lemma 3.3 that E satisfies
property (S ) from [4, Definition 2]. Thus, the proof of [4, Theorem 6] yields
that any sequence in K has a weakly convergent subsequence, which is the
required conclusion. �

Proof of Theorem 1.1(a). Let E be an L1-predual, B ⊂ E be a boundary
and K ⊂ E a bounded σ(E,B)-compact set. Without loss of generality, we
may assume that B is symmetric and K ⊂ BE .

Since K is σ(E,B)-countably compact, K is relatively weakly sequentially
compact by Lemma 3.4. As K is σ(E,B)-closed, it is a weakly closed set
as well. Hence, K is weakly compact by the Eberlein–Šmulyan theorem [9,
Theorem 4.47].

For the proof of the second assertion in (a), let A ⊂ BE be σ(E,B)-
relatively countably compact. According to Lemma 3.4, A is weakly relatively
countably compact. Since the weak topology is angelic, A

weak
is a weakly com-

pact set. Since σ(E,B)-topology is weaker than the weak topology, A
weak

is
also σ(E,B)-compact, and hence σ(E,B)-closed. Thus,

A
σ(E,B) ⊂ A

weak ⊂ A
σ(E,B)

.

Since the identity mapping

id : (A
weak

,weak) −→ (A
weak

, σ(E,B))

is continuous, it is a homeomorphism and both topologies coincide on A
weak

.
In particular, σ(E,B) is angelic on A

weak
, which concludes the proof. �

4. An example of an L1-predual

The aim of this section is a proof of Theorem 1.1(b), i.e., the proof of
the assertion that there exist an L1-predual E and its subset K such that the
topological space (K,σ(E, extBE∗ )) is compact and nonangelic.

For its proof, we recall an ingenious construction by Moors and Reznichenko
in [17, Section 4]. They presented a general construction that produces com-
pact convex sets with various interesting properties. In [17, Example 4.8],
they found a compact convex set X and a τextX -compact set K ⊂ A(X) that
is not angelic.

We briefly remind their construction and show that the set X is moreover a
simplex. Thus, A(X) is an L1-predual and K is its τextX -compact nonangelic
set. According to Section 2, Theorem 1.1(b) follows.
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General construction 4.1. Let X,Y be a couple of compact convex sets
such that extY is closed. Let y∞ ∈ extY be fixed and ϕ : extY \ {y∞ } −→
X \ extX be continuous and injective. We define the following subsets of
X × Y as

A = extX × {y∞ } and B =
{
(ϕ(y), y) ∈ X × Y : y ∈ extY \ {y∞ }

}
.

Let
Z = co(A ∪ B).

Lemma 4.2. Let Z be constructed as above. Then the following assertions
hold.
(a) extZ = A ∪ B.
(b) B = B \ (X × {y∞ }), in particular, B is a locally compact space and a

Borel subset of Z.
(c) If X , Y are simplices, then Z is a simplex as well.

Proof. For the proof of (a), we refer the reader to [17, Theorem 4.1].
To verify (b), we notice that this easily follows from the compactness of

extY .
Thus, we have to prove (c). First, we notice that X may be identified with

X × {y∞ }.

Claim 4.2.1. If λ is a maximal measure on Z, then λ is carried by (X ×
{y∞ }) ∪ B.

Proof. Given a maximal measure λ, [2, Theorem 6.8] yields that λ is carried
by

extZ = A ∪ B = A ∪ B.

Hence, the assertion follows from (b). �

Claim 4.2.2. If λ is a maximal measure on Z such that λ �X× {y∞ } is
nonzero, then λ �X× {y∞ } is maximal on X × {y∞ }.

Proof. Let λ ∈ M1(Z) be a maximal measure. We write λ = λ1 + λ2,
where λ1 ∈ M+(X × {y∞ }) and λ2 is carried by Z \ (X × {y∞ }). Using [1,
Lemma I.4.7] we find a measure ω ∈ M+(X × {y∞ }) such that λ1 � ω and ω
is maximal with respect to � (here the ordering � is considered on the set
X × {y∞ }).

Given any convex continuous function f on Z, we have

λ(f) =
∫

X× {y∞ }
f(s, t)dλ1(s, t) +

∫
B

f(s, t)dλ2

≤
∫

X× {y∞ }
f(s, t)dω(s, t) +

∫
B

f(s, t)dλ2.

Since λ is maximal, λ = ω + λ2 and λ1 = ω is maximal on X × {y∞ }. �
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Let (x, y) ∈ Z be given. We are going to show that there exists a unique
maximal measure on Z whose barycenter is (x, y).

Before stating the next claim, we recall that given a continuous mapping
φ : W1 −→ W2 of a locally compact space W1 onto a locally compact space
W2, φ(ω) ∈ M+(W2) denotes the image of a measure ω ∈ M+(W1) (we refer
the reader to [12, Theorem 418I] for more information on images of Radon
measures).

Claim 4.2.3. Let π : Z −→ Y denote the restriction of the projection of
X × Y onto Y and let ψ : extY \ {y∞ } −→ B be defined as ψ(y) = (ϕ(y), y).
Then for any measure λ ∈ M+(Z) carried by B, it holds ψ(π(λ)) = λ.

Proof. Let C ⊂ B be a Borel set. Then

ψ(π(λ))(C) = π(λ)(ψ−1(C)) = λ(π−1(ψ−1(C))) = λ(C).

This concludes the proof. �
Claim 4.2.4. If μ, ν ∈ M1(Z) are maximal measures with r(μ) = r(ν) =

(x, y), then μ �B= ν �B .

Proof. Given μ, ν as in the premise, we write

(4.1) μ = μ1 + μ2, ν = ν1 + ν2,

where μ1, ν1 are carried by X × {y∞ } and μ2, ν2 are carried by B (here we
use Claim 4.2.1). According to Claim 4.2.3, it is enough to show that

(4.2) π(μ2) = π(ν2).

First, we notice that π(ω) is a measure carried by extY \ {y∞ } for any
ω ∈ M+(Z) carried by B. Thus, for verification of (4.2), it suffices to check
π(μ2)(f) = π(ν2)(f) for any f ∈ C(extY ) with f(y∞) = 0.

Let f be such a function. Since Y is a simplex, by [1, Theorem II.4.3] there
exists a function h ∈ A(Y ) such that h = f on extY . We set

1 ⊗ h : X × Y −→ R,

(s, t) �→ h(t).

Then 1 ⊗ h is an affine continuous function on Z such that 1 ⊗ h = 0 on
X × {y∞ }. Hence,

π(μ2)(f) = μ2(f ◦ π) = μ2(1 ⊗ h)
= μ1(1 ⊗ h) + μ2(1 ⊗ h)
= μ(1 ⊗ h) = h(y) = ν(1 ⊗ h)
= · · · = π(ν2)(f).

This proves (4.2) and concludes the proof. �
Claim 4.2.5. If μ, ν ∈ M1(Z) are maximal measures with r(μ) = r(ν) =

(x, y), then μ �X× {y∞ }= ν �X× {y∞ }.



THE BOUNDARY PROBLEM FOR L1-PREDUALS 1191

Proof. Let μ, ν be decomposed as in (4.1). We show first that

(4.3) μ1(h) = ν1(h)

for any continuous affine function h on X × {y∞ }. Given such a function, we
define h ⊗ 1 ∈ A(Z) similarly as above. Then by Claim 4.2.4,

μ1(h) = μ1(h ⊗ 1) = μ(h ⊗ 1) − μ2(h ⊗ 1)
= (h ⊗ 1)(x, y) − μ2(h ⊗ 1)
= (h ⊗ 1)(x, y) − ν2(h ⊗ 1)
= · · · = ν1(h).

If μ1, ν1 are nonzero, Claim 4.2.1yields that both μ1 and ν1 are maximal
measures on X × {y∞ }. Since X × {y∞ } is a simplex, equality (4.3) yields
μ1 = ν1. This concludes the proof. �

Since Claims 4.2.1, 4.2.4, and 4.2.5 yield assertion (c), the proof is finished.
�

Now, we remind Example 4.8 of [17] that provides the desired simplex.

Construction 4.3. We set

X = co({0} ∪ {en : n ∈ N}) ⊂ (RN, τN),

where en, n ∈ N, is the characteristic function of {n}. Then X is a metrizable
simplex with extX = {0} ∪ {en : n ∈ N} being a closed set.

Further, let A be a maximal almost disjoint family of infinite subsets of N.
Let Ŷ = A be endowed with the discrete topology, α(Ŷ ) be its Alexandroff
compactification and y∞ be the point in infinity (see [8, p. 170]). Setting
Y = M1(α(Ŷ )), we get a simplex such that α(Ŷ ) can be identified with extY
via the canonical embedding (see [1, Corollary II.4.2]). We define

f : extY \ {y∞ } −→ X \ extX,

f(M)(n) =

{
2−n, n ∈ M,

0, n /∈ M,
M ∈ A.

Let Z be defined as in Construction 4.1. According to Lemma 4.2(c), Z is a
simplex, and thus A(Z) is an L1-predual.

Let K̂ = A ∪ N with a base of the topology defined as

B =
{

{n} : n ∈ N
}

∪
{

{M } ∪ (M \ F ) : M ∈ A, F a finite subset of N
}
.

Then K̂ is a locally compact space. Let α(K̂) be the Alexandroff compactifi-
cation of K̂ and k̂∞ be the point in infinity.
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Let π : α(K̂) −→ A(Z) be defined as

π(k̂)(x,μ) =

⎧⎪⎨⎪⎩
2k̂x(k̂), k̂ ∈ N,

μ({k̂}), k̂ ∈ A,

0, k̂ = k̂∞.

Let K = π(K̂).

Lemma 4.4. Let Z and K be as in Construction 4.3. Then the map-
ping π : α(K̂) −→ (K,τextZ) is a homeomorphism and (K,τextZ) is a compact
nonangelic space.

Proof. The fact that π is a homeomorphism is proved in [17, Example 4.8].
It is easy to see that k̂∞ is contained in the closure of N and it cannot be
obtained as the limit of a sequence from N. Hence, K̂ is not an angelic space.
Thus, K is a τextX -compact nonangelic space. �

Question 4.5. The example constructed above shows that there exist a
simplex X and a τextX -countably compact set A ⊂ A(X) such that A

τext X is
τextX -compact but not all the points of the closure can be obtained as the
limit of a sequence from A. This violates the second condition required in the
definition of angelicity. However, this example does not answer the following
question:

Let X be a compact convex set and A ⊂ A(X) be τextX -relatively countably
compact. Is A

τext X compact in the topology τextX?
The following observation is due to Moors. If A is assumed to be τextX -

countably compact, A is τextX -compact. Indeed, for each n ∈ N, the set
A ∩ nBA(X) is τextX -countably compact. As was mentioned in Section 2,
A ∩ nBA(X) is angelic in the topology τextX , and hence A ∩ nBA(X) is τextX -
compact. Hence, A =

⋃
n A ∩ nBA(X) is Lindelöf in the topology τextX . Since

A is τextX -countably compact, A is τextX -compact (see [8, Theorem 3.10.1]).
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