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TAUT REPRESENTATIONS OF COMPACT SIMPLE LIE
GROUPS

CLAUDIO GORODSKI

Abstract. The concept of taut submanifold of Euclidean space
is due to Carter and West, and can be traced back to the work of

Chern and Lashof on immersions with minimal total absolute cur-
vature and the subsequent reformulation of that work by Kuiper

in terms of critical point theory. In this paper, we classify the re-
ducible representations of compact simple Lie groups, all of whose

orbits are tautly embedded in Euclidean space, with respect to
Z2-coefficients.

1. Introduction

The concept of taut submanifold of Euclidean space is due to Carter and
West [CW72], and can be traced back to the work of Chern and Lashof [CL57]
on immersions with minimal total absolute curvature and the subsequent re-
formulation of that work by Kuiper [Kui58] in terms of critical point theory.
Although there is an extensive literature on taut submanifolds of Euclidean
space (see, e.g., [CR85, Cec97]), the general classification problem is very dif-
ficult and remains open [TT97, Problem 3.12]. In view of previous results,
this paper can be seen as one step more toward the classification of taut
homogeneous submanifolds of Euclidean space. In fact, a representation of
a compact Lie group is called taut if all of its orbits are taut submanifolds
of the representation space. The main result of this paper is the following
classification theorem, which extends the classification in the irreducible case
completed in [GT03].
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Theorem 1. A taut reducible representation of a compact simple Lie group
is one of the following representations:
1 SU(n), n ≥ 3 Cn ⊕ · · · ⊕ Cn k copies, where 1 < k < n

2 SO(n), n ≥ 3, n �= 4 Rn ⊕ · · · ⊕ Rn k copies, where 1 < k

3 Sp(n), n ≥ 1 C2n ⊕ · · · ⊕ C2n k copies, where 1 < k

4 G2 R7 ⊕ R7 —

5 Spin(6) R6 ⊕ C4 R6 = (vector),C4 = (spin)

6

Spin(7)

R7 ⊕ R8

R7 = (vector),R8 = (spin)
7 R8 ⊕ R8

8 R8 ⊕ R8 ⊕ R8

9 R7 ⊕ R7 ⊕ R8

10 R8
0 ⊕ R8

+

11 Spin(8) R8
0 ⊕ R8

0 ⊕ R8
+ R8

0 = (vector),R8
+ = (halfspin)

12 R8
0 ⊕ R8

0 ⊕ R8
0 ⊕ R8

+

13 Spin(9) R16 ⊕ R16 R16 = (spin)

We make some remarks regarding the representations appearing in this
table. In case 1, any number of summands Cn in the sum can be replaced
by the same number of summands of the dual representation Cn∗, and the
resulting representation remains taut; and similarly, C4 in case 5 can be
replaced by C4∗. Another thing is that the representations of Spin(8) are
listed up to composition with an outer automorphism of the Lie group, so the
pair (R8

0,R
8
+) appearing in the list can be replaced by any pair of inequivalent

8-dimensional representations of Spin(8), and the resulting representations
for Spin(8) will still be taut. Finally, we point out that cases 1 through 8
and case 10 were or could have been known previously to be taut, whereas
cases 9, 11, 12, and 13 definitely give new examples of taut representations
and taut submanifolds.

In the following, we present the relevant definitions and a historical per-
spective of the subject. Carter and West introduced in [CW72] the concept
of tautness for submanifolds (see also the monograph [CR85]). Fix a field of
coefficients F (herein assumed to be Z2). Let M be a properly embedded sub-
manifold of an Euclidean space Rm. For each p ∈ Rm, consider the squared
distance function Lp : M → R given by Lp(x) = ‖x − p‖2. It is a consequence
of the Morse index theorem that the critical points of Lp are nondegenerate,
i.e., Lp is a Morse function, if and only if p is not a focal point of M . Now M
is called F -taut, or simply taut, if Lp is a perfect Morse function for every p in
Rm that is not a focal point of M . We recall that a Morse function is said to
be perfect if the Morse inequalities are equalities for the function restricted to
any sublevel set. As a consequence of the proof of the Morse inequalities, one
sees that an equivalent definition of F -tautness for a submanifold M ⊂ Rm is
that the induced homomorphism

H∗(M ∩ B;F ) → H∗(M ;F )

in singular homology is injective for almost every closed ball B in Rm. It is
then clear that tautness is conformally invariant.
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A compact surface in R3 which is taut is either a round sphere or a cyclide
of Dupin [Ban70]; the latter can all be constructed as the image of a torus of
revolution under a Möbius transformation. Pinkall and Thorbergsson found
in [PT89] the diffeomorphism classes of the compact 3-dimensional manifolds
that admit taut embeddings, and their list consists of seven manifolds. The
first three are S1 × S2 and its quotients S1 × RP 2 and S1 ×Z2 S2. The next
three are S3 and its quotients RP 3 and S3/{ ±1, ±i, ±j, ±k} (the so-called
quaternion space). The last example is the torus T 3. It follows from the
Chern–Lashof theorem [CL57] that a taut substantial (namely, nor contained
in an affine hyperplane) embedding of a sphere must be spherical and of
codimension one. If M is an n-dimensional taut hypersurface in Rn+1 which
has the same integral homology as Sk × Sn−k, then Cecil and Ryan proved
in [CR78] that M has precisely two principal curvatures at each point and
that the principal curvatures are constant along the corresponding curvature
distributions. Bott and Samelson proved in [BS58] that the orbits of the
isotropy representations of the symmetric spaces, sometimes called generalized
flag manifolds, are tautly embedded submanifolds, although they did not use
this terminology. The generalized flag manifolds are homogeneous examples
of submanifolds which belong to another very important, more general class
of submanifolds called isoparametric submanifolds. Hsiang, Palais, and Terng
studied in [HPT88] the topology of isoparametric submanifolds and proved,
among other things, that they and their focal submanifolds are taut.

The class of taut submanifolds of Euclidean space is also closely related
to the class of Dupin hypersurfaces. Pinkall introduced this class in [Pin81]
(see also [Pin85]) as a simultaneous generalization of the classical cyclides of
Dupin and of isoparametric hypersurfaces. Thorbergsson showed in [Tho83]
that a complete Dupin hypersurface embedded in Rn with constant number
of distinct principal curvatures is taut. Pinkall [Pin86] and Miyaoka [Miy84]
then independently showed that a taut hypersurface is Dupin (not necessarily
with a constant number of distinct principal curvatures). More generally, a
tube around a taut submanifold is Dupin.

Most of the examples of taut embeddings known are homogeneous spaces.
In [Tho88], Thorbergsson posed some questions regarding the problem of
which homogeneous spaces admit taut embeddings and derived some nec-
essary topological conditions for the existence of a taut embedding which
allowed him to conclude that certain homogeneous spaces cannot be tautly
embedded, among others, the lens spaces distinct from the real projective
space (see also [Heb88]). Many proofs have been given of the tautness of spe-
cial cases of generalized flag manifolds where the arguments are easier. No
new examples of taut embeddings of homogeneous spaces besides the gener-
alized flag manifolds were known until Gorodski and Thorbergsson classified
in [GT03] (see also [GT]) the taut irreducible representations of compact Lie
groups. It turns out that the classification includes three new representations
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which are not isotropy representations of symmetric spaces, thereby supply-
ing many new examples of tautly embedded homogeneous spaces. In [GT02],
Gorodski and Thorbergsson provided another proof of the tautness of those
representations by adapting the proof of Bott and Samelson to that case. It is
interesting to remark that those three representations precisely coincide with
the representations of cohomogeneity three of the compact Lie groups which
are not orbit equivalent to the isotropy representation of a symmetric space.
(Recall that two representations are said to be orbit equivalent if there is an
isometry between the representation spaces mapping the orbits of the first
representation onto the orbits of the second one.) As mentioned above, in
this paper, we extend the classification in [GT03] to the case in which the
representation is reducible and the group is simple.

The author would like to thank Professor Gudlaugur Thorbergsson for
useful discussions.

2. Preliminary material

In this section, we collect results that will be used later to prove that certain
representations are or are not taut. We start with a following simple remark,
namely, every summand of a taut reducible representation is taut. Indeed, this
is because an orbit of a summand is also an orbit of the sum, and it implies
that taut reducible representations are sums of taut irreducible ones. So, in
order to classify taut reducible representations, we need just to decide which
of those sums are allowed. We shall do that for simple groups.

We begin by recalling the main result of [GT03].

Theorem 2 ([GT03]). A taut irreducible representation of a compact con-
nected Lie group is either orbit equivalent to the isotropy representation of
a symmetric space or it is one of the following orthogonal representations
(n ≥ 2):

SO(2) × Spin(9) (vector) ⊗R (spin)
U(2) × Sp(n) (vector) ⊗C (vector)

SU(2) × Sp(n) (vector)3 ⊗H (vector)

Since the groups appearing in the table of Theorem 2 are nonsimple, now
we can refine the remark above and state that every summand of a taut re-
ducible representation is orbit equivalent to the isotropy representation of a
symmetric space. Throughout the paper, we shall make use of the tables of
isotropy representations of a symmetric spaces given in [Wol84]. The irre-
ducible representations orbit equivalent to the isotropy representation of a
symmetric space are also classified [EH99]. Lists with some of the principal
isotropy subgroups of these representations can be found in [HPT88, Str96].

The fundamental result about taut sums of representations is contained in
the following proposition.
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Proposition 1 ([GT03]). Let ρ1 and ρ2 be representations of a compact
connected Lie group G on V1 and V2, respectively. Assume that ρ1 ⊕ ρ2 is
F -taut. Then the restriction of ρ2 to the isotropy group Gv1 is taut for every
v1 ∈ V1. Furthermore, we have that p(G(v1, v2);F ) = p(Gv1;F )p(Gv1v2;F ),
where p(M ;F ) denotes the Poincaré polynomial of M with respect to the
field F . In particular, Gv1v2 is connected and b1(G(v1, v2);F ) = b1(Gv1;F )+
b1(Gv1v2;F ), where b1(M ;F ) denotes the first Betti number of M with respect
to F .

We give examples of how Proposition 1 can be used. These are taken
from [GT].

Examples 1. (i) Let G = SO(n) and let ρ1 be the SO(n)-conjugation on
the space V1 of real traceless symmetric n × n matrices. Then ρ1 is taut since
it is the isotropy representation of the symmetric space SL(n,R)/SO(n). Let
ρ2 be any other nontrivial representation of SO(n) with representation space
V2. Then ρ1 ⊕ ρ2 cannot be taut if n ≥ 3. To see this, let v1 ∈ V1 be a regular
point. Then Gv1 is the discrete group consisting of all diagonal matrices with
determinant one and entries ±1 on the diagonal. The kernel of ρ2 is contained
in the center of SO(n). Since n ≥ 3, we see that Gv1 cannot be contained in
the kernel of ρ2. Hence, there is an element v2 ∈ V2 that is not fixed by Gv1 .
It follows that Gv1v2 is disconnected. Now Proposition 1 implies that ρ1 ⊕ ρ2

is not taut. The same argument applies more generally whenever ρ1 is a taut
representation of a compact connected Lie group G such that its principal
isotropy subgroup is discrete and not central.

(ii) Now let G be a compact connected simple Lie group of rank at least
two and let ρ1 denote the adjoint representation of G. We assume that G is
simply connected. Let ρ2 be any other nontrivial representation of G. Then
ρ1 ⊕ ρ2 is not taut. To see this, let T be a maximal torus in G. We denote
the representation spaces of ρ1 and ρ2 by V1 and V2, respectively. There is a
regular element v1 ∈ V1 with Gv1 = T . The restriction of ρ2 to T has a discrete
kernel that is contained in the center of G. If v2 ∈ V2 is a T -regular point then
the isotropy subgroup Tv2 coincides with the kernel of ρ2|T . Hence, Gv1v2 is
diffeomorphic to T and it follows that b1(Gv1v2;F ) is equal to the rank of G.
In particular, b1(Gv1v2;F ) ≥ 2. Now notice that the isotropy group of (v1, v2)
is also Tv2 . Hence, π1(G(v1, v2)) = Tv2 which implies H1(G(v1, v2);Z) = Tv2

since Tv2 is Abelian. If G 	= Spin(4k) then the center of G is a cyclic group
and it follows that b1(G(v1, v2);F ) ≤ 1. If G = Spin(4k), then k ≥ 2 and
we get b1(Gv1v2;F ) = 2k ≥ 4; since the center of Spin(4k) is Z2 × Z2, we
have b1(G(v1, v2);F ) ≤ 2. In either case, b1(Gv1v2;F ) > b1(G(v1, v2);F ) which
implies by Proposition 1 that ρ1 ⊕ ρ2 is not taut.

Recall that the slice representation of a representation ρ : G → O(V ) at a
point p ∈ V is the representation induced by the isotropy Gp on the normal
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space to the orbit Gp at p. The following result often works as a kind of
induction.

Proposition 2 ([GT03]). Let ρ : G → O(V ) be a taut representation of
a compact connected Lie group G. Then the slice representation of ρ at any
p ∈ V is taut.

We now discuss a reduction principle which in many cases considerably
simplifies the problem of deciding whether a representation is taut or not.
Let ρ : G → O(V ) be a representation of a compact Lie group G which is not
assumed to be connected. Denote by H a fixed principal isotropy subgroup
of the G-action on V and let V H be the subspace of V that is left pointwise
fixed by the action of H . Let N be the normalizer of H in G. Then the group
N̄ = N/H acts on V H with trivial principal isotropy subgroup. Moreover, the
following result is known [GS00], [Lun75], [LR79], [Sch80], [SS95], [Str94].

Theorem 3 (Luna–Richardson). The inclusion V H → V induces a strati-
fication preserving homeomorphism between orbit spaces

V H/N̄ → V/G.

The relation to tautness is expressed by the following result.

Proposition 3 ([GT03]). Suppose there is a subgroup L ⊂ H which is
a finitely iterated Z2-extension of the identity and such that the fixed point
sets V L = V H . Suppose also that the reduced representation ρ̄ : N̄0 → O(V H)
is Z2-taut, where N̄0 denotes the connected component of the identity of N̄ .
Then ρ : G → O(V ) is Z2-taut.

We close this section with some very useful remarks.

Remark 1. (a) It follows from the discussion of Kuiper in [Kui61] that if
M is a taut substantial submanifold of an Euclidean space, then there exists
p ∈ M such that the image of the second fundamental form of M at p spans
the normal space of M at p. As a corollary, the codimension of M is at most
n(n + 1)/2, where n = dimM .

(b) One defines a submanifold of an Euclidean space to be F-tight, or
simply tight, similarly as was done for tautness, except that one replaces
distance functions by height functions hξ(x) = 〈x, ξ〉, ξ a nonzero vector. It
turns out that tightness is invariant under linear transformations, and a taut
sumanifold of an Euclidean space is tight. Moreover, a tight submanifold of
an Euclidean space which is contained in a round sphere is taut, and in this
situation the set of critical points of a distance function will also occur as the
set of critical points of a height function [CR85, PT88].

(c) Ozawa proved in [Oza86] that the set of critical points of a distance
function of a taut submanifold decomposes into critical submanifolds which
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are nondegenerate in the sense of Bott; it follows that the so-called Morse–
Bott inequalities are equalities for the function restricted to any sublevel set;
namely, the number of critical points of the function is equal to the sum of
the Betti numbers of the critical submanifolds; see [Bot54].

3. The classification

We first prove two lemmas for later use.

Lemma 1. The following representations are not taut:
(a) S1 × S1 → U(1) × U(1) × U(1) given by (eiα, eiβ) → (eiα, eiβ , ei(α+β)).
(b) Sp(1) × Sp(1) → SO(4) × SO(4) × SO(4) given by (p, q) → (lp, rq̄, lprq̄),

where lx (resp. rx) denotes left (resp. right) translation by the unit quater-
nion x.

Proof. We will prove (a); assertion (b) is similar. Let M denote the orbit
through p = (1,1,1) ∈ C ⊕ C ⊕ C. We will show that M is not taut by
exhibiting a height function which is not perfect; see Remark 1(b). The
normal space νpM is easily seen to be spanned over R by (1,0,0), (0,1,0),
(0,0,1), and (i, i, −i). Let h : M → R be the height function defined by p.
Note that gp, g ∈ S1 × S1, is a critical point of h if and only if p ∈ νgpM , or
equivalently, g−1p ∈ νpM . One immediately computes that g = (±1, ±1) or
(− 1

2 ± i
√

3
2 , − 1

2 ± i
√

3
2 ), so there are 6 critical points. Since M is a 2-torus,

h is not perfect. �

Since a representation of real or quaternionic type is necessarily self-dual,
we may assume that the representation ρ2 in the next lemma is of complex
type.

Lemma 2. Let ρi : G → O(Vi), where i = 1, 2, be taut representations of
a compact Lie group G such that ρ = ρ1 ⊕ ρ2 : G → O(V1 ⊕ V2) is a taut
representation. Assume that ρ2 is a representation of complex type. Then
τ = ρ1 ⊕ ρ∗

2 is also a taut representation.

Proof. Fix a point p = (p1, p2) ∈ V1 ⊕ V2. We will show that the orbit τ(G)p
is taut. Denote by θ : V2 → V2 the conjugation with respect to the invariant
complex structure on V2. Then due to the fact that ρ2 viewed as a complex
representation is unitary, we have that

θ ◦ ρ∗
2(g) = ρ2(g) ◦ θ

for all g ∈ G. Define F : V1 ⊕ V2 → V1 ⊕ V2 by setting F = idV1 ⊕ θ. Then F
is an isometry of V1 ⊕ V2. Moreover,

F (τ(g)p) = (ρ1(g)p1, θρ
∗
2(g)p2) = (ρ1(g)p1, ρ2(g)θp2) = ρ(g)(p1, θp2)

for all g ∈ G. It follows that

τ(G)p = F −1(ρ(G)(F (p))).
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Since ρ(G)(F (p)) is taut, this shows that τ(G)p is also taut. �

Now we start the proof of Theorem 1. Throughout the rest of this paper,
we let ρ : G → O(V ) be a taut reducible representation where G is a compact
connected simple Lie group. Of course, we may assume that ρ does not contain
trivial summands. Write ρ = ρ1 ⊕ ρ2, where ρ1 is irreducible. Then ρ1 is orbit
equivalent to the isotropy representation of an irreducible symmetric space.
We shall run through all the possibilities for G and ρ1, where we find it
convenient to consider separately the cases G = Spin(n) and G = SO(n).

3.1. The case G = SO(n), n = 3 or n ≥ 5. Here, ρ1 is one of the following:
(a) the vector representation on Rn;
(b) the adjoint representation on Λ2Rn, where n ≥ 5;
(c) the representation on the space of traceless symmetric matrices S2

0R
n.

The possibilities (b) and (c) are ruled out by Examples 1. Spin(8) Exam-
ple 1(i) Now possibility (a) is taken care of by the following proposition (com-
pare [TT97], Examples 3.14).

Proposition 4. Assume that n ≥ 3 and ρ is the sum of k > 1 copies of
the vector representation. Then ρ is taut.

Proof. Let V = Rn ⊕ · · · ⊕ Rn, k copies. Suppose first that k ≤ n. Let
{e1, . . . , en} be the canonical basis of Rn, and let p = (e1, . . . , ek) ∈ V . View V

as the space of real n × k-matrices, and let Ĝ = SO(n) × SO(k) act on V by
(A,B) · X = AXB−1, where (A,B) ∈ Ĝ and X ∈ V . Then Ĝp = Gp. Since
(Ĝ, V ) is the isotropy representation of the Grassmann manifold Gk(Rn+k),
we have that Gp is taut. Next, suppose that k > 1 is arbitrary and let
q = (v1, . . . , vk) ∈ V be an arbitrary nonzero point. Then there is a non-
singular k × k matrix M such that right-multiplying q by M gives qM =
(e1, . . . , el,0, . . . ,0) ∈ V , where 1 ≤ l ≤ n. It follows from the above that
G(qM) = (Gq)M is taut. Since a taut submanifold in Euclidean space is
tight, and tightness is invariant under linear transformations, Gq is tight.
But Gq lies in a sphere, and so it is taut. This completes the proof that ρ is
taut. �

3.2. The case G = SU(n), n = 3 or n ≥ 5. Here ρ1 is one of the following:
(a) the vector representation on Cn or its dual;
(b) the adjoint representation on su(n);
(c) a real form of the representation of SU(8) on Λ4C8;
(d) the representation on the space of skew-symmetric matrices Λ2C2p+1,

where p ≥ 2, or its dual.
In view of Lemma 2, we do not need to consider the dual representations in
items (a) and (d). The possibilities (b) (even if n = 4) and (c) are ruled out by
Examples 1. Consider now the case in which ρ1 is as in (d). Here, a principal
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isotropy subgroup H is given by p diagonal blocks, each one isomorphic to
SU(2). Denote the representation spaces of ρ1 and ρ2 by V1 and V2. Now
there exists v1 ∈ V1 such that Gv1 = H ∼= SU(2)p. For the purpose of proving
that ρ is not taut, we can assume that ρ2 is irreducible, as we do now. Then
ρ2 also falls into cases (a) or (d). If ρ2 is the vector representation, then
we can find v2 ∈ V2 such that Hv2 ≈ S3 × · · · × S3, p factors. In this case,
G(v1, v2) ≈ SU(2p + 1); since the third Betti number of a compact connected
simple Lie group is 1 and the third Betti number of Hv2 is p ≥ 2, ρ cannot be
taut by Proposition 1. On the other hand, if ρ2 is as in (d), it is not difficult
to see that ρ2|Gv1 contains as a summand a representation equivalent to that
in Lemma 1(b), and thus ρ cannot be taut by Proposition 1. In any event,
this shows that ρ is not taut if ρ1 is as in (d). Now the case in which ρ1 is as
in (a) is covered by the following proposition.

Proposition 5. Assume that n ≥ 3 and ρ is the sum of k copies of the
vector representation. If 1 ≤ k < n, then ρ is taut. If k ≥ n, then ρ is not
taut.

Proof. In the case 1 ≤ k < n, we invoke the fact that the isotropy represen-
tation of the Grassmann manifold Gk(Cn+k) is S(U(n) × U(k)) acting on the
space of complex n × k matrices, and it is orbit equivalent to its restriction
to the subgroup SU(n) × SU(k) if k 	= n (see [EH99]). It then follows as in
Proposition 4 that ρ is taut. In the case k ≥ n, it is enough to prove nontaut-
ness for k = n. Let {e1, . . . , en} be the canonical basis of Cn. The isotropy
subgroup at e1 is isomorphic to SU(n − 1), and the slice representation at e1

decomposes into a sum of trivial representations and Cn−1 ⊕ · · · ⊕ Cn−1, n − 1
copies. We use Proposition 2 and induction to reduce the proof to the case
of SU(3) acting on C3 ⊕ C3 ⊕ C3. Let p = (e1, e2, e3), and denote by M the
SU(3)-orbit through p. Then M is the standard inclusion of SU(3) into the
space M(3,C) of complex 3 × 3-matrices. The tangent space TpM is the Lie
algebra su(3), and the normal space νpM is Cp ⊕ isu(3). By Remark 1(b),
it suffices to show that a height function is not perfect. Let h : M → R be
the height function defined by p. We find the critical points of h. Note that
gp, for g ∈ SU(3), is a critical point of h if and only if p ∈ νgpM , or, what
amounts to the same, g−1p ∈ νpM . Now it is easy to see that gp is a critical
point of h if and only if g = ωI , where ω is a cubic root of unity and I is the
identity matrix, or g is conjugate to a diagonal matrix with entries −1, −1
and 1. It follows that the critical set of h consists of 3 isolated points and
a submanifold diffeomorphic to CP 2, whence the sum of its Betti numbers
is 6. Since SU(3) has the homology of S3 × S5, h is not perfect in the sense
of Bott; see Remark 1(c). Hence, M is not taut. �

3.3. The case G = Sp(n), n ≥ 3. Here, ρ1 is one of the following:
(a) the vector representation on C2n;
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(b) the adjoint representation on sp(n);

(c) a real form of the 42-dimensional representation of Sp(4);
(d) a real form of the representation Λ2C2n − C.
The possibilities (b) (even if n = 2) and (c) are ruled out by Examples 1.
Consider the possibility (d). Here, a principal isotropy subgroup H is given
by the diagonal embedding of Sp(1)n into Sp(n), so there exists v1 ∈ V1 such
that Gv1 = H ∼= Sp(1)n. To prove that ρ is not taut, we can assume that ρ2

is irreducible, as we do now, and then ρ2 is as in (a) or in (d). If ρ2 is as in
(a), the proof follows as in Section 3.2 to deduce that ρ is not taut. If ρ2 is
as in (d), Proposition 6 below implies that ρ is not taut.

Proposition 6. Let Vn denote a real form of the representation Λ2C2n −C
of Sp(n), where n ≥ 3. Then (Sp(n), Vn ⊕ Vn) is not taut.

We postpone the proof of Proposition 6 to the end of the paper since the
methods used to prove it better belong there. Finally, the case in which ρ1 is
as in (a) is covered by the following proposition.

Proposition 7. Assume that n ≥ 1 and ρ is the sum of k > 1 copies of
the vector representation. Then ρ is taut.

Proof. The proof is analogous to the proof of Proposition 4. �

3.4. The case G is exceptional. First note that no summand of ρ can be
the adjoint representation by Example 1(ii).

If G = G2, then ρ is the sum of k copies of the 7-dimensional representation.
If k = 2, ρ is orbit equivalent to (SO(7),R7 ⊕ R7), which is taut. If k = 3, ρ
is not taut due to the following proposition.

Proposition 8. We have that (G2,R7 ⊕ R7 ⊕ R7) is not taut.

We postpone the proof of Proposition 8 to the end of the paper for the sake
of convenience.

If G = F4, then ρ is the sum of k copies of the 26-dimensional representa-
tion. Suppose k = 2, ρ = ρ1 ⊕ ρ2. Then there is an isotropy subgroup H of
ρ1 isomorphic to Spin(9). Now ρ2|H decomposes as R ⊕ R9 ⊕ R16, and it is
not taut by Proposition 18 below. Hence, ρ is not taut by Proposition 1.

E6, E7, and E8 do not admit representations orbit equivalent to the isotro-
py representation of a symmetric space.

3.5. The case G = Spin(n), n = 3 or n ≥ 5. This is case is more involved
than the previous ones. Since the case of SO(n) has already been considered
in Section 3.1, we may assume that a summand of ρ is a spin representation
in this section. Therefore, the only values of n which need to be considered
are 3, 5, 6, 7, 8, 9, 10, and 16.
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3.5.1. G = Spin(3). Here, G = SU(2) = Sp(1). By the discussion in Sec-
tion 3.1, the admissible summands of ρ are the vector representation of SU(2)
on C2 and the representation on R3 given by SU(2) → SO(3). The sum
of an arbitrary number of copies of C2 is taut by Proposition 7. On the
other hand, C2 ⊕ R3 is not taut, because the principal orbit through a point
(a, b) ∈ C2 ⊕ R3 with a, b 	= 0 is substantial and diffeomorphic to S3, but
as mentioned in the Introduction, a sphere can be taut only in substantial
codimension one.

3.5.2. G = Spin(5). Here, G = Sp(2). By the discussion in Section 3.1, the
admissible summands of ρ are the vector representation of Sp(2) on C4 and
the representation on R5 given by Sp(2) → SO(5). The situation in which
R5 is not present is covered by Proposition 7. On the other hand, we have
the following proposition.

Proposition 9. C4 ⊕ R5 is not taut.

Proof. Note that the principal orbits are substantial embeddings of Sp(2)
in S12. We will show that Sp(2) can admit a taut substantial embedding of
codimension 2 in a sphere SN only if N = 15 following an argument which
appeared in [Gal93], page 75.

So, suppose that X is diffeomorphic to Sp(2) and tautly embedded in SN

with N ≥ 12. Let Y be a sufficiently small tubular neighborhood of X in
SN . X has the homology of S3 × S7, so its homology groups vanish except
in dimensions 0, 3, 7, and 10. Since 2 × 3 	= 7, it follows as in Proposition 2.2
of [Oza86] that Y is a compact proper Dupin hypersurface. Moreover, a Morse
distance function on Y can have critical points of index 0, 3, 7, and 10 only.
By the Morse index theorem, the multiplicities of the first three principal
curvatures of Y are m1 = 3, m2 = 4, and m3 = 3. According to Theorem C
in [GH91], there exists at most 2 different multiplicities k, l, and g = 2 or 4
in case k 	= l. Therefore, the fourth principal curvature of Y has multiplicity
m4 = 4. It follows that dimY = 14, and hence, N = 15. �
3.5.3. G = Spin(6). Here G = SU(4). By the discussion in Section 3.1, the
admissible summands of ρ are the vector representation of SU(4) on C4 and
the representation on R6 given by SU(4) → SO(6). (Note that (SU(4),C4∗)
needs not to be considered owing to Lemma 2.) The situation in which R6

is not present is covered by Proposition 5. Also, C4 ⊕ R6 is taut because the
singular orbits are round spheres in C4 and R6, and the principal orbits are
products of those. The following two propositions settle down this case.

Proposition 10. C4 ⊕ R6 ⊕ R6 is not taut.

Proof. Let p ∈ R6. Then the slice representation at p is Spin(5) = Sp(2)
acting on R ⊕ R ⊕ C4 ⊕ R5. The result follows from Propositions 9 and 2. �

Proposition 11. C4 ⊕ C4 ⊕ R6 is not taut.
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Proof. We will show that a certain orbit is not taut by finding an explicit
height function which is not perfect. We need to have a good parametrization
of the orbits. It is useful to use Cayley numbers. Recall that the Cayley
algebra can be viewed as Ca = H ⊕ He via the Cayley–Dickson process, where
H = R〈1, i, j, k〉 is the quaternion algebra (see the Appendix IV.A in [HL82]).
Then Ca = R〈1, i, j, k, e, ie, je, ke〉. According to [CR98], upon identifying
Ca ∼= R8 and using Cayley multiplication,

Spin(8) = {(A,B,C) ∈ SO(8) × SO(8) × SO(8)
A(ξη) = B(ξ)C(η), for all ξ, η ∈ Ca},

Spin(7) = {(A,B,C) ∈ Spin(8)A(1) = 1},

= {(A,B,C) ∈ Spin(8)C = B̃},

where B̃(x) = B(x̄), and

Spin(6) = {(A,B, B̃) ∈ Spin(7) : A(i) = i}.

Also, the isomorphism Spin(6) → SU(4) is given by (A,B, B̃) → B, and
the projection Spin(6) → SO(6) is given by (A,B, B̃) → A. Therefore, the
covering ϕ : SU(4) → SO(6) satisfies ϕ(g)(x) = g(x)g(1) = g(1)g(x̄), where
g ∈ SU(4) and x ∈ R6. Here, we regard SU(4) as the subgroup of SO(8)
defined by the complex structure in R8 specified by left multiplication by
the element i. This identifies Ca ∼= C4. Now (note that i(ke) = je) C4 =
C〈1, j, e, ke〉, R6 = R〈j, k, e, ie, je, ke〉.

Fix the base point p = (1, j, e) ∈ V = C4 ⊕ C4 ⊕ R6. Let G = SU(4) act
on V . Then Gp is trivial. Let M = Gp, principal orbit diffeomorphic to
SU(4). M can also be parametrized by the Stiefel manifold St3(C4). In fact,
given (z1, z2, z3) ∈ St3(C4), there is a unique g ∈ SU(4) such that g−1(1) = z1,
g−1(j) = z2, and g−1(e) = z3. Then we get g−1(1, j, e) = (z1, z2, z3z̄1) ∈ M .
View p = (1, j, e) as a vector in νpM , and let h : M → R be the height function
defined by p. We have that gp ∈ M , g ∈ SU(4), is a critical point of h if and
only if p ∈ νgpM = gνpM . It is easy to compute that the normal space to M
at p = (1, j, e) is spanned by

(1,0,0), (0, j,0), (0,0, e), (j,1,0), (k, −i,0), (je, e, j), (ke, −ie, k).

Now the condition that g−1p ∈ νpM is that there exist A, B, C, D, E, F ,
G ∈ R such that

(z1, z2, z3z̄1) = (A + Dj + Ek + Fje + Gke,

D − Ei + Bj + Fe − Gie,Fj + Gk + Ce).

The relations (zi, zj) = δij , where (·, ·) denotes the Hermitian inner product
in C4, yield the following relations:

(A + B)(D + Ei) = 0,

(F − Gi)(AB + BC + AC − F 2 − G2 − D2 − E2) = 0,
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A2 + D2 + E2 + F 2 + G2 = 1,

A2 − B2 = 0,

C2 + F 2 + G2 = 1.

The system admits exactly the following solutions:
• A = B = −C = ±1, D = E = F = G = 0;
• A = B = C = ±1, D = E = F = G = 0;

• A = B = C = ± 1
2 , D = E = 0, F 2 + G2 = 3

4 ;
• A = −B, C = ±1, F = G = 0, A2 + D2 + E2 = 1.
Since g−1p → gp is a well-defined homeomorphism of M , we deduce that the
critical set of h consists of 4 points, 2 circles and 2 spheres. Now the sum of
the Betti numbers of the critical manifolds of h is 12. Since SU(4) has the
homology of S3 × S5 × S7, M is not taut. �
3.6. G = Spin(7). By the discussion in Section 3.1, the admissible sum-
mands of ρ are the vector representation on R7 and the spin representation
on R8. We first note that R8 ⊕ R7 is taut because the singular orbits are
round spheres in R8 and R7, and the principal orbits are products of those.
Moreover, R8 ⊕ R8 and R8 ⊕ R8 ⊕ R8 are taut because Spin(7) is transitive
on the Stiefel manifolds St2(R8) and St3(R8), so the actions of Spin(7) on
these spaces are orbit equivalent to the actions of SO(8). We also note that
if ρ has 4 summands and R8 is one of them, say V1, then the slice represen-
tation at a point in V1 is G2 acting on R7 ⊕ R7 ⊕ R7, which is not taut by
Proposition 8; hence, ρ is not taut by Proposition 2. We finish the discussion
in this case with the following two propositions.

Proposition 12. R7 ⊕ R7 ⊕ R8 is taut.

Proof. We shall use the reduction principle as described in Proposition 3.
In order to have a good description of the representation, we resort to Cayley
numbers as in the proof of Proposition 11. View R8 = R〈1, i, j, k, e, ie, je, ke〉
and R7 = R〈i, j, k, e, ie, je, ke〉. Let G = Spin(7), V = R7 ⊕ R7 ⊕ R8. The
action of G on V is given by (A,B, B̃) → (A,A,B). The isotropy of G at
p = (i, j,1) ∈ V is

H = {(A,A,A) ∈ Spin(8) : A ∈ Sp(2), A fixes 1} ∼= Sp(1),

where we regard Sp(2) as the subgroup of SO(8) defined by the complex
structures in R8 given by the left multiplications by the elements i, j. This
identifies R8 ∼= H〈1, e〉.

The description of H shows that the cohomogeneity of (G,V ) is 4 and the
fixed point subspace

V H = R〈i, j, k〉 ⊕ R〈i, j, k〉 ⊕ R〈1, i, j, k〉 ∼= R10.

It follows from Theorem 3 that dim N̄ = 6. The normalizer N of H in G is
the same as the stabilizer of V H in G. Suppose that (A,B, B̃) ∈ N . Then we
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can write

A =
(

A1 0
0 A2

)
,

where A1, A2 ∈ SO(4), A1(1) = 1, and we view R4 = R〈1, i, j, k〉. Since
Sp(1) × Sp(1) → SO(4), (p, q) → lprq̄ (notation as in Lemma 1) is a dou-
ble covering, we can write A2 = lprq̄ for unique (p, q) modulo ±1. Similarly,
Sp(1) → SO(3), s → lsrs̄ is a double covering, so we can write A1 = lsrs̄ for
a unique s modulo ±1. We deduce that (compare [CR98], Section 2)

(1) (A,B, B̃) =
((

lsrs̄ 0
0 lprq̄

)
,

(
lsrq̄ 0
0 lprs̄

)
,

(
lqrs̄ 0
0 lprs̄

))
.

Therefore, N consists of the elements of the form (1) for p, q, s ∈ Sp(1), and
H consists of the elements with q = s = 1. Now

N̄ = N/H ∼= Sp(1) ×Z2 Sp(1) = {(q, s) ∈ Sp(1) × Sp(1) : (q, s) ∼ (−q, −s)},

the action of N̄ on V H is given by

(q, s) ∈ N̄ → (lsrs̄, lsrs̄, lsrq̄) ∈ SO(3) × SO(3) × SO(4),

and thus it is orbit equivalent to the product of the standard action of SO(3)
on R3 ⊕ R3 by the standard action of Sp(1) on C2. Since these are taut
representations, we deduce that (N̄ , V H) is also taut. Now let L be the Z2-
subgroup of H generated by the element (1) with q = s = 1, p = −1. Then
V L = V H . It follows from Proposition 3 that (G,V ) is taut. �

Proposition 13. R7 ⊕ R8 ⊕ R8 is not taut.

Proof. We use a method similar to that of the proof of Proposition 12.
Let G = Spin(7), V = R7 ⊕ R8 ⊕ R8. The action of G on V is given by
(A,B, B̃) → (A,B,B). The isotropy of G at p = (i,1, j) ∈ V is

H = {(A,A,A) ∈ Spin(8) : A ∈ SU(4), A fixes 1, j} ∼= SU(2),

and the cohomogeneity of (G,V ) is 5. The fixed point subspace

V H = R〈i, j, k〉 ⊕ R〈1, i, j, k〉 ⊕ R〈1, i, j, k〉 ∼= R11,

and dim N̄ = 6. Now N , H and N̄ are as in Proposition 12, and the action
of N̄ on V H is given by

(q, s) ∈ N̄ → (lsrs̄, lsrq̄, lsrq̄) ∈ SO(3) × SO(4) × SO(4).

Let M = Gp, and let h denote the height function defined by p on M . It is
not difficult to see that the critical set of the restriction h|M ∩ V H coincides
with the critical set of h (compare Lemma 3.17 in [GT]). But M ∩ V H = N̄p,
and a tedious computation shows that the critical set of h|N̄p consists of 8
points and 2 circles, hence its sum of the Betti numbers is 12. If M was taut,
it would have to have the homology of S5 × S6 × S7 by Proposition 1, so
the sum of its Betti numbers would have to be 8. It follows that M is not
taut. �
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3.7. G = Spin(8). By the discussion in Section 3.1, the admissible sum-
mands of ρ are the vector representation which we denote by R8

0, and the
half-spin representations, which we denote by R8

+ and R8
−. The group of

automorphisms of Spin(8) is isomorphic to the dihedral group of degree 3,
and it permutes the representations R8

0, R8
+, R8

−, so this reduces the num-
ber of cases to be considered. We now note that R8

0 ⊕ R8
+ is taut because

the principal orbits are products of spheres; up to permutations, there are
no other representations with two summands which need to be considered.
Similarly, in the case of three summands, there are only two cases to be con-
sidered; see Propositions 14 and 15. In the case of four summands, at least
two of them coincide, and we can assume that those are R8

0. So, there are
three cases to be considered: R8

0 ⊕ R8
0 ⊕ R8

+ ⊕ R8
+, R8

0 ⊕ R8
0 ⊕ R8

+ ⊕ R8
−, and

R8
0 ⊕ R8

0 ⊕ R8
0 ⊕ R8

+; the first one of these is not taut since a slice representa-
tion contains (Spin(7),R7 ⊕ R8 ⊕ R8), which is not taut by Proposition 13,
and we can apply Proposition 2; the second one is not taut because it contains
as a summand (Spin(8),R8

0 ⊕ R8
+ ⊕ R8

−), which is not taut by Proposition 15;
and the third one is taut by Proposition 16. In the case of five summands,
there is always a slice representation equivalent to (G2,R7 ⊕ R7 ⊕ R7), which
is not taut by Proposition 8, and we can apply Proposition 2.

Proposition 14. R8
0 ⊕ R8

0 ⊕ R8
+ is taut.

Proof. We use a method similar to that of the proof of Proposition 12.
Let G = Spin(8), V = R8

0 ⊕ R8
0 ⊕ R8

+. The action of G on V is given by
(A,B,C) → (A,A,B). The isotropy of G at p = (1, i,1) ∈ V is

H = {(A,A,A) ∈ Spin(8) : A ∈ SU(4) fixes 1} ∼= SU(3),

and the cohomogeneity of (G,V ) is 4. The fixed point subspace

V H = R〈1, i〉 ⊕ R〈1, i〉 ⊕ R〈1, i〉 ∼= R6,

and dim N̄ = 2. We now construct two one-parameter subgroups of N which
do not lie in H . Let A ∈ SO(8) be the rotation by θ on the plane R〈1, i〉
fixing its orthogonal complement, and let B(x) = e

iθ
2 x, C(x) = xe

iθ
2 , for x ∈

Ca. Then (A,B,C) ∈ N . We denote this transformation by tθ. Next, let
A ∈ SO(8) fix 1, i, and let B ∈ SU(4) act on C〈1, j, e, ke〉 by the matrix
diag(eiϕ, e−iϕ,1,1). Then (A,B, B̃) ∈ N . We denote this transformation by
sϕ. Now

N̄0 = N0/H ∼= S1 × S1 = {(tθ, sϕ)},

and the action of N̄0 on V H is given by

(tθ, sϕ) ∈ N̄0 →
(
eiθ, eiθ, ei( θ

2 +ϕ)
)

∈ U(1) × U(1) × U(1).

This action is clearly taut. Let L be the subgroup of H generated by the
diagonal matrices with ±1 entries. Then V L = V H , and (G,V ) is taut by
Proposition 3. �
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Proposition 15. R8
0 ⊕ R8

+ ⊕ R8
− is not taut.

Proof. Here, the action of G on V is given by (A,B,C) → (A,B,C). The
isotropy of G at p = (1,1, i) ∈ V is

H = {(A,A,A) ∈ Spin(8) : A ∈ SU(4) fixes 1} ∼= SU(3),

and the cohomogeneity of (G,V ) is 4. The fixed point subspace V H and N̄0

are as in Proposition 14, and the action of N̄0 on V H is given by

(tθ, sϕ) ∈ N̄0 →
(
eiθ, ei( θ

2 +ϕ), ei( θ
2 −ϕ)

)
∈ U(1) × U(1) × U(1).

Since this action is equivalent to that of Lemma 1(a), it is not taut. It follows
that (G,V ) is not taut by the final argument in the proof of Lemma 6.11
in [GT03]. �

Proposition 16. R8
0 ⊕ R8

0 ⊕ R8
0 ⊕ R8

+ is taut.

Proof. Here, the action of G on V is given by (A,B,C) → (A,A,A,B).
The isotropy of G at p = (1, i, j,1) ∈ V is the same H as in Proposition 12,
the cohomogeneity is 7, the fixed point subspace

V H = R〈1, i, j, k〉 ⊕ R〈1, i, j, k〉 ⊕ R〈1, i, j, k〉 ⊕ R〈1, i, j, k〉 ∼= R16,

and so dim N̄ = 9. As in Proposition 12, we compute that

N =
{((

lsrt̄ 0
0 lprq̄

)
,

(
lsrq̄ 0
0 lprt̄

)
,

(
lqrt̄ 0
0 lprs̄

))
: p, q, s, t ∈ Sp(1)

}
,

and (N̄ , V H) is

(q, s, t) ∈ N̄ → (lsrt̄, lsrt̄, lsrt̄, lsrq̄) ∈ SO(4) × SO(4) × SO(4) × SO(4).

This action is orbit equivalent to the product of (SO(4),R4 ⊕ R4 ⊕ R4) and
(Sp(1),C2), hence taut. We take L as in Proposition 12 and we get that
(G,V ) is taut by Proposition 3. �

3.8. G = Spin(9). By the discussion in Section 3.1, the admissible sum-
mands of ρ are the vector representation on R9 and the spin representation
on R16. Note that R16 ⊕ R16 ⊕ R16 is not taut since a slice representation
is (Spin(7),R7 ⊕ R8 ⊕ R7 ⊕ R8). The other possibilities are covered by the
following two propositions.

Proposition 17. R16 ⊕ R16 is taut.

Proof. We need to have a good description of the spin representation of
Spin(9). We start by letting {e1, . . . , en} be the canonical basis of Rn, and
recalling that the Clifford algebra C�(n) (resp. C�+(n)) is the real associative
algebra with unit generated by e1, . . . , en subject to the relations eiej + ejei =
−2δij (resp. eiej + ejei = +2δij). The group Spin(n) (resp. Spin+(n)) is the
multiplicative subgroup of C�(n) (resp. C�+(n)) consisting of even products
of elements in the unit sphere of Rn. It is clear that there is an isomorphism
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C�(n) ⊗ C → C�+(n) ⊗ C, induced by ei →
√

−1ei, which restricts to an iso-
morphism Spin(n) → Spin+(n) (see, e.g., Chapters 13 and 15 in [Pos86]).

Now view
R9 = R ⊕ Ca, R16 = Ca ⊕ Ca,

where Ca = R〈1, e, i, j, k, ei, ej, ek〉, and write {e0; e1, . . . , e8} for the basis
{1; 1, . . . , ek} of R9. Define

ϕ : R9 → M(16,R), (r, u) →
(

rI8 Ru

Rū −rI8

)
,

where r ∈ R, u ∈ Ca, and Ru : Ca → Ca is right Cayley multiplication. Then
ϕ(r, u)2 = (r2+ ‖u‖2)I16. It follows that ϕ induces a homomorphism C�+(9) →
M(16,R). Restricting to Spin+(9) and identifying Spin(9) ∼= Spin+(9), we
finally get the spin representation Δ9 : Spin(9) → SO(16).

Now consider G = Spin(9) acting on V = R16 ⊕ R16 via Δ9 ⊕ Δ9, where
R16 = Ca ⊕ Ca. The principal isotropy subgroup H at the point ((1,0),
(e,1)) ∈ V is isomorphic to SU(3), and Δ9(H) consists of matrices of the
form

(2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

A B
−B A

1
1

A B
−B A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ SO(16),

where A+ iB ∈ SU(3). Now the cohomogeneity of (G,V ) is 4, the fixed point
subspace

V H = R〈(1,0), (e,0), (0,1), (0, e)〉 ⊕ R〈(1,0), (e,0), (0,1), (0, e)〉 ⊂ R16 ⊕ R16,

and dim N̄ = 4. Using the above description of Δ9, one can check that e0e1,
e1e2, e0e2 belong to N and generate a subgroup isomorphic to SU(2). More-
over, e3e4e5e6e7e8 centralizes this subgroup and also belongs to N . Hence,
N̄0 ∼= U(2), and (N̄0, V H) is (U(2),C2 ⊕ C2); this representation is taut by
an argument similar to one used in the proof of Proposition 5, based on the
fact that the isotropy representation of the Grassmann manifold G2(C2) is
orbit equivalent to U(2) × U(2) acting on complex 2 × 2 matrices. Let L be
the subgroup of H generated by the elements (2) with A diagonal with ±1
entries and B = 0. Then V L = V H . Thus, (G,V ) is taut by Proposition 3. �

Proposition 18. R9 ⊕ R16 is not taut.

Proof. We use the description of the spin representation given in the proof
of Proposition 17. One can check that the principal isotropy subgroup H at
(e0, (1,1)) ∈ R9 ⊕ (Ca ⊕ Ca) is isomorphic to G2, V H = R〈e0, e1〉 ⊕ (R1 ⊕
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R1) ⊂ R9 ⊕ (Ca ⊕ Ca), the cohomogeneity is 3, and so dim N̄ = 1. It then
follows that θ → cosθ1 + sinθ(e0e1) defines a one-parameter subgroup in N̄
which acts on (R1 ⊕ R1) as a rotation by an angle of θ, and acts on R〈e0, e1〉
as a rotation by an angle of 2θ. Therefore, (N̄ , V H) is not taut. It follows
that (G,V ) is not taut by the final argument in the proof of Lemma 6.11
in [GT03]. �

3.9. G = Spin(10). By the discussion in Section 3.1, the admissible sum-
mands of ρ are the vector representation on R10, and the half-spin represen-
tations on C16

+ and C16
− . In view of Lemma 2, C16

− needs not to be considered.
It is clear that the following two propositions cover all possibilities.

Proposition 19. R10 ⊕ C16
+ is not taut.

Proof. We extend the ideas of Proposition 17. Let C�0(n) denote the “even”
part of C�(n), namely the subalgebra of C�(n) consisting of even products of
elements in Rn. Then Spin(n) is a subgroup of C�0(n), and an isomorphism
C�0(n) ∼= C�(n − 1) is given by{

eiej → eiej , if i < j < n,

eien → ei, if i < n.

View R9 = R ⊕ Ca and R16 = Ca ⊕ Ca as in Proposition 17, and define

ϕ± : R9 → M(16,C), (r, u) → ±
√

−1
(

rI8 Ru

Rū −rI8

)
,

where r ∈ R, u ∈ Ca, and Ru : Ca → Ca is right Cayley multiplication.
Then ϕ±(r, u)2 = −(r2 + ‖u‖2)I16. It follows that ϕ± induce homomor-
phisms C�(9) → M(16,C). Now Spin(10) ⊂ C�0(10) ∼= C�(9), so these homo-
morphisms restrict to the half-spin representations Δ±

10 : Spin(10) → U(16).
Note that ω = e0e1e2e3e4e5e6e7e8e9 belongs to the center of Spin(10) and
Δ±

10(ω) = ±
√

−1I16. It follows that Δ+
10 and Δ−

10 are not equivalent. It is also
clear that Δ±

10|Spin(9) = Δ9 ⊕ Δ9.
Next, consider G = Spin(10) acting on V = R10 ⊕ C16

+ . We view C16
+ =

R16 ⊕
√

−1R16, Spin(9)-invariant decomposition, where R16 = Ca ⊕ Ca.
A principal isotropy subgroup can be taken to be the same subgroup H as in
Proposition 17, and the fixed subspace

V H = R〈e0, e1, e2, e9〉 ⊕ R〈(1,0), (e,0), (0,1), (0, e)〉
⊕ R〈(ε1,0), (εe,0), (0, ε1), (0, εe)〉 ⊂ R10 ⊕ R16 ⊕ εR16,

where ε =
√

−1. Now the cohomogeneity of (G,V ) is 5 and dim N̄ = 7.
It is not difficult to see that N̄0 is locally isomorphic to U(1) × SU(2)1 ×

SU(2)2, where the U(1)-factor is generated by e3e4e5e6e7e8 and the Lie alge-
bras of the SU(2)-factors are respectively spanned by e0e1 +e2e9, e0e2 − e1e9,
e0e9 +e1e2, and e0e1 − e2e9, e0e2 +e1e9, e0e9 − e1e2. We want to describe the
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action of N̄0 on V H . For that purpose, it is convenient to set R4 = V H ∩ R10

and C4 = V H ∩ C16
+ . Then it can be shown that there is a decomposition

C4 = C2
1 ⊕ C2

2 such that SU(2)1 × SU(2)2 acts by the product of the standard
representations on C2

1 ⊕ C2
2 and it acts on R4 by SU(2)1 × SU(2)2 → SO(4).

Moreover, U(1) acts scalarly on C2
1, C2

2, and trivially on R4. We finally get
that (N̄0, V H) is equivalent to

(ejθ, p, q) ∈
(
U(1) × Sp(1) × Sp(1)

)
/Z2

→ (lpre−jθ , lqrejθ , lprq̄) ∈ SO(4) × SO(4) × SO(4),

where we have identified V H = H ⊕ H ⊕ H. It is also important to note that N̄
is not connected, and the element e1e5e7e6 lies in N̄ \ N̄0.

Finally, consider the N̄ -orbit of x = (1,1,1) ∈ H ⊕ H ⊕ H, and let h be
the height function defined by x. A careful calculation shows that the sum
of the Betti numbers of the critical set of h on N̄0x is 12. Therefore, on N̄x,
this sum is at least 24. The critical set of h on N̄x is the same as its critical
set on M = Gx. If M is taut, it has the homology of S15 × S9 × S7 × S6 by
Proposition 1, so the sum of the Betti numbers of M has to be 16. Hence, M
is not taut. �

Proposition 20. C16
+ ⊕ C16

+ is not taut.

Proof. The principal isotropy subgroup of the first summand acts on the
second summand by a representation that contains a summand equivalent
to (SU(4),C4 ⊕ R6 ⊕ R6 ⊕ C4), which is not taut. Hence, we can apply
Proposition 1. �

3.10. G = Spin(16). This case is ruled out because the spin representation
on R128 cannot be a summand of a taut representation of Spin(16) by the
argument of Example 1(i).

Proof of Proposition 6. Consider first the representation (Sp(n), Vn).
Let K be Sp(1) × Sp(n − 1) diagonally embedded into Sp(n). Then there
exists a point in Vn whose isotropy subgroup is K, and such that its slice rep-
resentation contains as a summand Vn−1. This implies that Vn ⊕ Vn admits a
slice representation containing Vn−1 ⊕ Vn−1. By Proposition 2 and induction
on n, it is now enough to prove that (Sp(3), V3 ⊕ V3) is not taut.

The principal isotropy subgroup of (Sp(3), V3) is the diagonal embedding
of Sp(1)3 into Sp(3); call it K1. Now V3, considered as a representation of
K1, decomposes into two copies of the trivial representation and a represen-
tation W which, upon identification with H ⊕ H ⊕ H, is orbit equivalent to
(notation as in Lemma 1)

(p, q, s) ∈ Sp(1)3 → (lprq̄, lprs̄, lqrs̄) ∈ SO(4) × SO(4) × SO(4).
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By Proposition 1, it is enough to show that (K1,W ) is not taut, and, for that
purpose, we will apply the reduction principle described in Proposition 3 to
(K1,W ).

The principal isotropy subgroup of (K1,W ) at the point (1, i, j) ∈ H ⊕
H ⊕ H is the circle subgroup H = {(ekt, ekt, e−kt) : t ∈ R} of K1. There-
fore the cohomogeneity of (K1,W ) is 4, the fixed point subspace of H is
WH = R〈1, k〉 ⊕ R〈i, j〉 ⊕ R〈i, j〉, and so the dimension of the normalizer N
of H in K1 is 3. It is clear that N0 = {(eka, ekb, ekc) : a, b, c ∈ R}. Con-
sider the one-parameter subgroups of N given by ϕa = (eka, e−ka,1) and
ψb = (1, ekb, ekb). Then ϕa and ψb generate N̄0, and (N̄0, V H) is (ϕa, ψb) →
(ek(2a−b), ek(a+b), ek(−a+2b)), which is not taut by Lemma 1(a). It follows
that (K1,W ) is not taut by the final argument in the proof of Lemma 6.11
in [GT03]. �

Proof of Proposition 8. View R7 as the purely imaginary Cayley numbers,
namely, R7 = 〈i, j, k, e, ie, je, ke〉, and set V = R7 ⊕ R7 ⊕ R7. Recall that a
triple (a, b, c) ∈ V is called a special triple if it is orthonormal and c ⊥ ab.
Any permutation of the members of a special triple yields a special triple, and
there is a bijection between G2, seen as the group of automorphisms of Ca,
and the set of special triples (see [Whi78, Appendix A, Section 5] or [HL82,
Appendix IV.A, Lemma A.15]).

Fix the base point p = (e, i, j) ∈ V . Then Gp is trivial and M = Gp is a
principal orbit and diffeomorphic to G2. One easily computes that the normal
space νpM is spanned by

(e,0,0), (0, i,0), (0,0, j), (i, e,0), (0, j, i), (j,0, e), (k, je, −ie).

Let h : M → R be the height function defined by p. We have that gp ∈ M ,
g ∈ G2, is a critical point of h if and only if p ∈ νgpM = gνpM , or, g−1p ∈ νpM .
Note that g−1p is an arbitrary special triple. So, we need to determine when(

Ae + Di + Fj + Gk,Bi + De + Ej + G(je),Cj + Ei + Fe − G(ie)
)

is a special triple, where A, B, C, D, E, F , G ∈ R. The conditions are:

A2 + D2 + F 2 + G2 = 1,

B2 + D2 + E2 + G2 = 1,

C2 + E2 + F 2 + G2 = 1,

AD + BD + EF = 0,

BE + DF + EC = 0,

AF + DE + CF = 0,

G(AB + AC + BC − D2 − E2 − F 2 − G2) = 0.

In order to solve the system, we consider two cases: G = 0 or G 	= 0 (in which
case AB + AC + BC = D2 + E2 + F 2 + G2.
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If G = 0, then

X =

⎛
⎝A D F

D B E
F E C

⎞
⎠

is orthogonal and symmetric, thus orthogonally conjugate to one of

(3) diag(1,1,1),diag(1,1, −1),diag(1, −1, −1),diag(−1, −1, −1).

This gives already two points and two copies of RP 2 in the critical set of h.
If G 	= 0, then 0 < |G| < 1 and

X =
1√

1 − G2

⎛
⎝A D F

D B E
F E C

⎞
⎠

is orthogonally conjugate to one of the diagonal matrices in (3). If X =
diag(1,1,1), then one easily sees that A = B = C = 1

2 , D = E = F = 0 and
G = ±

√
3

2 . If X = diag(−1, −1, −1), then one easily sees that A = B = C =
− 1

2 , D = E = F = 0 and G = ±
√

3
2 . This adds another four points to the

critical set of h. With the above, we conclude that the sum of the Betti
numbers of this critical set is at least 12. Since G2 has the Z2-homology of
S3 × S5 × S6, this proves that M is not taut. �
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